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1 Introduction28

One core paradigm for the analysis of complex systems is that of reactive processes, introduced29

by Harel and Pnueli [16]. A reactive process interacts with its environment in a stepwise,30

ongoing manner: at each stage, it observes an input signal and chooses a control action with31

the purpose of ensuring that the system satisfies a specified objective.32

Unlike terminating programs that compute a function on a given input, reactive processes33

are meant to operate indefinitely. Their interaction with the environment is naturally34

modelled as an infinite-duration game between a strategic player, representing the process,35

and a non-strategic opponent, Nature. The process aims to satisfy the objective regardless36

of Nature’s choices. The synthesis problem—constructing such a process—thus translates to37

the construction of a winning strategy in an infinite game [6, 27].38

Under perfect information, where input and output uniquely determine the system’s run,39

the game is fully observable and, for ω-regular objectives, it can be solved using established40

algorithms for parity games [9, 24, 27, 7]. In imperfect-information settings, where processes41

have only partial views of the system state, the problem becomes significantly harder.42

Classical approaches [25, 8] reduce such games to perfect-information ones via a powerset43

construction, incurring exponential cost but preserving strategy equivalence.44

In distributed systems, complexity increases further: multiple processes operate based45

on their local observations and must coordinate to achieve a common objective. This yields46

coordination games with imperfect information, which are undecidable in general [22, 18, 12].47

Even two processes receiving distinct inputs face an undecidable synthesis problem [26].48

Coordination may require reasoning about other players’ knowledge—a task that is algorith-49

mically intractable over infinite plays [5].50

To study distributed synthesis beyond known undecidability barriers, we consider a51

model where communication is not restricted in content. We formalise a framework of full-52

information protocols (FIP), inspired by concepts from distributed computing [21, 10, 29],53

in which all information held by a sender is transmitted during a communication event.54

Communication availability is controlled externally, and processes cannot choose which55

information to reveal.56

This model captures systems with maximal information exchange constrained only by57

communication opportunities. Whenever synthesis is possible under arbitrary-bandwidth58

assumptions, it is also possible in the FIP model.59

We formalise distributed systems with FIP semantics as repeated games between players60

and Nature. In each stage, players choose actions; the resulting action profile determines61

a set of enabled moves, from which Nature selects one. Each move yields an observation62

profile, including a local input and a set of views shared via communication. A player’s63

view accumulates her own observations and, recursively, those of others with whom she64

communicates, directly or indirectly.65

Strategies map such views to actions. A profile of strategies determines a set of plays—66

infinite sequences of moves—and is winning, if all resulting plays satisfy the objective,67

expressed by an automaton over infinite words.68

As full synthesis remains undecidable in general, we focus on the case of a single active69

player and an arbitrary number of passive observers. Observers do not act, but their views70

may be communicated, conveying unbounded information in a single stage. This creates71

information trees with unbounded branching, obstructing classical synthesis approaches72

based on finite tree automata [24, 15, 1].73

Our main contribution is a quotient construction for games described by finite-state74
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automata that generalises Reif’s powerset method to the FIP setting. It yields a finite game75

bisimilar to the original one, with winning strategies transferring via a homomorphism. The76

construction tracks information records along nested coalitions of observers, leading to a77

state space of nonelementary size.78

We show that this complexity is tight: the synthesis problem for FIP games with one active79

player and n observers is as hard as the acceptance problem for Turing machines using n-fold80

exponential space. Nonelementary bounds have appeared in similar contexts [2, 18, 12, 13, 4],81

but are surprising here given the presence of only a single decision maker.82

2 Basic Notions83

For a function f ∶ X → Y and a domain subset Z ⊆ X, we denote by f(Z) = {f(z) ∣ z ∈ Z}84

the set of images of elements in Z. The kernel of f relates elements with the same image85

ker f = {(x,x′) ∈X ×X ∣ f(x) = f(x′)}.86

For a directed graph (V,E) with edge relation E ⊆ V ×V , we designate the set of successors87

and predecessors of a node v ∈ V by vE = {v′ ∣ (v, v′) ∈ E} and Ev = {v′ ∣ (v, v′) ∈ E}.88

For a set of players I, we refer to any nonempty subset J ⊆ I as a coalition. A profile is a89

tuple of objects x = (xi)i∈I , one for each player. Given a profile x,we write xi to designate the90

element corresponding to Player i. Likewise, for a coalition J ⊆ I, we write xJ to designate91

the profile (xj)j∈J of objects associated to its members. In general, we use superscripts for92

(objects associated to) players or coalitions. To avoid confusion, we denote the powerset of a93

set X by ℘(X) rather than 2X .94

For an alphabet Γ, the set of finite words over Γ is denoted by Γ∗, the set of finite95

nonempty words is Γ+ = Γ∗ ∖ {ε}, and the set of infinite words is Γω.96

2.1 Games on Graphs97

In the context of reactive systems, games are used to study worst-case scenarios where a98

system interacts with an adversarial environment. The goal is to synthesise a strategy for99

the system player that ensures the specification is satisfied regardless of the environment’s100

behaviour.101

Accordingly, we focus on actions and strategies of one player —or a coalition of players—102

representing the system, and attribute the environement choices to a nonstrategic player,103

which we call Nature. In particular, we deviate from traditional terminology by featuring104

two-player games as games between one player and Nature.105

To compare games played on different structures, we represent objectives in terms of106

colours assigned to game positions.107

Perfect Information108

Let A be a finite set of actions and C a finite set of colours. A graph game with perfect109

information is described by a coloured graph G = (V, vε, (Ea)a∈A, λ), where V is a set of110

positions, vε ∈ V the initial position, each Ea ⊆ V × V is a transition relation for action a,111

and λ∶V → C labels positions with colours. For all v ∈ V and a ∈ A, we assume that the112

successor set vEa is nonempty.113

The game is played in stages starting from the initial position vε. In a stage at position v,114

the player chooses an action a ∈ A, then Nature selects an edge (v,w) ∈ Ea, and the play115

moves to position w which is announced to the player. The outcome is an infinite path in G116

starting from vε, called a play; finite prefixes are called histories.117
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A reachability objective is given by a binary labelling λ∶V → {0, 1}, and a play is winning118

if it visits a position labelled 1. A parity objective is specified by a labelling λ∶V → N that119

assigns priorities to positions, and a play is winning if the least priority seen infinitely often120

is even.121

Strategies in games with perfect information are maps s∶V ∗ → A from histories to actions.122

