ARTeQ - Initiation to theoretical computer science 2024-2025

1 - Introduction to Formal Languages

Luc Lapointe
luc.lapointe@ens-paris-saclay.fr
home.lmf.cnrs.fr/LucLapointe/

Abstract
Formal Languages is a mathematically rigorous framework used to define “problems” we want our
computers to solve, and to prove that some problems are out of reach of even our more powerful
supercomputers. It also introduces grammars, a convenient tool to describe existing or new

programming languages, including quantum ones.

Introduction activity: Towers of Hanoi

The “Towers of Hanoi” is a mathematical puzzle invented in 1883 by French
mathematician Edouard Lucas, first presented as a game discovered during a trip.

It consists of three rods (left, middle and right) and n disks of increasing diameter, with

a hole in the middle of each to slide onto any rod. The starting position of the puzzle

is all disks stacked on the left rod by increasing diameter order, the smallest at the top.

The goal is to move all disks to the right rod by obeying the following rules:

+ You can only move disks one by one;

+ You can only move a disk from the top of a stack to the top of another stack or to an
empty rod;

+ You can not move a disk on top of another smaller disk.

I
9 3 1 2 3

Figure 1: Hanoi Towers in different positions.

In Figure 1, left position is the starting position for n = 3 disks. Right position can not
be reached from left position in one move, as you can only move disks one by one. It
can however be reached in three moves:

1—3,1—2,3—2.

1. Solve the problem for 4 and then for 5 disks.
2. Do you think it is possible to solve the problem for any number n of disks?
3. (Optional) Prove or find a counter-example to the following statement:

For all n € N, the problem can be solved in exactly 2" — 1 moves.

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

ARTeQ - Initiation to theoretical computer science 2024-2025

— B

1. Solution for 5 disks:
1. Move 4 disks from the left rod to the middle one:

1—431—-23—-21—-+3;2—-1;2—=3;1 = 3;1— 2;
3—+2;3—-12—-1;3—>2;1—>3;1—2;3—2
2. Move big disk from the left rod to the right one:
1—=3
3. Move 4 disks from the middle rod to the right one:
2—-+1;2—-+3;1—+32—>1;3—>2;3—>1;2—=1;2 = 3;
1—-+31—-23—-2;1—-+32—-1,2—-3;1—3
2. Yes it is, with for example a recursive algorihm. We call Hanoi(n, x, y) an

algorithm that moves the top n disks from rod « to rod y. It only works if
those top n disks are the smallest disks on all rods.

Hanoi(n, x, y):

if n=1:
X -y

else:
let z = third rod
Hanoi(n-1, x, 2z)
X -y

Hanoi(n-1, z, y)
3. We prove by an induction on n € N the slightly more powerful property:

For all n € N, if the n smaller disks on the rods are on the same rod z, it is

always possible to move them from « to another rod y in 2 — 1 moves.

Base case, n = 1 It is, with one single move z — y.

Induction case Assume the property is true for n € N. Let 2 the rod
different from x and y. Assume the n + 1 smallest disks are all on the
same rod z. Do the following:

1. Move the top n disks from z to z in 2" — 1 moves. It is possible by
induction hypothesis.

2. Move the (n+1)"

3. Move the top n disks from z to y in 2" — 1 moves. It is possible by
induction hypothesis.

smallest disk from z to y.

This makes 2% — 1+ 1 + 2" — 1 = 2”1 — 1 moves in total. B

“Solving the problem” can be achieved by applying this property to the

starting position, with x = 1 and y = 3.

ARTeQ - Initiation to theoretical computer science 2024-2025

1. What is recursion?

Recursion is a key notion in computer science. It allows elegant definitions and

Definition: Recursion

During a procedure, recursion happens when one step plans to execute the
procedure itself.

efficient problem solving.

Why talking about recursion? Recursive definitions is one key technique among
others in defining several formal language tools. Among them, grammars, used to
described the code structure of programming languages.

Although recursion is a major brick of computer science, you might have already met it
in everyday life.

