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Abstract
The theory of computability aims to understand which computations are or will eventually be within

the reach of our computers, and which will never be, even by our most powerful supercomputers.

1. Some variations on the Turing machine model

1.1. Many-tape Turing machines
Turing machines you have seen in previous lecture have one single tape. There exist
some Turing machines with more than one tape.

Definition: Many-tape Turing machine

Let 𝑘 ∈ ℕ. A 𝑘-tape Turing machine is a Turing machine with 𝑘 memory tapes.

They have 𝑘 different independent pointers, one for each cell. They all start at the
left of their tape.

At the start of the computation, the input of the machine is only written on the
first tape, not on the others.

Each transition reads one letter for each tape, write one letter on each tape, and
moves pointer for each tape.

It happens that although this model seems more powerful, it actually is not.

Theorem: Many-tape machines are not more powerful

Let 𝑘 ∈ ℕ and 𝐿 a language recognized by a 𝑘-tape Turing machine. Then there
exist a 1-tape Turing machine recognizing 𝐿.

This theorem allows to show more easily that some languages are computable.

Exercise

Show that the language of palindromes on Σ = {0, 1} is a computable language.
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1.2. Non-deterministic machines
Just as finite automata, Turing machines can either be deterministic or not.

Definition: Non-deterministic Turing machine

A non-deterministic Turing machine is just the same as a Turing machine,
except for its transition functions which is typed

𝛿 : 𝑄 × Σ → 𝒫(Σ × {←, →, ↓} × 𝑄).

It must ensure:

∀𝑞 ∈ 𝑄, 𝛿(𝑞, $) ⊆ {$} × {→} × 𝑄

Just as finite automata, the language of a non-deterministic Turing machine is the set
of words with at least one possible computation accepting them.

Here we skip the formal definition of a non-deterministic Turing machine
computation and accepted language, which is too heavy to be relevant.

Just as finite automata, non-deterministic Turing machines are not more powerful.

Theorem: Non-deterministic machines are not more powerful

Let 𝐿 a language recognized by a non-deterministic Turing machine. Then there
exist a deterministic Turing machine recognizing 𝐿.

Non-deterministic machines however compute things more efficiently. This will be
the topic of next lecture.

2. Computable functions
Turing machines can not only recognize languages, they can also compute functions.

Computing a function works just the same as recognizing a word, except that the
output is not only accept or reject, but rather what is written on the memory tape
when the computation ends. Wether it ends on the accept or reject state does not
matter.

What functions? We will only consider here functions from integers to integers.
Theoretical computability of real numbers also exists, but it is harder to understand.

Encoding inputs and outputs To translate an integer 𝑛 ∈ ℕ into a sequence of
characters, an encoding is needed. You are already familiar with decimal encoding:
the integer 17 is also a sequence of characters, with digit 1 followed by digit 7.
Real-life machines read binary encodings: 17 is encoded by the sequence of bits
10001. When it comes to Turing machines, you can use whatever encoding you like,
although binary encoding often results in more concise machines.
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Example The Turing machine in
Figure 1 computes the function

𝑛 ↦ 𝑛 + 1

where both its input and output are
written in binary, with strong bit on the
left.

States with an arrow aim at moving the
machine pointer to the right, and the
“cr” state computes carries. Figure 1: A Turing machine ℳ1.

Definition: Computable function

Let 𝑘 ∈ ℕ an integer, 𝑓 : ℕ𝑘 → ℕ a function, and 𝑏 : ℕ → {0, 1}∗ the usual
binary encoding of integers. We say that 𝑓  is computable if there exist a Turing
machine ℳ with a special # character in its alphabet and such that such that for
all (𝑛1, 𝑛2, …, 𝑛𝑘) ∈ ℕ𝑘:
• When starting with 𝑏(𝑛1)#𝑏(𝑛2)#…#𝑏(𝑛𝑘) on the tape, ℳ ends its

computation;
• When its computation ends, the tape contains only 𝑏(𝑓(𝑛1, …, 𝑛𝑘)).

