
ARTeQ - Initiation to theoretical computer science 2024-2025

4 – Complexity
Luc Lapointe

luc.lapointe@ens-paris-saclay.fr
home.lmf.cnrs.fr/LucLapointe/

Abstract
The theory of complexity aims at classifying problems according to the resources needed to solve

them, be it time or memory. It gives tools to prove that some problems always need a lot of
computation time or memory, whatever the algorithm used to solve them.

1. What does “complexity” mean
In computer science, complexity is a word used to describe how much time or
memory resources an algorithm or a program needs. In order not to make theory
dependant on hardware, complexity tends to be explain as a function of size of the
entry, rather than as a time or a number of octets.

Example All of those examples are admitted.
• If an input is 𝑛 bits long, reading it takes a time linear in 𝑛.
• Reading each cell of a square matrix of size 𝑛 takes a time linear in 𝑛2.
• Sorting a list of 𝑛 elements with merge sort takes a time in 𝑛 log 𝑛, and can be

achieved by using an amount of memory independent of 𝑛.
• Finding the shortest path from one point to another on a map with 𝑛 crossroads

with the original Dijkstra algorithm takes at most a time linear in 𝑛2.
• Solving a Sudoku grid with 𝑛 empty cells by testing all possible solutions can be

achieved in time at most linear in 𝑛10𝑛.

On all of those examples, it is the complexity of an algorithm that is given. We would
like to define the complexity of a problem as something like

“The amount of time or memory that is absolutely necessary
to solve a problem.”

How to count? In order to have a clean count of the complexity of those algorithms,
we must describe precisely what we are counting. For example, with sorting
algorithm, the atomic operation (counting for 1 in the complexity) is comparing two
integers of the list. The complexity of merge sorts (and other sorts) describes the
number of comparisons.
Choosing the atomic operation depends on what we want to evaluate, and the atomic
operation itself can, in some context, be a non-trivial operation. Comparing two
binary integers, for example, has complexity 1 if the atomic operation is comparing
the integers themselves, but complexity linear in their size if it rather is comparing
bits.

1

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

ARTeQ - Initiation to theoretical computer science 2024-2025

Upper bound on a problem complexity With such definition of problem
complexity, we can easily find an upper bound on the complexity of a problem 𝒫, by
exhibiting an algorithm that solves it. We know, for example, that sorting a list
does not “absolutely necessarily needs” a time linear in 𝑛2 to be achieved, as merge
sort takes a time linear in 𝑛 log 𝑛.

Lower bound on a problem complexity Finding a lower bound on the time or
space needed to solve a problem is, however, way harder. For a problem we currently
find really hard to solve, how sure can we be that it is because the problem is indeed
hard, or because we just do not have the correct tools yet?

A recent example of this dilemma can be found in the complexity of testing wether
an integer is prime or not. For a really long time, only a method in time exponential
in the number of digit of the input was known. It is only in 2002 that a method in
time polynomial in the number of digit has been discovered [1].

On most problem, we simply do not have a precise lower complexity bound, such as
𝑛 or 𝑛2. Theory of complexity circumvents this issue by building huge families of
somehow “equivalent” problem, in the sense that for a given family we have
algorithms of the same complexity to solve them, and a major improve in the solving
of one problem of the family results in an improve in each problem of the family.

The aim of this lecture is to present three of these families : P, NP and BPP.

2. A class of tractable problems: P
Counting complexity of families of algorithm with common aim, such as sorting
algorithms, can be achieved by describing atomic operations, such as integers
comparisons, and counting the number of atomic operations.

Counting the complexity of huge families of algorithms or problems can not be
achieved this way, because such families can regroup algorithm of very, very
different nature, such as:

• Problems on networks or maps,
• Mathematical programming,

• Text processing,
• Solving games and puzzle…

They however all have in common that they are described by Turing machines.