« Some yoghurts or other fermented food
are cooked using the result of the
recipe as an ingredient.

« Two mirrors facing each other can
create an “infinity mirror”
phenomenon. If mirror 1 faces mirror 2,
then the full reflection of mirror 1
includes the full reflection of mirror 2,
which itself includes the full reflection

of mirror 1 again.

« Fractals are nice-looking recursive
geometric shapes, that are self-similar
when you zoom-in, and can occur in
nature.

Figure 3: Romanesco broccoli.

In most cases, recursion is too tedious to be used in everyday life by humans, so it is
not that much. Computers, however, are basically designed to only do a gigantic
amount of silly and tedious operations, so recursion perfectly fits.

1.1. Recursion as problem solving method

In computer science, it often happens, for a problem 7 involving large quantities or
large numbers N, that the problem is actually quite easy to solve if you assume you

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/4.0/

ARTeQ - Initiation to theoretical computer science 2024-2025

can already solve it for number or quantities just a bit less than N. Here we describe a
few such problems.

Exercise: Towers of Hanoi

Assume you can move the top n disks of a stack from one rod to another. How easy
is it to move the n + 1 top disks from one rod to another?

See on the solution of the activity.

Exercise: Sorting a list

Assume you want to sort a list of n integer in increasing order, and you know how
to sort a list of n — 1 integers. How would you proceed using this knowledge?

Same question if you rather know how to sort a list of 7 integers.

1. Recursively sort the n — 1 elements of the list, then read it until you find
where to place the n'" element. This is called “insertion sort”, and is typically
used when playing card games.

2. Recursively sort the two halves of the list. When done, you can easily find
the smallest element of each list. Build a third list that is the merge of the
two by repeatedly picking the smallest element of the two list heads. This is
the “merge sort”, an efficient sort that is often implemented in standard
libraries of programming languages.

Exercise: Change-making problem

The change-making problem consists in, given some n € N, giving n € with as few
coins and bills as possible.

Assume that, for some N € N, you know how to give the minimum amount of

coins and bills to give back n € for any n < N. How would you proceed to give
N +1¢€

Let n,,ny, ..., n, the values of each coin and bill you can return. Compute the
amount of coins and bills you must give to return N —n,, N —n;,...,N —n,. If
N — n,, is the one that can be returned with the lowest amount of coins and bill,
give the coin or bill that amounts n_, then apply the algorithm recursively to the

value N —n,.

ARTeQ - Initiation to theoretical computer science 2024-2025

1.2. Recursion as a definition method

Recursion can also be used as a very elegant definition method. The pattern of such
definitions is the following:

1. One or more non-recursively defined objects. They are called base cases.

2. Recursive construction rules to describe more complex objects.

The aim of base cases is to be elementary bricks, on top of which are generated more
complex objects with recursive rules.

Such definitions do not allow infinite objects, or infinite “unfoldings”. Each object
“includes” at some point of its definition one base case, and often more than one.

One (mathematical) example of an elegantly recursively designed function is the
factorial function:

1 iftn=0
n! =
n*(n—1)! if not.

Another concept that is recursively defined and closer to computer science is trees.
Most computer file managers are structured according to a tree structure. The grammar
behind most languages spoken by humans can be described by trees. All programming
language also interpret or compile code as a tree.

Definition: Tree

A tree is either:
o Aleaf L, or
« Anode N(tq,...,t,), where t, ..., t, are also trees. They are called children.

The first node of a tree is called its root.

Figure 4: The tree N(L, N(N(L), L, L)).

Remarks

+ Depending on the needs, leafs and nodes can be labelled, with for example strings or
integers. In this case, they are noted L(label) or N (label, t,, ..., t,).

+ Sometimes the order between ¢, ..., t,, is important, and sometimes it is not,
depending on the context.

« As the inline writing is tedious and not easily human-readable, it is not used often.

« Trees are often drawn by computer scientists with their leaves at the bottom.

