
ARTeQ - Initiation to theoretical computer science 2024-2025

1 – Introduction to Formal Languages
Luc Lapointe

luc.lapointe@ens-paris-saclay.fr
home.lmf.cnrs.fr/LucLapointe/

Abstract
Formal Languages is a mathematically rigorous framework used to define “problems” we want our
computers to solve, and to prove that some problems are out of reach of even our more powerful

supercomputers. It also introduces grammars, a convenient tool to describe existing or new
programming languages, including quantum ones.

Introduction activity: Towers of Hanoi
The “Towers of Hanoi” is a mathematical puzzle invented in 1883 by French
mathematician Édouard Lucas, first presented as a game discovered during a trip.

It consists of three rods (left, middle and right) and n disks of increasing diameter, with
a hole in the middle of each to slide onto any rod. The starting position of the puzzle
is all disks stacked on the left rod by increasing diameter order, the smallest at the top.
The goal is to move all disks to the right rod by obeying the following rules:
• You can only move disks one by one;
• You can only move a disk from the top of a stack to the top of another stack or to an

empty rod;
• You can not move a disk on top of another smaller disk.

Figure 1: Hanoi Towers in different positions.

In Figure 1, left position is the starting position for 𝑛 = 3 disks. Right position can not
be reached from left position in one move, as you can only move disks one by one. It
can however be reached in three moves:

1 → 3, 1 → 2, 3 → 2.

1. Solve the problem for 4 and then for 5 disks.
2. Do you think it is possible to solve the problem for any number 𝑛 of disks?
3. (Optional) Prove or find a counter-example to the following statement:

For all 𝑛 ∈ ℕ, the problem can be solved in exactly 2𝑛 − 1 moves.

1

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

ARTeQ - Initiation to theoretical computer science 2024-2025

1. What is recursion?
Recursion is a key notion in computer science. It allows elegant definitions and
efficient problem solving.

Definition: Recursion

During a procedure, recursion happens when one step plans to execute the
procedure itself.

Why talking about recursion? Recursive definitions is one key technique among
others in defining several formal language tools. Among them, grammars, used to
described the code structure of programming languages.

Although recursion is a major brick of computer science, you might have already met it
in everyday life.

• Some yoghurts or other fermented food
are cooked using the result of the
recipe as an ingredient.

• Two mirrors facing each other can
create an “infinity mirror”
phenomenon. If mirror 1 faces mirror 2,
then the full reflection of mirror 1
includes the full reflection of mirror 2,
which itself includes the full reflection
of mirror 1 again.

• Fractals are nice-looking recursive
geometric shapes, that are self-similar
when you zoom-in, and can occur in
nature.

Figure 2: Infinity mirror.
CC-BY 2.0, picture from Brian Snelson on Wikimedia Commons.

Figure 3: Romanesco broccoli.
CC-BY 4.0, part of a picture from Mds08011 on Wikimedia Commons.

In most cases, recursion is too tedious to be used in everyday life by humans, so it is
not that much. Computers, however, are basically designed to only do a gigantic
amount of silly and tedious operations, so recursion perfectly fits.

1.1. Recursion as problem solving method
In computer science, it often happens, for a problem 𝒫 involving large quantities or
large numbers 𝑁 , that the problem is actually quite easy to solve if you assume you

2

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/4.0/

ARTeQ - Initiation to theoretical computer science 2024-2025

can already solve it for number or quantities just a bit less than 𝑁 . Here we describe a
few such problems.

Exercise: Towers of Hanoi

Assume you can move the top 𝑛 disks of a stack from one rod to another. How easy
is it to move the 𝑛 + 1 top disks from one rod to another?

Exercise: Sorting a list

Assume you want to sort a list of 𝑛 integer in increasing order, and you know how
to sort a list of 𝑛 − 1 integers. How would you proceed using this knowledge?

Same question if you rather know how to sort a list of 𝑛2 integers.

Exercise: Change-making problem

The change-making problem consists in, given some 𝑛 ∈ ℕ, giving 𝑛 € with as few
coins and bills as possible.

Assume that, for some 𝑁 ∈ ℕ, you know how to give the minimum amount of
coins and bills to give back 𝑛 € for any 𝑛 ≤ 𝑁 . How would you proceed to give
𝑁 + 1 €?

1.2. Recursion as a definition method
Recursion can also be used as a very elegant definition method. The pattern of such
definitions is the following:

1. One or more non-recursively defined objects. They are called base cases.
2. Recursive construction rules to describe more complex objects.

The aim of base cases is to be elementary bricks, on top of which are generated more
complex objects with recursive rules.