In general, functions that can be computed by a program in an usual programming
language are computable function. This is partly formalized by following theorem.

Theorem: Usual functions are computable

The following functions are computable:
• For all 𝑛 ∈ ℕ, the function that maps nothing to 𝑛. They are often called

“constants” rather than functions.
• Addition, subtraction, multiplication.
• Quotient or remainder of an Euclidean division.
• Exponential function. Logarithm, rounded to closest integer.
• A composition of computable functions is a computable function.

Just as for languages, different Turing machine models have the same computable
functions.

Theorem: Same computable functions

Let 𝑛 ∈ ℕ and 𝑓 : ℕ𝑘 → ℕ a function.

There exist a many-tape Turing machine computing 𝑓
⇔ There exist a non-deterministic machine computing 𝑓
⇔ There exist a Turing machine computing 𝑓
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3. From languages to problems
We call problems questions with an input/output format, such as the following:

Input: A map 𝑀 , two places 𝑥 and 𝑦 on this map.
Question: What is the shortest path from 𝑥 to 𝑦 on this map?

or

Input: A program 𝑃 .
Question: Is 𝑃  buggy?

We would like to build a formal definition that models such questions. This can be
achieved through languages and encodings.

3.1. Alphabets + encodings = (almost) everything
Here, encoding data means: describing complex data with a simpler alphabet.
• One example of simple encoding is the encoding of ℕ with Σ = {0, 1, …, 9}

through decimal writing of integers.
• Another example is encoding programs source code through everyday alphabets 

Σ = {𝑎, …, 𝑧} ∪ {0, …, 9} along with some special characters such as ; or #.
• On a more general point of view, every data inside modern computers, including

pictures, music, text… is encoded with the binary alphabet Σ = {0, 1}.

Not every word is an encoding When using encodings, some combinations of
letters of an alphabet can have a meaning, and some other not. e.g. both

if true then return x

and

x nruter neht eurt fi

are written with letters of everyday alphabet, but only one is the encoding of a
program, and the other does not have any meaning. This does not mean at all that
using everyday letters is a bad way to encode programs.

3.2. Problems as languages of encodings
Some problems only accept binary answers, as True or False, or Yes or No. Example
given:

Input: A program 𝑃 .
Question: Is 𝑃  buggy?

They are called Decision problems.
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Definition: Decision problem

A decision problem is a problem with only two possible answers. Without loss
of generality, we consider they are True or False.

Decision problems can be simply modelled as languages of encodings, such as:

The language of encodings of buggy programs.

Definition: Decision problem, version 2

A decision problem can be defined as a language 𝑃  on some alphabet Σ∗.
Words of 𝑃  are called positive instances, words on Σ∗ are called instances.

Note that there is no mention of encodings in this definition. Encodings are indeed
not needed to give a formal meaning of problems. They are just a tool that makes this
definition able to model real-life problems.

Instances is an other word for input, and positive instances for answers.

Example The problem
Input: An integer 𝑛 ∈ ℕ.

Question: Is 𝑛 an even number?

Can be modelled by the set

{0, 1, …, 9}∗ ⋅ {0, 2, 4, 6, 8}

Definition: Decidable decision problem

A decision problem is decidable if it is the language of a Turing machine.

3.3. Problems as functions of encodings
On some other problems, outputs and inputs are different objects. Example given:

Input: A map 𝑀 , two places 𝑥 and 𝑦 on this map.
Question: What is the shortest path from 𝑥 to 𝑦 on this map?

They are called Optimization problems.

Definition: Optimization problem

An optimization problem is a problem with more than two different possible
answers. It is often a quantity that must be maximized or minimized.