ARTeQ - Initiation to theoretical computer science 2024-2025

Example: The tree behind the code

<html>
<head>
<title>My super website</title>
</head>
<body>
<h1>I love pastries</hl>
<h2>and sleeping!</h2>

</body>
</html> ’ My super website ‘ ’ I love pastries ‘ ’ and sleeping! ‘
Listing 1: Some HTML code. Figure 5: The tree structure behind the

code in Listing 1.

In this example, the order between nodes of the tree is important: the head part of the
code occurs before the body part.

Base cases are important In the tree definition, removing the base case
makes impossible to generate finite trees. In the factorial function, removing the base
case makes the function compute endlessly any value.

2. Some formal language vocabulary

The few following definitions are the basis on top of which is built all the formal

languages field.
Definition: Alphabet, word, language

An alphabet is a finite set, often denoted by the letter 3. Its elements are called
letters, often denoted by... letters.

A word is a finite sequence of letters. The empty word, denoted ¢, is the word
with 0 letter. A language is a (non necessarily finite) set of words.

Example

« ¥, ={a,b,..., z} is an alphabet, computer is a word on X, and the set of English
words is a language on X;.

« ¥, = {0,1} is an alphabet, and any data stored on a computer can be ultimately
expressed as a word on .

« X3 ={A,T,C,G} is an alphabet, and your genome is a word on 3.

Pay attention to the fact that a word or a language is always defined on an alphabet.
Alphabet can be omitted when mentioning a word or a language if it is obvious.

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Concatenation

Concatenation is a very often used operation on formal languages.

Let two words w; and w, on a same alphabet . The concatenation between two
words w; and w,, often denoted w; - w, or w;w,, is a new word which starts with
the letters of w; in order, followed by the letters of w, in order.

A concatenation of n occurrences of a word w can be denoted w™.

Let two languages L; and L,. The concatenation between two languages L;
and L,, often denoted L - L, or L, L,, is the set

{wy ~wy | wy € Ly, wy € Ly}

A concatenation of n occurrences of a language L can be denoted L".

Examples

+ The concatenation between super and computer is the word supercomputer.
o Ifw; =TATA and wy = GAGA, then w,w, = TATAGAGA.

« If L, = {a,aa} and L, = {b,bb}, then L, - L, = {ab, abb, aab, aabb}.

3. Regular expressions, Regular languages

Regular expressions is a syntactic tool to describe regular languages, a central class of
formal languages.

What does syntactic mean? In computer science, when describing new objects (e.g.

new programming languages), there is often a difference between syntax and semantic.

« Syntax describes the structure of the object. e.g. for programming languages: what
are the keywords, when to use characters like (), {} or [], is spacing allowed. In
other words, which source codes should be recognized by the machine as a program
in this language, and which should not.

« Semantic describes the meaning of the object. e.g. for programming languages: how
are implemented integers, additions, recursive calls, interaction with memory. Is
spacing significant. What should happen when writing 1 + "1". Is logical or lazy or
not.

Why talking about regular expressions and regular languages? Later in this
course, you will learn some quantum programming languages syntax and semantic.
Regular expressions and languages is a first step in understanding how deeply tied are
syntax and semantic. It also happens to be closely related to finite automata, a simple
conceptual computing machine presented in next lecture.

ARTeQ - Initiation to theoretical computer science 2024-2025

3.1. Regular languages

A major question in formal languages is: how to define rich or precise languages (e.g.
natural languages, programming languages, technical patterns as email addresses)
precisely enough so that it matches the reality, but simply enough so that it can be
easily manipulated and understood, either by humans or computers. Regular languages
is a class of languages that ticks many of theses boxes.

One possible first definition of “regular languages” is the following. Let X an alphabet,
and C(X) the class of wannabe regular languages on X.. (X)) is the smallest set such
that:

« The empty set () is in C(X).

« The language consisting in only the empty word {e} is in C(X).

« For each] € ¥, the language {l} consisting in the one-letter word [only is in C(X).

Those are the base cases of the definition. Next we need to allow some richer pattern.
This is the aim of the following rules:

« If L, and L, are in C(X), then their union L; U L, also is.

« If L, and L, are in C(X), then their concatenation L, - L, also is.

