
ARTeQ - Initiation to theoretical computer science 2024-2025

2 – Automata, Turing machines
Luc Lapointe

luc.lapointe@ens-paris-saclay.fr
home.lmf.cnrs.fr/LucLapointe/

Abstract
One aim of computer science is to study what can computer achieve, and how efficiently. Abstract

machine models allow to fulfill this aim independently of the hardware fast-growing efficiency.
Automata are abstract memoryless machines. They can efficiently recognize patterns described by

regular expressions. Turing machines are automata augmented with a memory tape. They are one of
the formal models describing the full power of computers.

Introduction activity: The armless and blind bartender
An armless and blind bartender likes to play a game with their clients. The rules are
the following:
• Start the game with four glasses put in square on the bartender’s tray. Each of

them can either be right side up or upside down, at the will of the client.
• The bartender can never know which glasses are upside down, and which are not.
• One turn happens as follows:

‣ The bartender choses one to four directions between up, down, left and right.
‣ The client can rotate the trail however they want.
‣ Then, the client must reverse the glasses in the direction(s) the bartender gave.

• The bartender wins if, at any time of the game, either the whole four glasses are
right side up, or the whole four glasses are upside down. When it happens, the
client must say it to the bartender, and the game stops.

• The aim of the client is to prevent the bartender from winning.

It is said that the bartender always win in a few turns. Do you think it is possible?
• If no, try your best to beat the bartender.
• If yes, find how!

1. Automata

1.1. Description of the machine
Automata is an abstract machine model designed to recognize patterns. This means
that it takes as an input a string, reads it, and then answers wether the string
conforms to the patterns the automaton must recognize or not.

It is the neurophysiologist Warren McCulloch and the logician studying
neuroscience Walter Pitts who first published a paper describing a model similar to
the automata described here, in 1943 [1].

1

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

ARTeQ - Initiation to theoretical computer science 2024-2025

What does an automaton look like?
An automaton can be depicted by a set
of labelled states, usually circles, linked
with labelled arrows. Those arrows are
called transitions. There is also a state at
which an arrow with no start is
pointing, the initial state, and one or
more states from which an arrow starts
and points at nothing, the final states.

Figure 1: An automaton 𝒜0.

How to use an automaton? Automata are designed to read words, in order to
either accept or reject them. When reading a word 𝑤, after each letter it reads, the
automaton goes from its current state to another through a transition labelled with
this letter. If there are none, it rejects the word it is reading. If after reading the whole
word, the current state is a final state, the word is accepted. If not, it is rejected.

Example Consider the automaton 𝒜0 depicted in Figure 1.
• The word 𝑏𝑐𝑎𝑏𝑏𝑐𝑐 goes through the following states:

𝑞𝑖 →
𝑏

𝑞2 →
𝑐

𝑞3 →
𝑎

𝑞1 →
𝑏

𝑞2 →
𝑏

𝑞2 →
𝑐

𝑞4 →
𝑐

𝑞6

As 𝑞6 is a final state, 𝑏𝑐𝑎𝑏𝑏𝑐𝑐 is accepted by 𝒜0.
• The word 𝑏𝑐𝑎 ends in 𝑞1, which is not a final state. 𝑏𝑐𝑎 is thus rejected by 𝒜0.
• The word 𝑏𝑐𝑏𝑏 goes through the following states:

𝑞𝑖 →
𝑏

𝑞2 →
𝑐

𝑞3 →
𝑏

blocked

As it is blocked at some point when read by 𝒜0, it is rejected by 𝒜0.

Definition: Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a tuple 𝒜 = (𝑄, Σ, 𝑞𝑖, 𝐹 , 𝛿) where:
• 𝑄 is finite set, whose elements are called states of 𝒜.
• Σ is an alphabet.
• 𝑞𝑖 is an element of 𝑄, called the initial state of 𝒜.
• 𝐹 is a subset of 𝑄, whose elements are called final states of 𝒜.
• 𝛿 : 𝑄 × Σ → 𝑄 is a partial function, called the transition function of 𝒜.

When 𝛿 is defined on each possible input, 𝒜 is said to be complete.

The main interesting property to know when looking at an automaton is what words
it accepts, and what words it does not. To mathematically define it, we first define a
transition that describes the state a word can reach when read by an automaton.