The outcome of a strategy s is the set Out(s) of plays v0v1v2 . . . such that vt+1 ∈ vtEa for123

a = s(v0v1 . . . vt) at every stage t ≥ 0. A strategy is winning, if all the plays in Out(s) are124

winning. The synthesis problem asks whether such a strategy exists and aims to construct125

one effectively.126

For parity and reachability objectives, it is known that whenever a winning strategy127

exists, there exists one that depends only on the last position in the history. Such positional128

strategies can be represented by a labelling of positions with actions. As the winning status129

of a positional strategy can be verified efficiently, the synthesis problem for parity games is130

decidable in NP ∩CoNP; reachability games are solvable in polynomial time.131

Partial Observation132

One way to model uncertainty is by associating to each position an observation from a finite133

alphabet B, via a function β∶V → B. At each stage, only β(w) is revealed to the player.134

A graph game with partial observation is then given by a coloured graph135

(V, vε, (Ea)a∈A, β, λ). Every history τ = v0v1 . . . vt yields an observation history β̂(τ) ∶=136

β(v0)β(v1) . . . β(vt). Strategies are functions s∶V ∗ → A from histories to actions that do137

not distinguish between histories with the same observation. Under the assumption that138

objectives are visible, in the sense that indistinguishable histories end in positions with the139

same colour given by λ, the synthesis problem for partial-observation games on graphs with140

parity or reachability objectives can be reduced to a perfect-information game via a powerset141

construction, yielding an EXPTIME-complete problem [25, 8].142

To model distributed systems, graph games with partial observation are extended to143

multiple players i ∈ I, each with an action set Ai, an observation set Bi, and a local144

observation function βi∶V → Bi. The edges are then indexed by action profiles a = (ai)i∈I .145

At the stage game from position v, each player i selects an action ai ∈ Ai, Nature chooses an146

edge (v,w) ∈ Ea, and each player observes βi(w). Strategies si of Player i are functions that147

do not distinguish between her observation histories. The outcome of a strategy profile is148

formed by the plays that are in the outcome of all component strategies.149

The synthesis problem for a given, common objective asks whether there exists a strategy150

profile s = (si)i∈I , such that all outcoming plays satisfy the objective. This problem is151

undecidable in general for distributed games with partial observation, even with only two152

players against Nature (see, e.g.,[26]).153

2.2 Automata154

We use deterministic finite automata as language acceptors for infinite words and as trans-155

ducers on finite words.156

A Mealy automaton is given by a tuple (Q,Γ,Σ, qε, δ, λ) consisting of a finite set Q of157

states, a finite input alphabet Γ, a finite output alphabet Σ, a designated initial state qε ∈ Q,158

a transition function δ ∶ Q × Γ → Q, and an output function λ ∶ Q × Γ → Σ. To describe159

the internal behaviour, we extend the transition function from input letters to words. The160

extended transition function δ∶Q × Γ∗ → Q is defined, for every state q ∈ Q, by setting161

δ(q, ε) ∶= q, for the empty word ε, and δ(q, τc) ∶= δ(δ(q, τ), c), for any word obtained by162
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concatenation of a word τ ∈ Γ∗ and a letter c ∈ Γ. Likewise, to describe the external behaviour,163

we extend the output function to λ ∶ Γ+ → Σ by setting λ(τc) = λ(δ(qε, τ), c) for all τ ∈ Γ∗ and164

c ∈ Γ. We say that a function on Γ∗ is regular if there exists a Mealy automaton that defines165

it. Further, we define the cumulative output, for an input word τ = c1c2 . . . cn ∈ Γ∗, as the166

sequence λ̂(τ) = λ(c1)λ(c1c2) . . . λ(c1c2 . . . cn) consisting of the outputs of all prefixes of τ .167

Finally, we extend λ̂ to infinite words π = c1c2 ⋅ ⋅ ⋅ ∈ Γω, by setting λ̂(π) = λ(c1)λ(c1c2) . . .168

3 The Model169

3.1 Repeated Games with Imperfect Information170

Our purpose is to model dynamical systems driven by occurrences of discrete state changes171

that we call moves. System runs correspond to infinite sequences of moves drawn from a172

finite set Γ as the outcome of a multistage game played between a fixed set I = {0,1, . . . , n}173

of players and Nature — or Environment, in control-theoretic terminology. Each player i ∈ I174

has a set Ai of actions, and any action profile (ai)i∈I enables a set of moves, according to175

a move-action map act∶Γ → A, which is surjective. In every stage, a one-shot base game176

is played as follows: each player i ∈ I chooses an action ai from her given action set Ai;177

the chosen profile a = (ai)i∈I constrains the set of possible outcomes to the subset of moves178

{c ∈ Γ ∣ act(c) = a} supported by a, from which Nature chooses one. The outcoming move179

is recorded in the play history, and the game proceeds to the next stage. The outcome of180

the multistage game, called a play, is thus an infinite sequence π = c1c2 ⋅ ⋅ ⋅ ∈ Γω of moves.181

A history (of length `) is a finite prefix τ = c1c2 . . . c` ∈ Γ∗ of a play; the empty history ε182

has length zero. The objective of a player is described by a subset of plays declared to be183

winning.184

To pursue their objectives, players choose actions based on the information available to185

them. The information of a player i ∈ I is modeled by a partition U i of the set Γ∗ of histories;186

the parts of U i are called information sets (of the player). The intended meaning is that if187

the actual history belongs to an information set U ∈ U i, then Player i considers every history188

in U possible. The particular case where all information sets in the partition are singletons189

characterises the setting of perfect information.190

Our model is synchronous, which means, intuitively, that players always know how191

many stages have been played. Formally, this amounts to asserting that all histories in an192

information set have the same length; in particular the empty history forms a singleton193

information set. Further, we assume that every player has perfect recall — he never forgets194

what he knew previously, and which actions he took. Formally, if an information set of195

Player i contains nontrivial histories τc and τ ′c′, then the predecessor history τ is in the same196

information set as τ ′ and the moves c and c′ are supported by the same action of Player i.197

A decision function for a player i ∈ I is a map f i∶Γ∗ → Ai from histories to actions. We198

say that a play, or a history, c1c2 . . . follows f i if acti(ct) = f i(c1 . . . ct−1), for every period199

t > 0. Further, we say that an information set U ∈ U i is reachable if there exists a history in200

U that follows f i. A decision function f i is information consistent if it is constant on all201

reachable information sets. A strategy for Player i is a decision function that is information202

consistent (with respect to her information partition). The outcome of a strategy f i is the203

set Out(f i) ⊆ Γω of plays that follow it.204

To capture coordination problems in distributed systems, we assume that the players205

have a common objective specified by a set W ⊆ Γω. A strategy profile f = (f i)i∈I is winning206

if Out(f) ⊆W .207
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3.1.1 Finite-state representation208