Such definitions do not allow infinite objects, or infinite “unfoldings”. Each object
“includes” at some point of its definition one base case, and often more than one.

One (mathematical) example of an elegantly recursively designed function is the
factorial function:

𝑛! = {1 if 𝑛 = 0
𝑛 ∗ (𝑛 − 1)! if not.

Another concept that is recursively defined and closer to computer science is trees.
Most computer file managers are structured according to a tree structure. The grammar
behind most languages spoken by humans can be described by trees. All programming
language also interpret or compile code as a tree.

3

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Tree

A tree is either:
• A leaf 𝐿, or
• A node 𝑁(𝑡1, …, 𝑡𝑛), where 𝑡1, …, 𝑡𝑛 are also trees. They are called children.

The first node of a tree is called its root.

Figure 4: The tree 𝑁(𝐿, 𝑁(𝑁(𝐿), 𝐿, 𝐿)).

Remarks
• Depending on the needs, leafs and nodes can be labelled, with for example strings or

integers. In this case, they are noted 𝐿(label) or 𝑁(label, 𝑡1, …, 𝑡𝑛).
• Sometimes the order between 𝑡1, …, 𝑡𝑛 is important, and sometimes it is not,

depending on the context.
• As the inline writing is tedious and not easily human-readable, it is not used often.
• Trees are often drawn by computer scientists with their leaves at the bottom.

Example: The tree behind the code

<html>
 <head>
 <title>My super website</title>
 </head>
 <body>
 <h1>I love pastries</h1>
 <h2>and sleeping!</h2>
 </body>
</html>

Listing 1: Some HTML code.
Figure 5: The tree structure behind the

code in Listing 1.

In this example, the order between nodes of the tree is important: the head part of the
code occurs before the body part.

Base cases are important In the tree definition, removing the base case (the leaf)
makes impossible to generate finite trees. In the factorial function, removing the base
case (0!) makes the function compute endlessly any value.

4

ARTeQ - Initiation to theoretical computer science 2024-2025

2. Some formal language vocabulary
The few following definitions are the basis on top of which is built all the formal
languages field.

Definition: Alphabet, word, language

An alphabet is a finite set, often denoted by the letter Σ. Its elements are called
letters, often denoted by… letters.

A word is a finite sequence of letters. The empty word, denoted 𝜀, is the word
with 0 letter. A language is a (non necessarily finite) set of words.

Example
• Σ1 = {𝑎, 𝑏, …, 𝑧} is an alphabet, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 is a word on Σ1, and the set of English

words is a language on Σ1.
• Σ2 = {0, 1} is an alphabet, and any data stored on a computer can be ultimately

expressed as a word on Σ2.
• Σ3 = {𝐴, 𝑇 , 𝐶, 𝐺} is an alphabet, and your genome is a word on Σ3.

Pay attention to the fact that a word or a language is always defined on an alphabet.
Alphabet can be omitted when mentioning a word or a language if it is obvious.

Definition: Concatenation

Concatenation is a very often used operation on formal languages.

Let two words 𝑤1 and 𝑤2 on a same alphabet Σ. The concatenation between two
words 𝑤1 and 𝑤2, often denoted 𝑤1 ⋅ 𝑤2 or 𝑤1𝑤2, is a new word which starts with
the letters of 𝑤1 in order, followed by the letters of 𝑤2 in order.

A concatenation of 𝑛 occurrences of a word 𝑤 can be denoted 𝑤𝑛.

Let two languages 𝐿1 and 𝐿2. The concatenation between two languages 𝐿1
and 𝐿2, often denoted 𝐿1 ⋅ 𝐿2 or 𝐿1𝐿2, is the set

{𝑤1 ⋅ 𝑤2 | 𝑤1 ∈ 𝐿1, 𝑤2 ∈ 𝐿2}.

A concatenation of 𝑛 occurrences of a language 𝐿 can be denoted 𝐿𝑛.

Examples
• The concatenation between 𝑠𝑢𝑝𝑒𝑟 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 is the word 𝑠𝑢𝑝𝑒𝑟𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟.
• If 𝑤1 = 𝑇𝐴𝑇𝐴 and 𝑤2 = 𝐺𝐴𝐺𝐴, then 𝑤1𝑤2 = 𝑇𝐴𝑇𝐴𝐺𝐴𝐺𝐴.
• If 𝐿𝑎 = {𝑎, 𝑎𝑎} and 𝐿𝑏 = {𝑏, 𝑏𝑏}, then 𝐿𝑎 ⋅ 𝐿𝑏 = {𝑎𝑏, 𝑎𝑏𝑏, 𝑎𝑎𝑏, 𝑎𝑎𝑏𝑏}.