This definition allows defining precise languages... but still, there is some nice
possibility missing. Can you guess what?

Exercise: Regular languages?

1. Let L in C(X). Show that L is a finite language.
2. Let L a finite language. Show that L is in C(X).

ARTeQ - Initiation to theoretical computer science 2024-2025

1. The following proof is said by structural induction.
1. If L is a base case of the C(X) construction, it is indeed finite.
2. Assume L, and L, are finite languages in € (X)), with n, and n,

elements respectively. Then L; U L, has at most n; + n, elements,
and
L, - L, has at most n; - ny. They are both finite.

This concludes the proof.
2. By induction on the number of words n in the finite language L.
Base case,n =0 (isin C(X).
Induction case Let L a finite language with n > 0 words. Consider a word
w € L. The language L \ {w} has n — 1 words, so by induction
hypothesis it is in C(X).

The language {w} also is in C(X), because if w writes w; w,...w,, then {w}
is

{wi} - {wa} - o - {wy}
Thus L = (L \ {w}) U{w} isin C(X).

One key property missing in C(X) is that it can not contain infinite languages. As
alphabets ¥ are always finite, this induces that a language in C(X) can not contain
words of arbitrarily large size (prove it!). One elegant way to lift this constraint, without
adding too much complexity, is to allow repeated concatenations.

Definition: Kleene Star

Let L a language. The Kleene Star of L, noted L*, is the set:

L

neN

where L° = {e} by convention.

In other words, L* contains any finite, arbitrarily large sequence of concatenations

of words of L. It does not contain any infinite word.

This final piece of the puzzle allows to entirely define the class of regular languages:

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Regular languages

Let X an alphabet. The class of regular languages on 3, denoted Reg(X), is the
smallest set such that:

« The empty set () is in Reg(X).

« The language consisting in only the empty word {€} is in Reg(X%).

« For each letter | € 3, the language {I} consisting in the one-letter word [only is
in Reg(X).

If L, and L, are in Reg(X), then their union L; U L, also is.

If L, and L, are in Reg(X), then their concatenation L - L, also is.

If L is in Reg(X), then L* also is.

Regular languages can be described with natural languages, e.g. “The set of words
starting with an a and ending with a b.”, but this is not always convenient. One easier
way to describe complex regular languages is regular expressions.

3.2. Regular expressions

Regular expressions is a convenient syntactic tool to describe regular languages, both in
a human-readable and computer-readable way.

Definition: Regular expression

A regular expression is a tree labelled with characters. Let ¥ an alphabet. The set of
regular expressions on ¥, denoted Regex(X), is the following:

« The tree L(() is in Regex(X).

The tree L(¢) is in Regex ().

For each letter [€ X, the tree L(l) is in Regex(X).

. If e; and e, are in Regex(X), then the tree N (U, eq, e,) also is.

« If e; and e, are in Regex(X), then the tree N (-, e, €5) also is.

If e is in Regex(X), then the tree N (x, e) also is.

Remarks

« Regular expressions are almost always
denoted as sequences of characters
rather than trees. See example in
Figure 6.

« Parenthesis can be added to remove
ambiguity, they are silent characters.

+ Regular expressions are only trees

labelled with characters, and do not
have any meaning by themselves. Figure 6: The sequence of characters

ab(bc)* denotes this expression.

10

ARTeQ - Initiation to theoretical computer science 2024-2025

« When written inline, a Kleen star with no parenthesis only matches the previous
character:

aa* = a(a)” # (aa)”

The meaning given to regular expressions — in other word, their semantic — is the

following:
Definition: Language of a regular expression

Let e a regular expression on Y. The language of e, denoted £(e), is the following:
« Ife = L(0), then £(e) = 0.

« Ife = L(e), then £(e) = {e}.

If e = L(l), then £(e) = {l}.

Ife=N(U,eq,e,), then L(e) = L(ey) U L(ey).

« Ife=N(,eq,e,), then L(e) = L(eq) - L(ey).
« Ife = N(*,¢€’), then £(e) = £(e')".