As we are interested in algorithmic questions for repeated games, we will consider instances209

described by finite objects. We assume that the move set Γ and the set A of action profiles210

are finite. Hence, the action map provides a finite description of the move structure, that is,211

Γ∗ equipped with the labelling of action profiles.212

To represent objectives —sets of infinite words from Γω— we use colouring functions213

defined by Mealy automata over Γ. We mainly work with parity automata, which provide a214

canonical form for ω-regular specifications relevant as system-design objectives [28]. These215

are automata that input moves —drawn during the play— and output natural numbers called216

priorities: a play is winning if the least priority output infinitely often is even. We sometimes217

refer to reachability objectives, given by an automaton that outputs flags 0 or 1: a play is218

winning if some prefix history leads to output 1. Overall, objectives are represented by Mealy219

automata that define a function from histories to colours from a finite alphabet —priorities220

in the case of parity objectives, and the accepting-state flag for reachability objectives.221

To describe information partitions, it will be convenient to refer to their representation as222

indistinguishability relations, which equate histories that the player cannot distinguish. An223

information partition U thus corresponds to the equivalence relation ∼ ∈ Γ∗ × Γ∗ with τ ∼ τ ′224

whenever τ, τ ′ ∈ U for some U ∈ U . Generally, an indistinguishability relation ∼ ∈ Γ∗ × Γ∗ is225

an equivalence relation that satisfies the following conditions, for all τ, τ ′ ∈ Γ∗ and c, c′ ∈ Γ:226

if τ ∼ τ ′, then ∣τ ∣ = ∣τ ′∣ (indistinguishable histories have the same length),227

if τc ∼ τ ′c′, then τ ∼ τ ′ (the relation is prefix-closed),228

if τc ∼ τ ′c′, then act(c) = act(c′) (the action is visible).229

Every such indistinguishability relation defines an information partition with information230

sets given by equivalence classes [τ]∼ = {τ ′ ∈ Γ∗ ∣ τ ′ ∼ τ}, for each history τ ∈ Γ∗. The231

information structures arising from the full-information protocols introduced in this paper232

are a particular case of indistinguishability relations recognisable by two-tape deterministic233

finite automata, as studied in [3].234

We shall distinguish between the finite-state representation of a repeated game, for235

instance as a tuple (act, (Ri)i∈I ,A), on the one hand, that includes automata Ri and A236

describing the indistinguishability relations and the objective, and its presentation as a logical237

structure G = (Γ∗,act, (∼i)i∈I , λ), on the other hand, with ∼i= L(Ri) and λ = λA.238

3.2 Full-Information Protocols239

We formalise a communication model that gives rise to a particular class of finitely-240

representable information structures for repeated games. Our formalisation and the applica-241

tion scenario are inspired from [20].242

In full-information protocols, players receive local observations, as they do in partial-243

observation games, but they additionally communicate with other players. The information244

transfer in that event is idealistically efficient: the entire information available to the sending245

party is revealed to the receiving player. However, the opportunity of communication may246

not be in the control of the players: whether a communication event occurs in a particular247

stage, and which player it includes, is determined by the current move.248

Communication opportunities for a player i ∈ I are specified by a function Comi∶Bi → ℘(I)249

that associates with each of her local observation b ∈ Bi, a set of players Comi(bi) ⊆ I to which250

communication links are enabled. Intuitively, when Player i receives the local observation251

bi ∈ Bi, she also receives the information of every player j ∈ Comi(bi), which includes the252

observation history bj
1, b

j
2, . . . , b

j
` , but also (recursively) the observation history of all players253
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in Comj(bj
t) at previous stages t = 1,2, . . . , `. Thus, a link j ∈ Comi(bi) specifies a one-way254

communication event from sender j to receiver i: upon observing b, Player i can peek at255

player j. We refer to such links as direct links. Our semantics of communication links is256

transitive. If at some history, there is a direct link from Player i to Player j, and also a257

direct link from Player j to Player k, then an indirect communication link is established from258

Player i to Player k. Even if the protocol specifies no direct link from i to k, the information259

of k is revealed to i.260

Formally, we represent the information available to the players at a history τ = c1c2 . . . c`261

by a view graph View(τ) = (V,E), defined as follows:262

V = I × {0,1, . . . , `} is the set of nodes, and a node (i, t) ∈ V represents the viewpoint of263

Player i in stage t;264

E ⊆ V × V is the set of edges, where an edge ((i, t), (j, u)) intuitively means that in265

stage t, Player i has access to the view of Player j in stage u; the set E contains the edges266

((i, t), (i, t − 1)) for all stages 1 < t ≤ ` and every player i —which correspond to looking267

into the past—, and the edges ((i, t), (j, t)) are included, for all stages 1 ≤ t ≤ ` and all268

players i ∈ I and j ∈ Comi(bi) where b = βi(c1c2 . . . ct) —which correspond to revealing269

the current view of Player j to Player i (via a direct link).270

Two histories τ, τ ′ ∈ Γ∗ are indistinguishable for Player i, denoted τ ∼i τ ′, if ∣τ ∣ = ∣τ ′∣ and271

βj(τ(t)) = βj(τ ′(t)) for all nodes (j, t) reachable from (i, ∣τ ∣) in the view graph View(τ).272

Note that the definition implies that, if τ ∼i τ ′, then the reachable nodes from (i, ∣τ ∣) in273

View(τ) and in View(τ ′) coincide. We say that the histories τ, τ ′ are indistinguishable for a274

coalition J ⊆ I, denoted τ ∼J τ ′, if they are indistinguishable for all players of the coalition,275

that is, τ ∼i τ ′ for all i ∈ J .276

A full-information protocol (FIP) for a set of players I, a move alphabet Γ, and an277

alphabet B of observation profiles, is described by a profile F = (Mi,Comi)i∈I specifying278

for each player i ∈ I, a Mealy automaton Mi that defines the local observation function279

βi∶Γ∗ → Bi and the communication map Comi∶Bi → ℘(I) that specifies, for every local280

observation symbol, the set of players to which a communication link from i is enabled. The281

protocol F defines an indistinguishability relation, for each player i ∈ I, which we denote by282