Optimization problems can be modelled as functions on encodings. Example given:

𝑓 : Encodings of maps and two places → Encodings of paths
𝑀, 𝑥, 𝑦 ↦ Encoding of shortest path from 𝑥 to 𝑦 in 𝑀
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Definition: Optimization problem, version 2

An optimization problem can be defined as a function 𝑃  from some alphabet 
Σ∗

𝐼  to some other alphabet Σ∗
𝑂. Inputs of 𝑃  are called instances.

Definition: Decidable optimization problem

An optimization problem is decidable if it is a computable function.

4. Undecidability
Turing machines model computers with unbounded memory. They can also take any
time they want before answering the question they are asked, therefore reaching
some sort of unlimited computation power. But yet, not every problem is decidable.

Idea of the proof Remember that in essence, a problem is decidable if there exist a
machine answering it. Finding our very first undecidable problem will be done with a
proof by contradiction.

The key of the proof is to use the hypothetical machine answering to the problem on
itself. This is called a diagonal argument, and can only be achieved if the problem we
are dealing with can take (encodings of) machines as inputs.

We will achieve this proof with the so-called Halting problem.

4.1. The Halting problem is undecidable
Definition: Halting problem

The following problem is called Halting problem.
Input: A machine ℳ, an input 𝑥.

Question: Does ℳ end its computation on 𝑥?

Consider there exist a machine ℳHalt whose language is exactly the (encoding of)
machines ℳ and inputs 𝑥 such that ℳ ends its computation on 𝑥.

Now consider the following trouble program that takes Turing machines as inputs:

trouble(M):
    if M end its computation on M:
        loop forever
    else:
        end computation

As ℳHalt can decide wether a machine ℳ end its computation on or not on some
given input, this program can be modelled by a Turing machine ℳtrouble. Now, does 
ℳtrouble(ℳtrouble) end its computation?
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• If ℳtrouble(ℳtrouble) end its computation, then according to the if test it should
loop forever, thus never ending its computation. Contradiction ↯

• If ℳtrouble(ℳtrouble) does not end its computation, then according to the if test it
should jump to the else case, thus ending its computation. Contradiction ↯

This concludes the proof.

Theorem

The Halting problem is undecidable.

An important note on undecidability Knowing that a problem is undecidable
means: we do not have any automated method that works on every possible inputs.
It does not mean that we have no answers on any input. We can still find local
proofs on some instances. One example here is that we know some Turing machines
end their computations, even though the halting problem is undecidable. You will
find some other similar examples in Section 4.2.

A second important note on undecidability Undecidability relies a lot on inputs
of the problem. Consider for example a fixed Turing machine ℳ, a fixed word 𝑥, and
the following fake halting problem:

Input: Nothing.
Question: Does ℳ end its computation on 𝑥?

This function is either the function with 0 inputs that always answer True, or the
function with 0 inputs that always answer False. In either case it is computable, so
this fake halting problem is decidable.

Exercise: Look carefully

Two of the following problems are decidable, and the decidability of the third one
is a famous open problem. Find them.

Input: An integer 𝑛 ∈ ℕ.
Question: Do the Navier-Stokes equations always have smooth solutions?

Input: An integer 𝑛 ∈ ℕ.
Question: Do 𝜋 have a sequence of 𝑛 consecutive 1 in its decimal writing?

Input: An integer 𝑛 ∈ ℕ.
Question: Do 𝜋 have a sequence of 𝑛 consecutive 1 surrounded by characters

different than 1 in its decimal writing?

Hint: No knowledge on 𝜋 is necessary.

7



ARTeQ - Initiation to theoretical computer science 2024-2025

4.2. Some undecidable problems
Here is a short list of useful but undecidable problems. Many more are known, but
most of them have quite technical statements.

Automatic proving Deciding wether a mathematical property is true or not by
simply giving it to an automated prover would be a tremendous breakthrough in all
mathematical fields, and probably most scientific fields.

Input: A mathematical property 𝑃 .
Question: Is 𝑃  true?