5

ARTeQ - Initiation to theoretical computer science 2024-2025

3. Regular expressions, Regular languages
Regular expressions is a syntactic tool to describe regular languages, a central class of
formal languages.

What does syntactic mean? In computer science, when describing new objects (e.g.
new programming languages), there is often a difference between syntax and semantic.
• Syntax describes the structure of the object. e.g. for programming languages: what

are the keywords, when to use characters like (), {} or [], is spacing allowed. In
other words, which source codes should be recognized by the machine as a program
in this language, and which should not.

• Semantic describes the meaning of the object. e.g. for programming languages: how
are implemented integers, additions, recursive calls, interaction with memory. Is
spacing significant. What should happen when writing 1 + "1". Is logical or lazy or
not.

Why talking about regular expressions and regular languages? Later in this
course, you will learn some quantum programming languages syntax and semantic.
Regular expressions and languages is a first step in understanding how deeply tied are
syntax and semantic. It also happens to be closely related to finite automata, a simple
conceptual computing machine presented in next lecture.

3.1. Regular languages
A major question in formal languages is: how to define rich or precise languages (e.g.
natural languages, programming languages, technical patterns as email addresses)
precisely enough so that it matches the reality, but simply enough so that it can be
easily manipulated and understood, either by humans or computers. Regular languages
is a class of languages that ticks many of theses boxes.

One possible first definition of “regular languages” is the following. Let Σ an alphabet,
and 𝒞(Σ) the class of wannabe regular languages on Σ. 𝒞(Σ) is the smallest set such
that:
• The empty set ∅ is in 𝒞(Σ).
• The language consisting in only the empty word {𝜀} is in 𝒞(Σ).
• For each 𝑙 ∈ Σ, the language {𝑙} consisting in the one-letter word 𝑙 only is in 𝒞(Σ).

Those are the base cases of the definition. Next we need to allow some richer pattern.
This is the aim of the following rules:
• If 𝐿1 and 𝐿2 are in 𝒞(Σ), then their union 𝐿1 ∪ 𝐿2 also is.
• If 𝐿1 and 𝐿2 are in 𝒞(Σ), then their concatenation 𝐿1 ⋅ 𝐿2 also is.

This definition allows defining precise languages… but still, there is some nice
possibility missing. Can you guess what?

6

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Regular languages?

1. Let 𝐿 in 𝒞(Σ). Show that 𝐿 is a finite language.
2. Let 𝐿 a finite language. Show that 𝐿 is in 𝒞(Σ).

One key property missing in 𝒞(Σ) is that it can not contain infinite languages. As
alphabets Σ are always finite, this induces that a language in 𝒞(Σ) can not contain
words of arbitrarily large size (prove it!). One elegant way to lift this constraint, without
adding too much complexity, is to allow repeated concatenations.

Definition: Kleene Star

Let 𝐿 a language. The Kleene Star of 𝐿, noted 𝐿∗, is the set:

⋃
𝑛∈ℕ

𝐿𝑛

where 𝐿0 = {𝜀} by convention.

In other words, 𝐿∗ contains any finite, arbitrarily large sequence of concatenations
of words of 𝐿. It does not contain any infinite word.

This final piece of the puzzle allows to entirely define the class of regular languages:

Definition: Regular languages

Let Σ an alphabet. The class of regular languages on Σ, denoted Reg(Σ), is the
smallest set such that:
• The empty set ∅ is in Reg(Σ).
• The language consisting in only the empty word {𝜀} is in Reg(Σ).
• For each letter 𝑙 ∈ Σ, the language {𝑙} consisting in the one-letter word 𝑙 only is

in Reg(Σ).
• If 𝐿1 and 𝐿2 are in Reg(Σ), then their union 𝐿1 ∪ 𝐿2 also is.
• If 𝐿1 and 𝐿2 are in Reg(Σ), then their concatenation 𝐿1 ⋅ 𝐿2 also is.
• If 𝐿 is in Reg(Σ), then 𝐿∗ also is.

Regular languages can be described with natural languages, e.g. “The set of words
starting with an a and ending with a b.”, but this is not always convenient. One easier
way to describe complex regular languages is regular expressions.

3.2. Regular expressions
Regular expressions is a convenient syntactic tool to describe regular languages, both in
a human-readable and computer-readable way.