2

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Extended transition function

Let 𝒜 = (𝑄, Σ, 𝑞𝑖, 𝐹 , 𝛿) a deterministic finite automaton. The extended
transition function of 𝒜 is the function 𝛿∗ defined as follow:

∀𝑞 ∈ 𝑄, 𝛿∗(𝑞, 𝜀) =def 𝑞

∀𝑞 ∈ 𝑄, ∀𝑙 ∈ Σ, ∀𝑤 ∈ Σ∗, 𝛿∗(𝑞, 𝑙𝑤) =def 𝛿∗(𝛿(𝑞, 𝑙), 𝑤)

Then we can define the set of words an automaton accepts. Each word not in this set
is rejected by the automaton.

Definition: Language of a deterministic finite automaton

Let 𝒜 = (𝑄, Σ, 𝑞𝑖, 𝐹 , 𝛿) a deterministic finite automaton. The language of 𝒜,
noted ℒ(𝒜), is defined as follow:

ℒ(𝒜) =def {𝑤 ∈ Σ∗ | 𝛿∗(𝑞𝑖, 𝑤) ∈ 𝐹}

The language of 𝒜 can also be called accepted or recognized by 𝒜.

A word is accepted by 𝒜 when it is in ℒ(𝒜), and rejected by 𝒜 if not.

Definition: Recognizable language

Let Σ an alphabet. A language 𝐿 on Σ is recognizable if there exist an
automaton 𝒜 on Σ that recognizes 𝐿. The set of all recognizable languages on Σ
is denoted Rec(Σ).

Graphical representation Accepting
states are sometimes depicted as a
doubly circled state, rather than with a
transition pointing at no state.

Example Consider the automaton 𝒜1
depicted in Figure 2. Its accepted
language is

𝑎(𝑏𝑎)∗𝑎(𝑎𝑎(𝑏𝑎)∗𝑎)∗
Figure 2: An automaton 𝒜1.

Why choosing alphabets with very few letters?
• Theorems and properties about automata are proven with any alphabet, so they

can be used with more relevant alphabets when dealing with more concrete
situations.

• Automata solving concrete situation are often huge and barely readable by
humans. Example automata in an automaton course do not have to include
thousands of states and hundreds of letters.

3

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Dessine-moi un mouton automate¹

Draw an automaton whose language is:
1. the words on Σ = {𝑎, 𝑏} with exactly one 𝑎.
2. the words on Σ = {𝑎, 𝑏} where no 𝑏 is surrounded by two 𝑎.
3. ((𝑎𝑏)∗(𝑏 ∪ 𝑎)∗)∗ 4. 𝑎𝑏(𝑏𝑏 ∪ 𝑎)∗𝑏(𝜀 ∪ 𝑎𝑏∗)

Be sure that your automaton does not accept words not in the language!

¹In English: “Draw me a sheep automaton”. French original quote from [2].

Solution

1.

3.

2.

4.

Exercise: From automata to languages

Describe the language recognized by the following automaton.

4

ARTeQ - Initiation to theoretical computer science 2024-2025

Solution

One possible solution: the language described by

(𝑏(𝑎 ∪ 𝑏)𝑏)∗𝑎(𝑎 ∪ 𝑏)𝑏(𝑎𝑏(𝑏(𝑎 ∪ 𝑏)𝑏)∗𝑎(𝑎 ∪ 𝑏)𝑏)∗.

First star describes the loop from top left state to itself. The star on the right of
the expression describes the loop from bottom right state to itself, including a
nested star which is again the loop from top left state to itself.

1.2. Automata and regular expressions
After designing an abstract computation model, one interesting question to ask is:
what can this model achieve? How complex can its computation be? Can my
problem be solved by this problem?

It is the american mathematician Stephen Cole Kleene who solved this problem for
automata, in a paper published in 1956 [3]. One of his motivation was to know how
deeply the model described in [1] can describe nervous activity.

It is him who invented the Kleene star, and described regular expressions, designed
as a syntactic description of languages an automaton can recognize.

Theorem: Kleene’s theorem

Let Σ and alphabet. Rec(Σ) = Reg(Σ).