Grammar ambiguity, Grammar equality We say that a grammar is ambiguous if
one given word can be generated by two different trees.

Input: A grammar 𝐺.
Question: Is 𝐺 ambiguous?

Input: Two grammars 𝐺1 and 𝐺2.
Question: ℒ(𝐺1) = ℒ(𝐺2)?

Those questions are interesting having an automatic answer when conceiving new
grammars for existing or new programming languages. A non ambiguous grammar
is considered better, and editing a working grammar of a programming language
should generate the same programs.

Game of life See Conway’s game of life rules on the internet if you do not know
them yet.

Input: An initial game of life position.
Question: Will this position appear again later?

4.3. Rice’s Theorem
Rice’s theorem is a bulldozer theorem that annihilates any hope of automated
provers of program properties. Here is a first intuitive statement of the theorem.

Rice’s Theorem

All non-trivial semantic properties of programs are undecidable.

A trivial property of programs is a property that is either true on all programs or false
on all programs.

A semantic property is a property that describes the result of the program.

A more mathematically precise version of the theorem is given by the following
definitions.
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Definition: Property of programs

A property of programs 𝑃  is a subclass of all Turing machines ℳ. We say that
machines in 𝑃  verify the property, and machines outside of it do not.

Definition: Semantic property

A property of programs is a semantic property if, for any pair of Turing machines 
ℳ1 and ℳ2,

ℒ(ℳ1) = ℒ(ℳ2) ⟹ (ℳ1 ∈ 𝑃 ⇔ ℳ2 ∈ 𝑃)

In other words, if two Turing machines have the same languages, if one does
(not) verify the property, then so does the other.

Example “This Turing machine ends in 10 steps” is not a semantic property. “This
Turing machine accepts the empty word” is.

Definition: Non-trivial property

A property of programs 𝑃  is a non-trivial property if there exist ℳ1 and ℳ2
such that ℳ1 ∈ 𝑃  and ℳ2 ∉ 𝑃 .

Rice’s Theorem consequences A major consequence of this theorem is that, as
bugs of programs are a semantic property, there can be no automated bug-finder that
works on all programs.

Improvise. Adapt. Overcome. Current research results circumvent this theorem by
designing automated bug-finders on limited programs, or by designing some that
might miss bugs.

5. Reductions
Reductions are a key tool in the theory of computability. They consist in re-encoding
one problem into the other, and allow to transfer some (un)decidability results from
one problem to another.

Why talking about reductions? Most undecidability proofs are achieved through a
reduction from another undecidable problem. Also, this tool is used a lot not only in
the theory of computability, but also in the theory of complexity, which will be the
topic of next lecture.

We define reductions only on decision problems¹. This already covers a wide range of
problems, as it covers every question of the form:

¹Remember, they are problems whose output is either True or False.

Does this object have this property?
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Definition: Reduction

Let 𝒫1 and 𝒫2 two decision problems. A reduction from 𝒫1 to 𝒫2 is a
computable function 𝑓  that maps inputs of 𝒫1 into inputs of 𝒫2, and such that

𝑥 is a positive instance of 𝒫1 ⇔ 𝑓(𝑥) is a positive instance of 𝒫2

Notation 𝒫1 ≼ 𝒫2 means that there exist a reduction from 𝒫1 to 𝒫2. We also say
that 𝒫1 reduces to 𝒫2, or that 𝒫2 is harder than 𝒫1.

What does a reduction look like? Here is a reduction from the halting problem to
a variant of it, that looks simpler to decide. We call this new problem Halt𝜀.

Input: A machine ℳ.
Question: Does ℳ end its computation on 𝜀?

Building the reduction We want to build a computable function that maps inputs
of the halting problem to inputs of this new problem. So our function 𝑟 should map
pairs (ℳ, 𝑥) to machines ℳ′. Furthermore, ℳ should end on 𝑥 if and only if ℳ′

ends on 𝜀.