7

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Regular expression

A regular expression is a tree labelled with characters. Let Σ an alphabet. The set of
regular expressions on Σ, denoted Regex(Σ), is the following:
• The tree 𝐿(∅) is in Regex(Σ).
• The tree 𝐿(𝜀) is in Regex(Σ).
• For each letter 𝑙 ∈ Σ, the tree 𝐿(𝑙) is in Regex(Σ).
• If 𝑒1 and 𝑒2 are in Regex(Σ), then the tree 𝑁(∪, 𝑒1, 𝑒2) also is.
• If 𝑒1 and 𝑒2 are in Regex(Σ), then the tree 𝑁(⋅, 𝑒1, 𝑒2) also is.
• If 𝑒 is in Regex(Σ), then the tree 𝑁(∗, 𝑒) also is.

Remarks

• Regular expressions are almost always
denoted as sequences of characters
rather than trees. See example in
Figure 6.

• Parenthesis can be added to remove
ambiguity, they are silent characters.

• Regular expressions are only trees
labelled with characters, and do not
have any meaning by themselves. Figure 6: The sequence of characters

𝑎𝑏(𝑏𝑐)∗ denotes this expression.
• When written inline, a Kleen star with no parenthesis only matches the previous

character:

𝑎𝑎∗ = 𝑎(𝑎)∗ ≠ (𝑎𝑎)∗

The meaning given to regular expressions – in other word, their semantic – is the
following:

Definition: Language of a regular expression

Let 𝑒 a regular expression on Σ. The language of 𝑒, denoted ℒ(𝑒), is the following:
• If 𝑒 = 𝐿(∅), then ℒ(𝑒) = ∅.
• If 𝑒 = 𝐿(𝜀), then ℒ(𝑒) = {𝜀}.
• If 𝑒 = 𝐿(𝑙), then ℒ(𝑒) = {𝑙}.
• If 𝑒 = 𝑁(∪, 𝑒1, 𝑒2), then ℒ(𝑒) = ℒ(𝑒1) ∪ ℒ(𝑒2).
• If 𝑒 = 𝑁(⋅, 𝑒1, 𝑒2), then ℒ(𝑒) = ℒ(𝑒1) ⋅ ℒ(𝑒2).
• If 𝑒 = 𝑁(∗, 𝑒′), then ℒ(𝑒) = ℒ(𝑒′)∗.

8

ARTeQ - Initiation to theoretical computer science 2024-2025

Remarks
• If this semantic seems obvious to you, it is because the syntax of regular expressions

has been chosen to match the symbols used by the mathematical operators. This is
rather good news: a confusing syntax is source of errors!

• Different regular expressions can have the same semantic : ℒ(𝑎𝑎∗) = ℒ(𝑎∗𝑎).
• Concerning regular expressions, the tree structure is often not that interesting,

whereas the semantic of the tree is. As such, when using inline regular expressions,
equality denotes the equality between languages rather than the equality of the trees.
According to this abuse of notation, 𝑎𝑎∗ = 𝑎∗𝑎, even though the trees are different.
This abuse of notation is very local, and is forbidden when manipulating other
objects like grammars.

Exercise: Regular expressions semantic is regular languages

1. Let 𝑒 a regular expression on Σ. Prove that ℒ(𝑒) is a regular language on Σ.
2. Let 𝐿 a regular language on Σ. Prove that there exist a regular expression

𝑒 ∈ Regex(Σ) such that ℒ(𝑒) = 𝐿. Is it unique?

Regular expressions make describing regular languages a lot more convenient.

Exercise: Regular expressions

1. Let Σ an alphabet. Describe the set of all words on Σ with a regular
expression.

2. Let Σint = {0, 1, 2, …, 9}. Describe with a regular expression the language of
decimal notations of integers divided by 5.

3. Find a relevant alphabet to describe the format of valid email addresses
ending with .org, and write the regular expression that describes them.

4. Let Σ = {(,)}. Can you find a way to describe the set of balanced strings of
brackets with a regular expression? If not, can you explain why?

4. Grammars
Why talking about grammars? In regular expressions, ∪ and ⋅ are associative
operators:

(𝑎 ∪ 𝑏) ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐)

so the syntactical detailed structure of a regular expression does not matter much.
There are however some application cases where the structure of what you are
analyzing does matter – e.g. analyzing source code. For those cases, there exist a more
powerful tool: grammars.

Informal description Grammars is a tool designed to describe hierarchical
organization between “blocks” of things with different properties.

9

ARTeQ - Initiation to theoretical computer science 2024-2025

Why this name? The name of this tool comes from linguistic, where it is used to
describe what sentences are syntactically correct.

Natural language example Consider the following sentence:

I am glad that I am here, and so are you.

It can have two very different meanings:
1. I am glad that I am here. You are glad that you are here.
2. I am glad that both me and you are here.