∼i
F .283

To turn a FIP instance F = (Mi,Comi)i∈I into a game, consider now a profile A of action284

sets Ai for the players i ∈ I together with a suitable action map act∶Γ→ A. It is necessary285

that the local observation functions render his own action visible to each player, in the286

sense that two moves with different actions yield different observations: if acti(c) ≠ acti(c′),287

then βi(τc) ≠ βi(τ ′c′), for all histories τ, τ ′ ∈ Γ∗ and moves c, c′ ∈ Γ. If the condition is288

satisfied, then F induces a profile of indistinguishability relations for the repeated game form289

described by act. Together with the action map act and a parity automaton A for defining290

the objective, we thus obtain the repeated game G(F ) ∶= (Γ∗,act, (∼i
F )i∈A, λ

A), which we291

call the FIP game associated to F .292

3.3 Example: Leader election with failures and recoveries293

To illustrate the model, consider a classical leader election scenario. A set V = {0, . . . , n} of294

processes is connected in a network graph (V,E), where each edge (i, j) ∈ E represents a295

unidirectional channel through which process i can send messages to process j. The system296

runs indefinitely in synchronous rounds.297

In each round t ∈ N, every process i declares a leader candidate ai
t ∈ V and proposes a298

message mi
t for broadcasting to its neighbours j ∈ iE. The environment may crash a subset299
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Ft ⊆ E of channels, so that process i receives messages only from j ∈ (E ∖ Ft)i. In the next300

round, some channels may recover while others may fail. A process i is said to fail at time t301

if any of its outgoing channels are crashed. Failures are bounded by parameters (N,L): at302

most N channels may fail in any window of L rounds. A process is valid at time t if it does303

not fail.304

The objective of leader election is to ensure that, unless all processes fail repeatedly, there305

is a time t0 after which all valid processes i agree on a leader ai
t = k who is also valid.306

Note that we did not specify the message space. This is intentional: in practice, it is307

often difficult to settle on the structure of internal messages for distributed algorithms that308

are yet to be designed. To maintain focus on external behaviour, we instead assume that309

processes broadcast all available information whenever communication is possible—in other310

words, they follow a full-information protocol. Once a solution is found for this idealised311

setting, it may later be implemented more efficiently. It might turn out that the problem is312

unsolvable even under full information, hence no effective protocol exists either.313

Process implementation must answer two questions: (1) How to choose a leader based on314

the observed failure history; (2) What to transmit. The full-information assumption focuses315

on the first question, assuming the second is solved or deferred.316

We model this as a FIP game with players in I = V ∪E. Each process player i ∈ V has317

actions Ai = I, representing candidates, whereas channel players are passive, with ∣Ae∣ = 1,318

for all e ∈ E. Moves are tuples (a,F ) of declarations and crash sets, with Γ = ∏i∈V V × ℘(E)319

and act(a,F ) = a.320

Local observations, for each process player i, specify the subset of channels from which321

it can read, i.e., Bi ⊆ {(j, i) ∈ E}, and the communication function Comi is the identity.322

Including the channels as observers is an artifice to prevent players from seeing the en-323

tire network, since we choose a semantics where communication is transitive—which is324

unwanted here. Accordingly, each channel (i, j) has two observations: {read, lock} with325

Com(i,j)(read) = {i}—when the source process is revealed—and Com(i,j)(lock) = ∅–when it326

may reveal to the target. The observation automata for channels alternate between read at327

odd times and lock at even times. For processes, the observation automaton of i sends the ∅328

observation at odd times, whereas it reveals the enabled incoming channels from E ∖ F at329

even times. The Mealy automaton is further adjusted to keep track of the number of crashes330

within the time window. To ensure that the bounds (N,L) are respected, the automata331

send ∅ when the budget does not allow to crash the subset F recorded in the current move.332

The objective is described by a parity automaton with three priorities: 2 when all valid333

processes agree on a valid leader; 1 when there is disagreement or the leader is invalid; 0 after334

a phase where all processes fail at some point. It rejects plays that visit priority 1 infinitely335

often.336

Now we can verify that the model faithfully captures our scenario: any distributed337

protocol—regardless of which messages the processes pass—corresponds to a strategy profile.338

It solves the leader election problem under the given bounds if, and only if, the strategy is339

winning in the FIP game.340

4 The Synthesis Problem341

following synthesis problem: Given a finite FIP-game instance F = (act, (Mi,Comi)i∈I ,A),342

decide whether there exist a winning strategy in the repeated game G(F), and if so, effectively343

construct one.344

Graph games are special cases of FIP games. For instance, a perfect-information game345
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on a graph (V, vε, (Ea)a∈A, λ) corresponds to the repeated game (act, id,M) with Γ = A×V ,346

where act(a, v) = a andM maps a history τ = (a1, v1) . . . (at, vt) to λ(vt) if τ follows a path347

from vε, and to a fresh colour � otherwise. Given an objective L ⊆ Cω, a play is winning348

in the repeated game, ifM maps it to a sequence in L or to one reaching � — essentially349

requiring the environment to follow valid transitions.350

Partial-observation games translate similarly by expressing observation functions as351

Mealy automata that output observation labels on transitions. Standard partial-observation352

games [25] correspond precisely to FIP games with one player. In such repeated games, the353

indistinguishability relation ∼ is defined by a regular observation function β ∶ Γ∗ → B, such354

that τ ∼ τ ′ if β̂(τ) = β̂(τ ′). Assuming perfect recall, τc ∼ τ ′c′ iff τ ∼ τ ′ and β(τc) = β(τ ′c′).355

Accordingly, every information set U has at most ∣B∣ successors, so the information tree has356

bounded branching.357

For two or more players, FIP games yield strictly richer information structures. Consider358

a FIP game with players I = {0,1}, binary observations, and a communication map where359

Player 0 can communicate with Player 1 only on observation 1. Suppose Player 0 observes 0360

for seven stages, while Player 1 observes an arbitrary bit sequence. In stage 8, Player 0361

observes 1, revealing all 8 bits seen by Player 1. Thus, her current information set, with362

27 histories, has 28 successors (that are singletons). If the scenario continues in the same363

way, until the next communication event occurs, say in stage 88, there will be a branching of364

degree 280, and so on. Hence, FIP information trees may have infinite branching.365

Restriction to one active player, visible objectives366

Since synthesis is undecidable already for two players in partial-observation games, we restrict367

our analysis to one active player. Accordingly, we consider games with a set of players368

I = {0, . . . , n}, where Player 0 is active and the others are passive observers (∣Ai∣ = 1 for i ≠ 0).369

References to actions or indistinguishability relations refer to Player 0 unless specified.370

We further restrict to visible objectives, where the colouring function λA defined by the371

objective automaton A is information-consistent: λA(τ) = λA(τ ′) whenever τ ∼0 τ ′.372