Kleene’s theorem in natural language The equality in Kleene’s theorem is a set
equality, i.e. a double inclusion: Rec(Σ) ⊆ Reg(Σ) and Rec(Σ) ⊇ Reg(Σ). Explained
with words rather than symbols:

1. Any language of an automaton can be described by a regular expression;
2. And any language of a regular expression can be recognized by an automaton.

It is important to clearly understand that those two properties are very different.

Kleene’s theorem is a huge theorem, in that it elegantly describes the syntactic
description of recognizable languages, and builds a two-way bridge between
automata and regular expressions. One consequence of this bridge is that theorems
holding for one side are instantly holding for the other side.

5

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Regular languages closures²

1. Let 𝒜 an automaton. Show that there exist an automaton 𝒜′ accepting the
same language, and such that no word can be blocked when read by 𝒜′. In
other mathematical words: the transition function of 𝒜′ is complete.

2. Let 𝐿 a recognizable language on Σ. Show that the complement of 𝐿, the
language Σ∗ ∖ 𝐿, is also a recognizable language.

3. Let 𝐿 a regular language. Show that the complement of 𝐿 also is.
4. Let 𝐿1 and 𝐿2 two regular languages. Show that 𝐿1 ∩ 𝐿2 also is.

Hint: use closure under union and complement.

²We say that a set is closed under a certain operator when using this operator on elements of this
language can not “go outside” of the language. Example: Positive integers are closed under addition,
but not subtraction.

Solution

1. Build 𝒜′ by adding to 𝒜 a sink
non-accepting state, such that
when reading any letter from
sink, you stay in sink. For each
missing transition in 𝒜, add a
the missing transition to sink.

2. As 𝐿 is recognizable, there exist
an automaton 𝒜 such that
ℒ(𝒜) = 𝐿. Consider the
complete automaton 𝒜′ built
from 𝒜 as in question 1. In 𝒜′,
make every accepting state a
non-accepting state, and every
non-accepting state an
accepting state. This new
automaton recognizes Σ∗ ∖ 𝐿.

Figure 4: How to complete an
automaton.

3. Let 𝐿 a regular language. By Kleene’s theorem, it also is a recognizable
language. By question 2, Σ∗ ∖ 𝐿 is a recognizable language. By Kleene’s
theorem again, Σ∗ ∖ 𝐿 is a regular language.

4. We denote the complementation operator with a bar on top of the set:
𝐿 =def Σ∗ ∖ 𝐿

Intersection can be expressed with union and complementation:

𝐿1 ∩ 𝐿2 = 𝐿1 ∪ 𝐿2

As the set of regular languages is closed under union and
complementation, it is also closed under intersection.

6

ARTeQ - Initiation to theoretical computer science 2024-2025

Regular expressions is an interesting set of languages, but not quite enough to model
more complex languages. In particular, they can not recognize the set of balanced
strings of brackets, and thus are not relevant for describing a programming language.

1.3. Nondeterministic finite automata
Automata are said deterministic when
they only have one way to read each
word. On some automata, two
transitions going from the same state
might have the same label, as in
Figure 5. They are said non deterministic,
because some words have more than one
possible computation.

How to chose? In a deterministic
automaton, how to chose between two
different possible runs? e.g. in Figure 5,
should 𝑎𝑐𝑎 reach 𝑞4 and be accepted? Or
should it be blocked in 𝑞2?

Figure 5: Automaton 𝒜4 .

We chose everything The standard model of nondeterministic automata sort of
“choses everything”. It accepts a word if and only if there exist a run accepting it. It
rejects a word if and only if all runs are rejecting it.
You can see this model as, somehow, always choosing the best possible choice when
performing a task.

Exercise: Non-deterministic automaton

Find a 5-letter word that is accepted by 𝒜4 in Figure 5. Find one that is rejected.

Solution

𝑎𝑐𝑐𝑐𝑐 is rejected: it is either blocked in 𝑞2 after reading the first 𝑐, or it reaches
and sticks to 𝑞3. 𝑎𝑎𝑎𝑎𝑎 is accepted, e.g. through the run

𝑞1 →
𝑎

𝑞2 →
𝑎

𝑞4 →
𝑎

𝑞4 →
𝑎

𝑞4 →
𝑎

𝑞4.