Distinguishing between the two depends on how the sentence is built. Consider that
you have the following construction rules to build a syntactically correct sentence:

𝑆 → 𝑁𝑉 𝑆 𝑁 → 𝐼 | you
𝑆 → 𝑁𝑉 𝑉 → am glad that | am here | are
𝑆 → 𝑆 and so 𝑉 𝑁

Bars read as an “or”, and are a shorthand to write several rules in one. To build a
sentence, start with the 𝑆 symbol, and then replace symbols on the left of a production
rule arrows by things on the right. Example:

𝑆 → 𝑁𝑉 → 𝑁 am here → I am here

With those rules, you can create the example sentence with two different syntax trees
depicted in Figure 7. The one on the left corresponds to the first interpretation, the one
on the right corresponds to the second one.

Figure 7: Two meanings of “I am glad that I am here, and so are you.”

This kind of ambiguity is often not much of a problem in natural language, as either the
context gives the explanation, or you can ask the person you are speaking to. In
programming languages, however, you should absolutely avoid letting program chose
between two very different meanings of your code. This would result in very
unconsistent and untrustable programs.

10

ARTeQ - Initiation to theoretical computer science 2024-2025

What use for grammars in programming languages? Each modern programming
language includes a grammar in its design. When processing source code, they start by
generating a tree that describes the code according to their grammar.

Definition: Grammar

A grammar is a tuple 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆) where:
• 𝑉 is an alphabet of so-called non-terminal symbols, or variables.
• Σ is an alphabet of so-called terminal symbols. It has no common symbol with 𝑉 .
• 𝑃 ⊆ (𝑉 ∪ Σ)∗𝑉 (𝑉 ∪ Σ)∗ × (𝑉 ∪ Σ)∗ is a finite set of so-called production rules.
• 𝑆 ∈ 𝑉 is the starting symbol.

When each production rule of a grammar is in 𝑉 × (𝑉 ∪ Σ)∗, the grammar is
called context-free.

Definition: Derivation

Let 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆) a grammar. A derivation is a tree generated by a sequence
production rules of 𝐺 from its starting symbol. We say that a word 𝑤 ∈ Σ ∪ 𝑉 can
be derived from a word or symbol 𝑢, if there exist a derivation starting from 𝑢. If no
symbol 𝑢 is specified, consider the starting symbol of 𝐺.

The formal definition is a bit heavy, and grammars are often described by the list of
their production rules.

Example grammar The following example is a context-free grammar describing a
language designed to achieve computations without loops:

𝐸 → 𝐸 + 𝐸 𝐵 → 𝐸 = 𝐸 𝑃 → 𝑃; 𝑃
𝐸 → 𝐸 ∗ 𝐸 𝐵 → 𝐸 < 𝐸 𝑃 → if 𝐵 then 𝑃 else 𝑃
𝐸 → 𝑁 𝐵 → ¬𝐵 𝑃 → 𝑉 ≔ 𝐸
𝐸 → 𝑉 𝐵 → 𝐵 ∨ 𝐵 𝑃 → return 𝐸
𝑁 → 𝑁𝑁 | 0 | 1 | … | 9 | 𝜀 𝑉 → 𝑥 | 𝑦 | 𝑧

Listing 2: A toy programming language grammar¹.
It can generate Expressions, Variables, Natural numbers, Booleans, and Programs.

¹Syntactical ambiguity here!

Here the starting symbol to create a program is always 𝑃 . Although the symbols used
here should look familiar to you, keep in mind that a grammar only gives the structure
of the code, and not is meaning. Without semantic, it might be that + means
concatenation and ∗ describes tuples… Defining semantic becomes even more
important when designing quantum programming languages, where symbols like ⊗, ⅋
or ⊸ might be used, and if so should have their meaning clearly defined.

11

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Programming language grammar

For this exercise, consider production rules described in Listing 2. For each of the
following strings, count the number of derivation that can produce them from 𝑃 .
Pay a close attention to what are the exact production rules you are allowed to
use!

1. 𝑥 + 𝑦 ∗ 𝑧
2. if 1 then 𝑥 ≔ 3 ∗ 𝑥 + 1 else 𝑥 ≔ 𝑥/2
3. return 𝑥; return 𝑦
4. 𝑥 ≔ 0

When there are not exactly one, can you think of a way to make sure that exactly
one derivation is possible?

12

	Introduction activity: Towers of Hanoi
	What is recursion?
	Recursion as problem solving method
	Recursion as a definition method

	Some formal language vocabulary
	Regular expressions, Regular languages
	Regular languages
	Regular expressions

	Grammars