Applications373

Despite these restrictions, the model captures significant system-design problems. One374

motivation is monitoring and diagnosis: constructing a decentralised supervisor that runs375

alongside a fixed distributed system —using the given communication architecture— to376

log data and detect faults. The active player outputs new data according to the specified377

objective, leaving the system unchanged.378

However, an active player added to fixed distributed protocol can also influence the379

system meaningfully. For example, in leader election, we may let one process repair channels380

in addition to its original role, with the objective to ensure stability, that is, that is, that381

leaders are revoked only if they fail. Formally this is done by extending Player 0’s action382

set to A0 ×E, and adapting the action map to exclude the channel given in the action from383

the failure set in the stage outcome. The synthesis objective is the stability condition in384

conjunction with the condition that passive players follow the actions prescribed by the385

original protocol. Under standard connectivity assumptions (already necessary to solve basic386

leader election), this can be specified by a visible automaton.387

In the rest of the paper, we show that the synthesis problem for FIP games with one388

active player is computationally solvable, albeit with daunting theoretical complexity.389
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4.1 Method390

The key tool for synthesis in infinite games is the automata-theoretic approach, founded by391

Büchi and Landweber [6] and Rabin [23, 24]. Strategies are viewed as trees with bounded392

branching. However, FIP games may yield unbounded information trees. Indeed, [3] shows393

that a regular indistinguishability relation defines a finitely-branching tree if, and only if, it394

corresponds to an observation function. The counterexample there is a FIP protocol with one395

active player and one passive observer. Thus, we cannot rely on tree automata to recognise396

the set of winning strategies of a FIP game.397

To overcome this obstacle, we reduce a finite FIP game (with parity objectives) to a398

perfect-information graph game, preserving winning strategies: (1) if a winning strategy399

exists in the original game, one exists in the reduct; (2) from a regular strategy in the reduct,400

we can construct one for the original.401

The reduction builds a homomorphism from histories Γ∗ to a finite set of abstract states,402

preserving information sets. By collapsing the abstract states of an information set, we403

obtain a finite perfect-information game equivalent (bisimilar) to the original. This allows404

pulling back winning strategies.405

Information quotient406

A repeated game with imperfect information and one active player can be represented as407

a game with perfect information played on the information tree — the infinite graph with408

information sets as positions.409

Let us fix a move alphabet Γ and a set A of actions. The information quotient of a game410

G = (Γ∗,act,∼, λ) is the graph U(G) on U = {[τ]∼ ∣ τ ∈ Γ∗}, with initial node uε = [ε]∼, edges:411

EUa ∶= {([τ]∼, [τc]∼) ∣ act(c) = a}, for each a ∈ A,412

and colouring λU([τ]∼) = λ(τ). As ∼ has perfect recall, U(G) is a tree. Therefore, each node413

u ∈ U identifies a unique path from uε, and we view strategies as functions s∶U → A.414

Although structurally different, a game with imperfect information and the perfect-415

information game played on its information tree are the same (from the perspective of the416

active player), in the following sense.417

I Lemma 1. For every game G with indistinguishability relation ∼, there is a one-to-one418

correspondence mapping each strategy s in U(G) to a strategy s̃ in G, such that s̃(τ) = s([τ]∼),419

and their outcomes agree on colours: λ̂(Out(s̃)) = λ̂U(Out(s)).420

Bisimulation421

Further, we use bisimulation to relate strategies across games.422

Let G, H be perfect-information graphs with the same vocabulary (vε, (Ea)a∈A, λ).423

A bisimulation between G and H is a relation Z ⊆ V G × V H such that:424

(Zig) for each a ∈ A and (u,u′) ∈ EGa , there is (v, v′) ∈ EHa with (u′, v′) ∈ Z;425

(Zag) for each a ∈ A and (v, v′) ∈ EHa , there is (u,u′) ∈ EGa with (u′, v′) ∈ Z.426

The graphs G, H are bisimilar if their initial states are related: (vGε , vHε ) ∈ Z.427

A graph homomorphism from G to H is a function h∶V G → V H that preserves the initial428

state: h(vGε ) = vHε , the edges: h(EGa ) ⊆ EHa for all a ∈ A, and the colouring: λG = λH ○ h. A429

p-morphism is a homomorphism h∶ G → H such that the relation {(x,h(x)) ∣ x ∈ V G} forms a430

bisimulation. Equivalently, h is a homomorphism and, for every edge (v,w) ∈ EHa and node431

x ∈ V G with h(x) = v, there exists an edge (x, y) ∈ EGa such that h(y) = w [14].432
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I Lemma 2 ([11]). Let G and H be bisimilar game graphs. Then, G has a winning strategy433

iff H has one. Moreover, if there exists a p-morphism h∶ G → H, then it takes every strategy s434

in H, to a strategy s ○ h in G such that the outcomes agree on colours: λ̂G(Out(s ○ h)) =435

λ̂H(Out(s)).436

5 The Reduction437

For this section, let us fix a set I = {0, . . . , n} of players with 0 being the active player, with438

an action set A, and the others being passive observers.439

5.1 Simplifications440

To simplify the presentation, we assume that all players in I share a common observation441

alphabet B. Moreover, we identify moves with observation profiles: Γ = ∏i∈I B. Each player’s442

observation function is defined trivially by βi(τc) = ci for all τ ∈ Γ∗ and c ∈ Γ.443

These assumptions can be made without loss of generality. Any FIP instance can be444

brought to this form by adding a dummy observer and modifying the objective to check445

that the observations in the view of the active players match the original Mealy-automaton446

outputs, or else go to a sink state labelled with an even priority. This modification incurs an447

exponential blowup in size, but preserves visibility of the objective.448

In the simplified model, we can characterise indistinguishability relations without reference449

to view graphs. Given a move c ∈ Γ, let Link(c) ∶= ⋃i∈I{i} ×Comi(ci) denote the set of all450

communication links enabled under c. For any player i ∈ I, let now synci(c) be is the set451

of players reachable from i via the reflexive-transitive closure of Link(c). Hence, synci(c)452

describes the set of players that communicate (directly or indirectly) with Player i under453

move c. For a coalition J ⊆ I, let syncJ(c) ∶= ⋃i∈J synci(c).454

We note the following properties for later use: syncJ(c) always includes J , every coalition455

L = syncJ(c) that occurs as a synchronisation target is autonomous, meaning L = syncL(c),456

intermediary coalitions J ⊆K ⊆ syncJ(c) share the same target: syncK(c) = syncJ(c), and457

syncJ∪K(c) = syncJ(c) ∪ syncK(c).458

To describe how the information sets of a coalition J evolve with each move, we state the459

following lemma.460

I Lemma 3. Let J ⊆ I be a coalition. Then, for all histories τ ∈ Γ∗ and all moves c ∈ Γ:461