Definition: Turing machines complexity

Let ℳ a Turing machine and 𝑓 : ℕ → ℕ a function.
• The time complexity of ℳ is bounded by 𝑓 if, on all inputs of size 𝑛, it ends

in at most 𝑓(𝑛) transitions.
• The space complexity of ℳ is bounded by 𝑓 if, on all inputs of size 𝑛, it never

uses more than 𝑓(𝑛) different cells of the memory tape.

2

ARTeQ - Initiation to theoretical computer science 2024-2025

There are different ways of grouping problems around common characteristics. In
this lecture we will only consider characteristic of computation time efficiency for
different Turing machine models.

For inputs of size 𝑛, you might think of designing families of problems that are
solved in time at most linear in 𝑛, or in 𝑛2, or in 𝑛3, or in 𝑛 log 𝑛… This is a
reasonable idea, but for technical reasons not detailed here, such classes are not large
enough to allow powerful theorems such as

“A major improve in the solving of one problem of the family
induces major improves for all of them.”

This is however the case for the family of problems that can be solved in time at most
polynomial in the size of the input. This class of problems is called PTIME, or more
often just P.

Definition: PTIME

PTIME, often shortened to P, is the set of decision problems 𝒫 that can be solved
in polynomial time by a deterministic Turing machine.

In other words, it is the class of decision problems 𝒫 with a deterministic
machine ℳ solving them, and such that there exist a polynomial function 𝑓ℳ
that bounds the time complexity of ℳ.

Note
• There is absolutely no consideration about space use of the machines in the formal

definition of P. However, as writing 1 cell takes 1 transition, machines in P always
use at most a polynomial amount of space.

• Problems in P are considered effectively computable by our real-world machines.
That’s why they are sometimes called tractable problems.

• Note that only decision problems are in P.

How to evaluate optimization problems? The three complexity classes presented
in this lecture only contain decision problem. There are two important reasons for
this choice:

1. Our current tools only allow “major improve transfer” theorems among a
given family if it contains decision problems only.

2. Optimization problems can be transformed into decision problems by adding a
threshold as follows. Consider a maximization or minimization problem of the
form:

Input: Some data 𝑥.
Question: What is the maximal/minimal value of parameter 𝑓 for data 𝑥?

Finding the shortest path between two coordinates on a given map is an example of
such problem.

3

ARTeQ - Initiation to theoretical computer science 2024-2025

This can be transformed into a decision problem by introducing a constant 𝜆 which
is not an input of the problem, and by considering the following decision problem:

Input: Some data 𝑥.
Question: Can parameter 𝑓 grow bigger/go lower than 𝜆 for data 𝑥?

e.g. finding a path shorter than 𝜆 between two coordinates.

Some problems in P The following problems are representative P problems.
• Circuit Value: Finding the output of a boolean circuit.
• Grammar Membership: Checking wether a word is in the language of a grammar.
• Linear Programming: Is there a linear function subject to linear inequality

constraints given as inputs.
• Maximum flow problem: Is there a way to reach a specific flow rate through a

given network.
• Game of Life future: Given an initial configuration of Conway’s Game of Life, a

cell 𝑐, and an integer 𝑁 , is 𝑐 alive after 𝑁 steps?

What next? P is currently considered as the hardest class of problems we can
effectively solve with our real-world computers, on real data. There are a lot of
problems we do not know for sure whether they are in P or not. In order to find the
next level of difficulty for problem solving to classify them precisely, three
interesting classes are possible:

1. The class of problems we can not easily solve yet, but whose solutions we can
verify with our computers.

2. The class of problems that can be computed in polynomial time by a
nondeterministic Turing machine, rather than a deterministic one.

3. The class of problems for which we still bound the computation time with a
polynomial function, but we allow some mistakes in the answer.

The two first classes happen to be exactly the same one, whose name is NP. A class
corresponding to the third (vague) description is BPP.