7

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a tuple 𝒜 = (𝑄, Σ, 𝐼, 𝐹 , 𝛿)
where:
• 𝑄 is finite set, whose elements are called states of 𝒜.
• Σ is an alphabet.
• 𝐼 is a subset of 𝑄, whose elements are called initial states of 𝒜.
• 𝐹 is a subset of 𝑄, whose elements are called final states of 𝒜.
• 𝛿 : 𝑄 × Σ → 𝒫(𝑄) is a partial function, called the transition function of 𝒜.

Definition: Extended transition function

Let 𝒜 = (𝑄, Σ, 𝐼, 𝐹 , 𝛿) a deterministic finite automaton. The extended
transition function of 𝒜 is the function 𝛿∗ defined as follow:

∀𝑆 ∈ 𝒫(𝑄), 𝛿∗(𝑆, 𝜀) =def 𝑆

∀𝑆 ∈ 𝒫(𝑄), ∀𝑙 ∈ Σ, ∀𝑤 ∈ Σ∗, 𝛿∗(𝑆, 𝑙𝑤) =def 𝛿∗(⋃
𝑞∈𝑆

𝛿(𝑞, 𝑙), 𝑤)

Definition: Language of a deterministic finite automaton

Let 𝒜 = (𝑄, Σ, 𝐼, 𝐹 , 𝛿) a nondeterministic finite automaton. The language of
𝒜, noted ℒ(𝒜), is defined as follow:

ℒ(𝒜) =def {𝑤 ∈ Σ∗ | 𝛿∗(𝐼, 𝑤) ∩ 𝐹 ≠ ∅}

The language of 𝒜 can also be called accepted or recognized by 𝒜.

Exercise: Differences

Can you spot the differences between the definition of a DFA and an NFA?

Solution

1. There might be more than one initial state in DFA, as they are given as a
set rather than just a state.

2. The transition function maps states and letters to several states, denoted as
a set of states, rather than to just one state.

Just as for deterministic automata, knowing what can exactly recognize
nondeterministic automata is an interesting question. In particular, is this model
powerful enough to recognize programming languages?

8

ARTeQ - Initiation to theoretical computer science 2024-2025

Theorem: Nondeterministic Finita Automata are not more powerful

Let 𝐿 a language recognized by a nondeterministic finite automaton. Then there
exist a deterministic finite automaton 𝒜 such that ℒ(𝒜) = 𝐿.

The automaton 𝒜5 depicted in Figure 6
is deterministic. It however has the same
language as the automaton 𝒜4 depicted
in Figure 5. Remember what it means:
• If a word 𝑤 is accepted by 𝒜4,

then it also is by 𝒜5.
• If a word 𝑤 is accepted by 𝒜5,

then it also is by 𝒜4.

Why using non-determinism? In
implementations, non-determinism is
always mimicked by determinism. On
the fields of ideas however, drawing
nondeterministic automata might be
way more human-readable and compact
than deterministic one. Just compare 𝒜4
and 𝒜5 to convince yourself!

Optional: Can you guess what the state
labels of 𝒜5 mean? Figure 6: Deterministic automaton 𝒜5.

Solution

The state labels describe the set of possible positions in the deterministic
automaton. If a final state is in the set, it is accepting.

We will see in lecture 4 that non-determinism is also a way to classify problems.

2. Turing machines
Note: There are many variations on the Turing machine model. If you have already
heard about “Turing machines” and what you know does not match what is written
here, do not panic. The reason of the difference will be explained next course.

Why are automata not enough? The only memory automata have is implemented
within their states. As they have a finite amount of states, we say that automata have
a bounded memory. This is for example the intuitive reason why they can not
recognize the language of balanced strings of brackets: this would need to count the
amount of open brackets, which is not bounded.

9

ARTeQ - Initiation to theoretical computer science 2024-2025

Different kinds of memories Modern computers have a disk memory that is way
larger than their RAM. The theoretical side of the RAM is the memory implemented
within automata states. The theoretical model that implements the disk memory is
called Turing machines. They have been invented by British mathematician Alan
Turing in 1936 [4].

What are Turing machines? Informally, Turing machines are automata equipped
with an infinite tape, which is used as a memory tape. The automata is moving on
the tape, it can read it, and it can also write on it.