(i) For the target coalition L = syncJ(c), we have [τc]∼L = {τ ′d ∣ τ ′ ∼L τ and dL = cL}.462

(ii) For every intermediary coalition K with J ⊆K ⊆ syncJ(c), we have [τc]∼K = [τc]∼J .463

Lemma 3 provides an inductive definition of indistinguishability in simplified FIP games:464

[τc]∼J = [τc]∼L = {τ ′d ∣ τ ′ ∈ [τ]∼L and dL = cL}, for L = syncJ(c). Recall that, for the grand465

coalition, ∼I is the identity.466

5.2 Abstraction morphism467

As a first step towards our reduction, we map each history τ ∈ Γ∗ to an abstract state from468

a finite domain. This state encodes the knowledge of every coalition containing the active469

player 0. For a coalition J ⊆ I, its own knowledge is information-consistent, hence visible;470

whereas knowledge of strictly larger coalitions K ) J might not be information-consistent for471

coalition J — these values form a hidden part of the abstract state, called the configuration.472
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Knowledge is represented by a set of configurations, and configurations are profiles of473

knowledge sets indexed by coalitions. For the grand coalition, the configuration is just the474

state of the objective automaton.475

For any J ⊆ I, let J↑ ∶= {K ⊆ I ∣ J ⊆ K} be the set of coalitions containing J , and476

J↟ ∶= J↑ ∖ {J}. We call any J ∈ {0}↑ an active coalition.477

Let F = (act, (syncJ)J∈{0}↑ ,A) be a FIP game in simplified form, with observation478

alphabet B, moves Γ, action map act∶Γ→ A, a profile of synchronisation maps (syncJ ∶Γ→479

℘(I)), and a Mealy automaton A defining the objective. We refer to the corresponding480

one-player game as G ∶= (Γ∗,act,∼, λA).481

For each J ∈ {0}↑ and history τ ∈ Γ∗, we define the configuration ϕJ(τ) and the knowledge482

set ΦJ(τ) by mutual induction:483

ϕI(τ) ∶= δA(qε, τ),484

ϕJ(τ) ∶= (ΦK(τ))K∈J↟ for J ≠ I,485

ΦJ(τ) ∶= {ϕJ(τ ′) ∣ τ ′ ∼J τ}.486

The abstract state for coalition J is hJ(τ) ∶= (ΦJ(τ), ϕJ(τ)). We write ConfJ and KSetJ
487

for the respective ranges of ϕJ and ΦJ . In particular, ConfI = Q and ConfJ ⊆ ∏K∈J↟ KSetK ,488

while KSetJ ⊆ ℘(ConfJ). The set of abstract states is QHJ ⊆ KSetJ ×ConfJ . We omit indices489

for J = {0} and write h = h{0}.490

Note that in any (Ψ, ψ) ∈ QHJ , we have ψ ∈ Ψ. Also, the knowledge-set component of hJ491

is information-consistent by construction.492

I Lemma 4 (Preservation of indistinguishability). If τ ∼J τ ′, then ΦJ(τ) = ΦJ(τ ′), for all493

τ, τ ′ ∈ Γ∗ and J ∈ {0}↑.494

In particular, this holds for the active player singleton J = {0}, hence ∼ ⊆ ker Φ{0}. The495

abstraction map also respects the colour assigned by the evaluation automaton.496

I Lemma 5 (Preservation of evaluation colour). If hJ(τ) = hJ(τ ′), then λ(τ) = λ(τ ′), for all497

τ, τ ′ and J ∈ {0}↑.498

Proof. The statement is immediate for J = I, since ϕI(τ) = ϕI(τ ′) is a state q, so hI(τ) =499

hI(τ ′) = ({q}, q) and λ(τ) = λ(τ ′) = λ(q). Otherwise, if J↟ is nonempty and hJ(τ) = hJ(τ ′),500

then ΦK(τ) = ΦK(τ ′) for all K ∈ J↟, in particular ΦI(τ) = ΦI(τ ′) = {q}, and again501

λ(τ) = λ(τ ′) = λ(q). J502

Accordingly, we can map abstract states to colours via λH(Φ, ϕ) ∶= λ(τ) for any history503

τ ∈ Γ∗ such that h(τ) = (Φ, ϕ).504

An elementary, but important insight is that the abstract state of a history determines505

the set of abstract states of its information set.506

I Lemma 6 (Information commuting). If hJ(τ) = hJ(τ ′) then hJ([τ]∼J ) = hJ([τ ′]∼J ) for all507

τ, τ ′ and each active coalition J .508

Proof. Any such τ, τ ′ share ΦJ(τ) = ΦJ(τ ′) =∶ Ψ, so their information sets map to:509

h[τ]∼J = {(ΦJ(π), ϕ) ∣ ϕ ∈ ΦJ(τ)} = {(Ψ, ϕ) ∣ ϕ ∈ Ψ}510

= {(ΦJ(τ ′), ϕ) ∣ ϕ ∈ ΦJ(τ ′)} = h[τ ′]∼J .511
512

J513
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Regularity514

To show that the abstraction map h is indeed a homomorphism on the repeated game G,515

we need to prove that it preserves the move operations: for every pair of histories τ, τ ′ ∈ Γ∗,516

and every c ∈ Γ, if h(τ) = h(τ ′), then h(τc) = h(τ ′c). Towards this, we define operations on517

abstract states that mimic the information updates triggered either by local observations or518

by communication.519

Intuitively, when a coalition J communicates with coalition L, it is as if J communicates520

with J ∪L. Therefore, we focus on communication between coalitions that are comparable521

with respect to inclusion. We define, for every increasing pair of active coalitions J ⊆ L, a522

lifting operator ⌈⋅⌉J
L∶KSetL → KSetJ that maps every knowledge set Φ for L to a knowledge523

set ⌈Φ⌉J
L for J , by setting ⌈Φ⌉J

J ∶= Φ and524

⌈Φ⌉J
L ∶= {⌈Φ, ϕ⌉J

L ∣ ϕ ∈ Φ}, for all L ∈ J↟.525
526

The construction uses an auxiliary operator that maps every abstract state (ΦL, ϕL) ∈527

KSetL ×ConfL for the larger coalition L to a configuration ⌈Φ, ϕ⌉J
L ∈ ConfJ of the smaller528

one J :529

⌈Φ, ϕ⌉J
L ∶= (ΨK)K∈J↟ with ΨK ∶=

⎧⎪⎪⎨⎪⎪⎩

⌈Φ⌉K
L if K ⊆ L;

⌈ϕK∪L⌉K

K∪L
otherwise.