A key detail here is that ℳ′ depends on ℳ and 𝑥. So there can be one new machine 
ℳ′ for each pair ℳ and 𝑥.

We suggest here a machine described by the pseudo-code in Listing 1.

M'(y):
    erase input y and write B characters instead
    move pointer to the left of the tape
    write x on the left of the tape
    move pointer to the left of the tape
    mimic the machine M

Listing 1: Pseudo-code of the machine ℳ′ = 𝑟(ℳ, 𝑥).

Figure 2: Drawing of the machine ℳ′ = 𝑟(ℳ, 𝑥).
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Is it computable? We want to check wether a function that maps (the encoding of)
a Turing machine ℳ and an input 𝑥 to the machine ℳ′ described in Figure 2 can be
computed by a Turing machine or not. We call 𝑅 the machine that computes this
reduction 𝑟. Attention, the machine computing the reduction is not the same as
machines ℳ and ℳ′!

• The first four lines in Listing 1 are described by the part of the machine left of the
dashed line in Figure 2. In particular, it does not depend on the input 𝑦 of ℳ′ – but
it depends on input 𝑥 of 𝑅.

So as a first step in writing (the encoding of) ℳ′, the machine 𝑅 can simply write
(the encoding of) the left part of the drawing. This is computable, as this is “only” a
very long word depending on its input 𝑥.

• The last line of ℳ′ can be achieved by simply acting as ℳ. The machine ℳ′, after
ending its computation of the first four lines, can simply connect to the initial state
of ℳ.

Copying ℳ right after the beginning of ℳ′ can also be computed by 𝑅, as ℳ is
an input of 𝑅, so 𝑅 should simply copy its input.

This concludes that 𝑟 is indeed computable. ∎

Equivalence of positive instances Let ℳ, 𝑥 such that ℳ ends its computation on 
𝑥. Then ℳ′ also ends its computation on 𝜀, as the only part of ℳ′ that could not
finish is the execution of ℳ on 𝑥.

Conversely, if ℳ does not end its computation on 𝑥, then 𝑀 ′ should also never end
its computation on 𝜀. ∎

We can consequently conclude that there exist a reduction from the halting problem
to Halt𝜀.

Exercise: An easier reduction

Describe a reduction from Halt𝜀 to the halting problem.

It is the following theorem that justifies the use of the notation ≼ and that when 
𝒫1 ≼ 𝒫2, we say that 𝒫2 is harder than 𝒫1.

Theorem: Use of reductions

Let 𝒫1 and 𝒫2 two decision problems such that there exist a reduction 𝑓  from 𝒫1
to 𝒫2. Then:
• If 𝒫2 is decidable, 𝒫1 also is.
• If 𝒫1 us undecidable, 𝒫2 also is.

Proof The second mark is the contraposition of the first one. As such, proving only
the first one is enough.
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We prove the first mark by building a computable function that solves 𝒫1.

Let f a reduction from 𝒫1 to 𝒫2. Assume that there exist a computable function
solveP2 that answers True on instances of 𝒫2 if and only if they are positive
instances of 𝒫2. Consider the following program to solve 𝒫1:

solveP1(x):
    return solveP2(f(x))

The reduction f is by definition a computable function, as well as solveP2. solveP1
is thus also a computable function. Moreover, it indeed solves problem 𝒫1:

𝑥 is a positive instance of 𝒫1

⇔ 𝑓(𝑥) is a positive instance of 𝒫2

⇔ solveP2 answers true on f(x)
⇔ solveP1 answers true on x

First equivalence is because 𝑓  is a reduction from 𝒫1 to 𝒫2. Second equivalence is
because solveP2 solves 𝒫2. Third equivalence comes from the construction of
solveP1. ∎

Example The problem Halt𝜀 is undecidable, because the halting problem also is, and
there exist a reduction from it to Halt𝜀.
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