Figure 7: An artistic view of a Turing
machine.

Figure 8: An illustration of a Turing
machine closer to the formal definition.

How are automata augmented? Turing machine are automata that are very
similar to deterministic finite automata, but with a few upgrades:
• They are always pointing at exactly one letter on the tape.
• In a DFA drawing, each transition is only labelled with one letter. In a Turing

machine drawing, each transition is labelled with three symbols:
‣ One first letter, whose use is the same as in DFAs: it is the letter that is read.
‣ One second letter: it is the letter that is written on the current position.
‣ One arrow: it describes in which direction the automaton should move on the

tape after writing the letter on its current position.
• Among the states of the machine, there is always one accept and one reject state.

When either is met, the computation stops.

The three allowed directions are →, ← and ↓. “Not writing” is possible by writing the
letter that has just been read.

What does the tape look like? The memory tape is an infinite tape with one end.
Its first character is a special $ character: it can never be removed, and when the
machine reads it, it must move to the right. After the $ character, there are some
letters of a working alphabet Σ, and then infinitely many blank characters 𝐵.

10

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Turing machine

A Turing machine is a tuple (𝑄, 𝑞𝑖, Σ, 𝛿) where:
• 𝑄 is a set of states. It must contain two special states accept and reject.
• 𝑞𝑖 ∈ 𝑄 is the initial state.
• Σ is the (working) alphabet of the machine. It must contain two special

characters $ and 𝐵.
• 𝛿 : 𝑄 × Σ → Σ × {←, →, ↓} × 𝑄 is the transition function. It must ensure:

∀𝑞 ∈ 𝑄, ∃𝑞′ ∈ 𝑄, 𝛿(𝑞, $) = ($, →, 𝑞′)

Figure 9: A Turing machine ℳ1.
All non depicted transitions lead to the reject state.

How to read and accept a word? A machine always starts a computation on the
character just at the right of $. Testing wether a machine ℳ recognizes a word 𝑤 or
not is achieved by starting its computation on a tape where 𝑤 is written right after $
on the tape, and there are only blank characters after it. If ℳ ends its computation
on its accept state, then 𝑤 is accepted. If not, it is rejected.

The alphabet inside the machine definition is sometimes called a working alphabet if
it uses some more characters that never occur in the word it reads.

11

ARTeQ - Initiation to theoretical computer science 2024-2025

Exercise: Reading a word with a Turing machine

Consider the Turing machine depicted in Figure 9. Draw the successive tapes and
current state of the automata when reading the word

10

then when reading the word

001

Optional: What does this machine recognize?

Solution

Here is depicted the run with 10 as an input:

The run with 001 has the following successive tape configurations:

$001𝐵 ⋯ → $𝑋01𝐵 ⋯ → $𝑋0𝑋𝐵 ⋯ → $𝑋𝑋𝑋𝐵 ⋯

and then it blocks with pointer in eff1 when reaching a 𝐵 character.

This machine recognizes words with as much 0 as 1.

The aim of the following definitions is to formalize the notion of reading a word with
a Turing machine.

Definition: Turing machine configuration

A configuration of a Turing machine (𝑄, 𝑞𝑖, Σ, 𝛿) is a tuple

(𝑤, 𝑞, 𝑤′) ∈ Σ∗ × 𝑄 × Σ∗

where:
• 𝑤 represents what is written on the tape on the left of the pointed cell.
• 𝑞 is the current state the machine is in.
• the first letter of 𝑤′ represents the content of the cell pointed by the machine.

The next letters represent the content of the tape between this cell and the start
of the infinitely many blank characters.

12

ARTeQ - Initiation to theoretical computer science 2024-2025

Example Assuming the current state of the automaton in Figure 8 is 𝑞, the
configuration depicted is

($00𝑎𝑎𝑏, 𝑞, 𝑎𝑐).

Definition: Turing machine computation

A computation of a Turing machine (𝑄, 𝑞𝑖, Σ, 𝛿) is a sequence of configurations

𝑐0 → 𝑐1 → 𝑐2 → …

such that each pair of successive configurations (𝑤𝑛, 𝑞, 𝑤′
𝑛) and (𝑤𝑛+1, 𝑞′, 𝑤′

𝑛+1)
have the following properties:

• Write 𝑤′
𝑛 = 𝑙𝑣′

𝑛, meaning 𝑤′
𝑛 has first letter 𝑙, and following letters 𝑣′

𝑛.