530

531

By unfolding the definition, we can see that the operators compose naturally.532

I Lemma 7 (Composition of lifting). For all increasing coalitions J ⊆K ⊆ L,533

⌈⌈Φ⌉K
L ⌉J

K
= ⌈Φ⌉J

L, for every knowledge set Ψ ∈ KSetJ .534
535

The following lemma states that the operator indeed captures that the information of a536

coalition L is revealed to smaller (hence, possibly less informed) coalition J .537

I Lemma 8 (Communication). For coalition J and a move c ∈ Γ, consider the target coalition538

L = syncJ(c). Then, for every history τ ∈ Γ∗,539

⌈ΦL(τc)⌉J
L = ΦJ(τc).540

541

Proof. We proceed by induction starting with the grand coalition. As syncI(d) = I, the base542

case is trivial. For the induction step, suppose that the statement holds for all coalitions543

strictly larger than J . By unfolding the definitions, we obtain:544

⌈ΦL(τc)⌉J
L = {(⌈ΦL(τc), ϕ⌉K

L )
K∈J↟

∣ ϕ ∈ ΦL(τc)} (Set lifting, configuration)545

= {(⌈ΦL(τ ′d), ϕL(τ ′d)⌉K
L )

K∈J↟
∣ τ ′d ∼L τc} (Lemma 3(i), Lemma 4)546

= {(⌈ΦL∪K(τ ′d)⌉K
L∪K)

K∈J↟
∣ τ ′d ∼L τc}. (Abstract-state lifting)547

548

Observe that for every K ∈ J↟, we have syncK(d) = syncJ∪K(d) = syncJ(d) ∪ syncK(d) =549

L∪ syncK(d). On the other hand syncL∪K(d) = syncL(d)∪ syncK(d) = L∪ syncK(d). Hence,550

the coalitions L∪K and K share the same target T ∶= syncL∪K(d) = syncK(d), strictly larger551

than J . Therefore, we can develop the knowledge sets in the last expression as follows:552

⌈ΦL∪K(τ ′d)⌉K
L∪K = ⌈⌈ΦT (τ ′d)⌉L∪K

T ⌉K
L∪K (Induction hypothesis for syncK∪L(d) = T )553

= ⌈ΦT (τ ′d)⌉K
T (Lemma 7)554

= ΦK(τ ′d) (Induction hypothesis for syncK(d) = T ).555
556

In conclusion, ⌈ΦL(τc)⌉J
L = {ϕJ(τ ′d) ∣ τ ′d ∼L τc} = {ϕJ(τ ′d) ∣ τ ′d ∼J τc} = ΦJ(τc), according557

to Lemma 3(ii). J558
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With the lifting operators in place, we define update operations on configurations,559

knowledge sets, and ultimately on abstract states, for each active coalition.560

For configurations, define succJ ∶ConfJ × Γ→ ConfJ as follows. For the grand coalition,561

this coincides with the automaton update: succI(ϕ, c) ∶= δA(ϕ, c). For other coalitions J ,562

the update is componentwise, based on synchronisation targets:563

succJ(ϕ, c) ∶= (SuccK(ϕsyncK
(c)))

K∈J↟
.564

565

Knowledge sets are updated by a partial function SuccJ ∶KSet × Γ→ KSetJ , defined on566

pairs (Φ, c) with Φ ∈ KSetL and L = syncJ(c):567

If J is autonomous (J = L), set568

SuccJ(Φ, c) ∶= {succJ(ψ, d) ∣ ψ ∈ Φ, dL = cL},569
570

Otherwise, for L ≠ J , define571

SuccJ(Φ, c) ∶= ⌈SuccL(Φ, c)⌉J
L.572

573

The state update δHJ ∶QHJ → QHJ is defined as:574

If J is autonomous, then575

δHJ ((Φ, ϕ), c) = (SuccJ(Φ, c), succJ(ϕ, c)),576
577

Otherwise, letting L = syncJ(c), set578

δHJ ((Φ, ϕ), c) ∶= (SuccJ(ϕL, c), succJ(ϕ, c)).579
580

I Lemma 9 (Preservation of moves). Let J be an active coalition. Then,581

hJ(τc) = δHJ (h(τ), c), for all τ ∈ Γ∗, c ∈ Γ.582
583

Proof. We detail the inductive argument for knowledge sets to show that for L = syncJ(c),584

SuccJ(ΦL(τ), c) = ΦJ(τc).585
586

The base case, with I = syncI(c), concerns moves in the objective automata:587

SuccI(ΦI(τ), c) = {succI(ϕ, d) ∣ ϕ ∈ ΦI(τ), cI = dI}588

= {δ(δ(qε, τ), c)} = {δ(qε, τc)} = SuccI(τc).589
590

Inductive step: if J is autonomous,591

SuccJ(ΦJ(τ), c) = {succJ(ϕ, d) ∣ ϕ ∈ ΦJ(τ), dJ = cJ} (Definition of SuccJ)592

= {succJ(ϕJ(τ ′), d) ∣ τ ′ ∼J τ, dJ = cJ} (Knowledge set ΦJ)593

= {(SuccK(ΦsyncK
(d)(τ ′), d))

K∈J↟
∣ τ ′d ∼J τc} (Lemma 3(i))594

= {(ΦK(τ ′d))K∈J↟ ∣ τ ′d ∼J τc} = ΦJ(τc) (Induction hypothesis).595
596

Otherwise, if J ≠ L ∶= syncJ(c):597

SuccJ(ΦL(τ), c) = ⌈SuccL(ΦL(τ), c)⌉J
L (Definition of SuccJ)598

= ⌈ΦL(τc)⌉J
L = ΦJ(τc). (Induction hypothesis, Lemma 8)599

600

The statement extends to configurations and abstract states by structural induction. J601

We define the automaton H = (QH,Γ,QH, δH, qHε , δH) on the set QH of abstract states,602

with input alphabet Γ, transition function δH0 , initial state qHε ∶= h(ε) and λH as an output603

function. With the transition function used for the output, this automaton defines h. By604

projection on the first component, we obtain, for every intput history τ , the knowledge605

set Φ{0}(τ) as output. In conclusion, the functions h and Φ{0} are regular.606
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5.3 Knowledge Quotient607

Now, we construct a new game from the automaton H by collapsing abstract states that608

share the same knowledge set. Concretely, we define the perfect-information game graph609