Remarks

« If this semantic seems obvious to you, it is because the syntax of regular expressions
has been chosen to match the symbols used by the mathematical operators. This is
rather good news: a confusing syntax is source of errors!

« Different regular expressions can have the same semantic : £(aa*) = £(a*a).

« Concerning regular expressions, the tree structure is often not that interesting,
whereas the semantic of the tree is. As such, when using inline regular expressions,
equality denotes the equality between languages rather than the equality of the trees.
According to this abuse of notation, aa* = a*a, even though the trees are different.
This abuse of notation is very local, and is forbidden when manipulating other
objects like grammars.

Exercise: Regular expressions semantic is regular languages

1. Let e a regular expression on X. Prove that £(e) is a regular language on X.

2. Let L a regular language on X. Prove that there exist a regular expression
e € Regex(X) such that £(e) = L. Is it unique?

11

ARTeQ - Initiation to theoretical computer science 2024-2025

— R

1. By induction on the regular expression structure.

1. If e is a base case of the regular expression construction, its language
is regular.

2. Assume e, and e, are regular expressions whose languages, £(e;)
and £(e,), are regular. Then £(e; Uey) = L(eq) U L(ey) also is.
The proof is similar for e; - e5 and ej.

2. By induction on the regular language structure.

1. If L is a base case of a regular language, there exist a (base case of a)
regular expression whose language describes L.

2. Assume L; and L, are regular languages described by regular
expressions e; and e,. Then L; U L, is described by e; U e,. The
proof is similar for L, - L, and Lj.

The expression is not unique: if e has L as a language, then e U) also does.

Regular expressions make describing regular languages a lot more convenient.

Exercise: Regular expressions

1. Let ¥ an alphabet. Describe the set of all words on ¥ with a regular

expression.

2. Let X, = {0,1,2,...,9}. Describe with a regular expression the language of
decimal notations of integers divided by 5.

3. Find a relevant alphabet to describe the format of valid email addresses
ending with .org, and write the regular expression that describes them.

4. Let ¥ = {(,)}. Can you find a way to describe the set of balanced strings of
brackets with a regular expression? If not, can you explain why?

12

ARTeQ - Initiation to theoretical computer science 2024-2025

— I

1. Leta,b, ..., 2 the letters in . ({a} U {b} U ... U {2})" fits. It is often written
DI

2. Integers divided by 5 end with 0 or 5, so ()" - ({0} U {5}) fits.

3. Consider alphabet ¥, = {a, b, ..., z, 0, 1, ..., 9} the alphabet of letters and
numbers. Consider the alphabet ¥ = X, U {., @}. Then one possible pattern

is the following:

((Eln)*'>*Eln@((Eln)*')*Zln{'org}

4. This is impossible. The informal explanation is that when checking if a world
is in the language of a regular expression, you must read the expression from
left to right, and the only memory you can have lies in the finitely many
characters of the expression. So you can not count arbitrarily high how
many parenthesis you have met, and no matter how complex your
expression is, there will be a point when it either will contain the word

()"
or not contain the word
(n)n—l .

Do not panick if you did not get this explanation. It will become more clear
when you will know finite automata, and how tied with regular expressions
they are.

4. Grammars

Why talking about grammars? In regular expressions, U and - are associative
operators:

(aUb)Uc=aU (bUc)

so the syntactical detailed structure of a regular expression does not matter much.
There are however some application cases where the structure of what you are
analyzing does matter — e.g. analyzing source code. For those cases, there exist a more
powerful tool: grammars.

Informal description Grammars is a tool designed to describe hierarchical
organization between “blocks” of things with different properties.

Why this name? The name of this tool comes from linguistic, where it is used to
describe what sentences are syntactically correct.

Natural language example Consider the following sentence:

13

ARTeQ - Initiation to theoretical computer science 2024-2025

I am glad that I am here, and so are you.

It can have two very different meanings:
1. I am glad that I am here. You are glad that you are here.
2. I am glad that both me and you are here.