• 𝛿(𝑞, 𝑙) third coordinate must be 𝑞′.

• If 𝛿(𝑞, 𝑙) = (𝑙′, ↓, 𝑞′), then the following equalities hold:
‣ 𝑤𝑛+1 = 𝑤𝑛, and
‣ 𝑤′

𝑛+1 = 𝑙′𝑣′
𝑛.

• If 𝛿(𝑞, 𝑙) = (𝑙′, ←, 𝑞′), then write 𝑤𝑛 = 𝑣𝑛𝑚, meaning 𝑤𝑛 has last letter 𝑚,
and first letters 𝑣𝑛. The following equalities hold:
‣ 𝑤𝑛+1 = 𝑣𝑛, and
‣ 𝑤′

𝑛+1 = 𝑙′𝑤′
𝑛.

• If 𝛿(𝑞, 𝑙) = (𝑙′, →, 𝑞′), then the following equalities hold:
‣ 𝑤𝑛+1 = 𝑤𝑛𝑙′, and
‣ 𝑤′

𝑛+1 = 𝑣′
𝑛.

• If 𝑐𝑛 has a state 𝑞 = accept or 𝑞 = reject, then it is the last configuration of
the sequence.

When 𝑤′
𝑛 is empty, consider instead 𝑤′

𝑛 = 𝐵.

Take some time to understand the link between those formal definitions and
previous explanations in English.

Definition: Language of a Turing machine

The language of a Turing machine ℳ is the set of words 𝑤 such that a
computation of ℳ on an initial configuration 𝑐0 = (𝑤, 𝑞𝑖, 𝜀) ends with a
configuration whose state is accept.

Definition: Computable language

A language 𝐿 is a computable language if there exist a Turing machine ℳ
such that 𝐿 is the language of ℳ.

13

ARTeQ - Initiation to theoretical computer science 2024-2025

What can Turing machines recognize? Turing machines can be considered as
usual computers, with an infinite memory tape. They can encode for or while loops,
use conditional branching, or store in variables. As such, they can recognize
whatever your favorite programming language can.

Because of this, and because writing a
Turing machine is a very tedious task, it
is often pseudo-code with basic
operations that is written instead of
Turing machines.

Example: The set of balanced strings of
brackets can be recognized by the
pseudo-code opposite. As such, it can be
recognized by a Turing machine.

is_balanced(w):
 nb_open <- 0
 for i in [1, |w|]:
 if w[i] = "("
 nb_open += 1
 else:
 if nb_open = 0:
 return false
 nb_open -= 1
 return (nb_open = 0)

Can Turing machines compute functions, rather than just recognizing
languages? Yes they can. And, just as our real computers, they can also have bugs.
One simple example is a computation of a Turing machine that does not end, which
is the theoretical counterpart of a while loop that does not end.

Exercise: Forever looping

Find a Turing machine 𝑀 that never ends its computation.

Solution

A machine with one state 𝑞 and whose transitions are, for all letter 𝑙 in Σ, of the
form:

𝛿(𝑞, 𝑙) = 𝑙, →

It always go right on the tape without writing anything on it, and has no way to
stop.

14

ARTeQ - Initiation to theoretical computer science 2024-2025

Bibliography
[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133,
1943, doi: 10.1007/BF02478259.

[2] A. de Saint-Exupéry, Le Petit Prince. 1943.

[3] S. Kleene, “Representation of Events in Nerve Nets and Finite Automata,”
Automata Studies: Annals of Mathematics Studies. Number 34, no. 34, p. 3–4, 1956,
doi: 10.1515/9781400882618-002.

[4] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Society, no. 1,
pp. 230–265, 1937, doi: 10.1112/plms/s2-42.1.230.

15

https://doi.org/10.1007/BF02478259
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1112/plms/s2-42.1.230

	Introduction activity: The armless and blind bartender
	Automata
	Description of the machine
	Automata and regular expressions
	Nondeterministic finite automata

	Turing machines
	Bibliography