K = (QK, (EKa )a∈A, q
K
ε , λ

K) with the following ingredients. The set of positions consists of610

knowledge sets: QK ∶= KSet0 = Φ{0}(Γ∗). For every action a ∈ A, the set Ea contains the611

edge from Φ to Φ′ if there exist abstract states (Φ, ϕ) and (Φ′, ϕ′) in QH and a move c ∈ Γ612

such that δH((Φ, ϕ), c) = (Φ′, ϕ′). The initial position is obtained from the initial abstract613

state qHε = (Φε, ϕε) by taking the first component qKε ∶= Φε. As the objective coloring λA and614

the knowledge-set map Φ{0} are both information consistent, we can lift the coloring from615

the configuration component of the states in QH defined in Lemma 5 to the knowledge set in616

their knowledge-set component: for any Φ ∈ QK, we assign λK(Φ) ∶= λH(Φ, ϕ) for some/any617

abstract state (Φ, ϕ) ∈ QH with Φ in the first component.618

The same game graph can be obtained directly from the original repeated game by taking619

the quotient Γ/ker Φ. Indeed, QK = Φ0(Γ∗), Ea = {(Φ0(τ),Φ0(τc)) ∣ τ ∈ Γ∗, c ∈ Γ} for all620

a ∈ A, qε = Φ0(ε), and λK(Φ0(τ)) = λ(τ), for all histories τ ∈ Γ∗.621

Let k∶Γ∗ → KSet0 be the quotienting map that associates to every history its knowledge622

set: k(τ) ∶= Φ{0}(τ). Since k is information consistent with respect to ∼, it induces a map623

k̄∶Γ∗/∼ → KSet0 with k̄([τ]) = k(τ) = Φ0(τ) The map k̄ is actually a graph homomorphism624

from the information quotient U(G) = G∗/ ∼ of the original game to K = k(G), as it preserves625

edges, actions and the coloring λ.626

As an immediate consequence of Lemma 6, the factor map describes a functional bisimu-627

lation.628

I Lemma 10 (p-morphism). For every history τc ∈ Γ∗, and every τ ′ ∈ Γ∗ with k(τ ′) = k(τ),629

there exists a history τ ′′ ∼ τ ′ such that k(τ ′′c) = k(τc).630

Accordingly, {([τ],Φ0(τ)) ∈ (Γ∗/∼) × KSet ∣ τ ∈ Γ∗} is a bisimulation between U(G)/∼631

and k(G) and, by Lemma 2, we can conclude that the games are equivalent.632

I Corollary 11 (Bisimulation). The finite parity game K on k(Γ∗) is bisimilar to the in-633

formation quotient U(G) of the original FIP game on Γ∗/ ∼. Moreover, for every winning634

strategy s in the parity game K, the strategy s ○ k = s ○Φ{0} is winning in the FIP game G.635

By positional determinacy of parity games, if there exists a winning strategy in K, then636

there exists one represented by a labelling s∶QK → A of positions with actions. Recall that637

the positions of K correspond to knowledge sets Φ0(τ) output by the automaton H. By638

composing the output function of the automaton with the action labelling s, we thus obtain639

a winning strategy for the game G at the outset.640

I Theorem 12. The synthesis problem for FIP games with parity objectives is decidable.641

Whenever a winning strategy exists, we can effectively construct a Mealy automaton that642

defines one.643

Given a FIP game with n observers, the pre-processing step from Subsection 5.1 adds one644

observer, and thus the size ∣K∣ of the perfect-information game constructed in the reduction645

is (n+ 1)-fold exponential in the size of the FIP game. Note that the number of priorities for646

the parity objective does not change. Since perfect-information parity games can be solved647

in time at most exponential in the number of priorities (actually, in quasi-polynomial time in648

the number of nodes, see e.g. [17, 19]), we derive an (n + 1)-EXPTIME upper bound for the649

synthesis problem.650

Theorem 12 extends to all visible objectives for which perfect-information games are651

decidable, such as mean-payoff or discounted-sum conditions as objectives.652
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6 Complexity Lower Bound653

We show a matching lower bound for reachability objectives, by a reduction of the membership654

problem for alternating n-EXPSPACE Turing machines, which is (n+1)-EXPTIME-complete,655

to the synthesis problem for FIP games with n observers.656

Intuitively, the FIP game simulates an execution of an alternating Turing machine M657

on an input word w of length `, where the player chooses transitions in existential states,658

and Nature chooses transitions in universal states. The winning condition requires the659

player to announce successive configurations of M—consisting of the tape content (of n-fold660

exponential size), the head position, and the control state—until an accepting configuration661

is reached.662

The main difficulty is to verify the consistency of these configurations using only663

polynomial-size Mealy automata. To address this, we use the structure of FIP games664

with imperfect information and n observers. Instead of checking transitions directly, the665

game allows Nature to challenge the equality of successive configurations. Nature may mark666

differing positions in the two configurations by sending observations to designated observers.667

These marks are hidden to the player until a communication occurs.668

If the marked bits differ, the player may claim the marks refer to different positions, which669

reduces to checking inequality between two (n− 1)-fold exponential-size numbers. The player670

does so by pointing out a differing bit in their binary encodings and announcing its address671

(a (n − 2)-fold exponential-size number)—again recursively allowing Nature to challenge this672

claim. Each level of this recursive protocol uses one of the n observers. Eventually, the values673

are small enough to be verified by the objective automaton.674

The encoding uses nested counters: a level-n counter is a sequence of bits, each followed675

by its address as a level-(n − 1) counter. This encoding is directly inspired by a similar676

definition in previous work [13, Section 4.2]. We define actions for the player to emit677

bits, counters, Turing machine transitions, and specific claims like r01 or r10 asserting bit678

differences. Nature’s moves include sending observations (marks), initiating communication,679

and branching to verification components in the Mealy automaton.680

Correct encoding is enforced by separate Mealy components that check syntactic properties:681

correct counter format, input encoding, control state updates, and that configurations follow682

transitions. Nature can branch to any component. The marking mechanism allows checking683

bit-equality claims, and address comparison proceeds recursively with up to n observers.684

We argue that a small (polynomial-size) Mealy automaton can store the values of the685

marked bits in order to verify the player’s claims (r01 or r10). Storing two bits at each level686

(hence 2n bits) would suffice if Nature never challenges the format of the counters announced687

by the player. However, if a challenge occurs, the game restarts at a lower level to check the688

counter format, which requires storing only 2(n − 1) bits at that level—assuming no further689

challenges. Repeating this argument recursively, the total number of bits needed for storage690

is O(n2). Since n is fixed independently of the input word w and the Turing machine M , the691

resulting Mealy automata remain polynomial in size. This ensures that the overall reduction692

is polynomial-time.693

We conclude that the player has a winning strategy in the FIP game if and only if M694

accepts w.695

I Theorem 13. The synthesis problem for FIP games with n observers is (n+1)-EXPTIME-696

complete, both for parity and reachability objectives.697
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