Distinguishing between the two depends on how the sentence is built. Consider that
you have the following construction rules to build a syntactically correct sentence:

S— NVS N — 1| you
S— NV V — am glad that | am here | are
S — S andso VN

Bars read as an “or”, and are a shorthand to write several rules in one. To build a
sentence, start with the S symbol, and then replace symbols on the left of a production
rule arrows by things on the right. Example:

S — NV — N am here — I am here

With those rules, you can create the example sentence with two different syntax trees
depicted in Figure 7. The one on the left corresponds to the first interpretation, the one
on the right corresponds to the second one.

//\\//

andso V N

//\ BRI

are you I amglad that S andso V N

l ! /\ /\ | |

I am glad that N N are you
| l | l
I am here I am here

Figure 7: Two meanings of “I am glad that I am here, and so are you”

This kind of ambiguity is often not much of a problem in natural language, as either the
context gives the explanation, or you can ask the person you are speaking to. In
programming languages, however, you should absolutely avoid letting program chose
between two very different meanings of your code. This would result in very
unconsistent and untrustable programs.

What use for grammars in programming languages? Each modern programming
language includes a grammar in its design. When processing source code, they start by
generating a tree that describes the code according to their grammar.

14

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Grammar

A grammar is a tuple G = (V, X, P, S) where:
« V is an alphabet of so-called non-terminal symbols, or variables.

« Y is an alphabet of so-called terminal symbols. It has no common symbol with V.
« PC(VUD)'V(VUX)" x (VUX)"is a finite set of so-called production rules.
« S €V is the starting symbol.

When each production rule of a grammar isin V' x (V U X)", the grammar is

Definition: Derivation

Let G = (V,X, P, S) a grammar. A derivation is a tree generated by a sequence

called context-free.

production rules of G from its starting symbol. We say that a word w € ¥ UV can
be derived from a word or symbol w, if there exist a derivation starting from w. If no

symbol u is specified, consider the starting symbol of G.

The formal definition is a bit heavy, and grammars are often described by the list of
their production rules.

Example grammar The following example is a context-free grammar describing a
language designed to achieve computations without loops:

E—-FE+FE B—-E=F P— PP

E—> ExE B—-FE<FE P — if B then P else P
E— N B — —-B P—>V:==F

E—-V B—-BVEB P — return B
N—->NN|O|1]|..]9]e¢ Voz|lyl|=z

Listing 2: A toy programming language grammar®.
It can generate Expressions, Variables, Natural numbers, Booleans, and Programs.

Here the starting symbol to create a program is always P. Although the symbols used
here should look familiar to you, keep in mind that a grammar only gives the structure
of the code, and not is meaning. Without semantic, it might be that 4+ means
concatenation and * describes tuples... Defining semantic becomes even more
important when designing quantum programming languages, where symbols like ®, 7
or — might be used, and if so should have their meaning clearly defined.

!Syntactical ambiguity here!

15

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Programming language grammar

For this exercise, consider production rules described in Listing 2. For each of the

following strings, count the number of derivation that can produce them from P.
Pay a close attention to what are the exact production rules you are allowed to
use!

l.z4+yx*xz

2. if 1thenz:=3xx + lelsex :=x/2

3. returnz; returny

4. £:=0

When there are not exactly one, can you think of a way to make sure that exactly
one derivation is possible?

—EY

1. Two possible trees: one with + at the root, and one with *. Adding

parenthesis to the expression or having priority rules can reduce this
number to one.

2. Impossible, for several reasons:
+ No / symbol in the production rules;
+ No 1 allowed as boolean.

Adding new rules can solve this.

3. Only one possible tree.

4. Infinitely many possible trees, because you can create arbitrarily many N
characters with the N — NN rule, and make them vanish by using the
N — ¢ rule. One possible way to fix this is to change the N rules for:

N ON|1N|..|9N |

16

	Introduction activity: Towers of Hanoi
	What is recursion?
	Recursion as problem solving method
	Recursion as a definition method

	Some formal language vocabulary
	Regular expressions, Regular languages
	Regular languages
	Regular expressions

	Grammars