3. At the edge of real-world computability: NP

3.1. NP as a solution verifier
When trying to formalize the definition of NP as a solution verifier, we translate “we
can verify with our computers” to “we can compute in polynomial time”.

Definition: NP as a solution verifier

NP is the class of decision problems 𝒫 such that, when given a solution attempt
in addition to the input, it can be checked in polynomial time if the solution
attempt answers the problem.

4

ARTeQ - Initiation to theoretical computer science 2024-2025

Example For a decision problems like
Input: A list of items.

Question: Can all items fit in your rucksack?

a solution attempt would be an explanation of how to place the items inside the
rucksack. It can be easily check if they were all put inside, or if some are still missing.

3.2. NP with nondeterministic machines
Definition: NP with nondeterministic machines

NP is the class of decision problems 𝒫 that can be solved by a
nondeterministic Turing machine in polynomial time.

A remainder about nondeterministic Turing machines Nondeterministic
Turing machines, just as nondeterministic automata, can at some points of their
computations have multiple possible choices. They accept an input if and only if
there is at least one sequence of choices such that the word is accepted.

Some intuition about nondeterminism Nondeterministic machines can be
described with pseudo-code, augmented with one specific operation: guessing. At the
machine level, it is described with nondeterministic transition.

Here is an example of nondeterministic pseudo-code describing how to find a
password of size at most 𝑁 , along with the corresponding nondeterministic Turing
machine.

password():
 answer = []
 for i in [1, N]:
 answer[i] := guess a letter
 return answer

Figure 1: Non-determinism adds a “guess” basic operator.

Exercise: I see no difference between the two NP

• Try to find how to simulate guessing with a solution attempt input.
• Try to find how to simulate a solution attempt input with guessing.

3.3. Some problems in NP
The following problems are representative NP problems.

• Dominating Set: On a city map, is it possible to put less than 𝜆 street lamp at
crossroads, so that each road has a street lamp at one of its end.

• Traveling Salesman: On a country map, is it possible for a traveling salesman to
go to each city once by traveling less than 𝜆 kilometers.

5

ARTeQ - Initiation to theoretical computer science 2024-2025

• Minimum cut: On a network, is it possible to split the network in two by blocking
less than 𝜆 connections.

• For a lot of boardgames¹: how to win.
• Circuit Satisfiability: For a given boolean circuit, are there inputs so that the

circuit answers True.
• Optimal Job Scheduling: For a list of tasks to achieve with 𝑛 processing units, is

it possible to achieve them with a time of less than 𝜆.

¹See https://en.wikipedia.org/wiki/List_of_NP-complete_problems#Games_and_puzzles

3.4. One solution to solve them all
Representative NP problems are hard to solve efficiently, but we currently have no
proof, for any of them, that there exist no efficient solution. It is an open problem in
computer science, stated by the famous Millennium Prize Problem P versus NP,
whose question is very short:

Does P equal NP?

In term of intuition of what P = NP means, it is very similar to something like “If I
can recognize good music, then I can compose good music”. It seems incredibly
powerful, obviously false. But in the theoretical world, no one has managed to prove
yet that this equality is false (nor true).

Meaning of the equality This equality is a set equality, i.e. a double set inclusion.
We already know that

P ⊆ NP

because if we can solve a problem with a deterministic machine, we can also solve it
with the same machine seen as a nondeterministic one. We do not know yet if the
converse is true or not.

One step toward the solving of the problem In the late 1960s and early 1970s, a
very powerful tool has been developed both by American and Soviet researchers.
This tool is called NP-hardness². Problems that are NP-hard are problems designed to
be “As hard as any other NP problem”.

²For the American side, see [2] and [3]. For the Soviet side, see [4].

How to achieve NP-hardness? Let 𝒫 any problem in NP. The idea is: if we know
how to solve a NP-hard problem 𝒫hard, we can solve 𝒫 by encoding its input in
𝒫hard, and then solving 𝒫hard. The tool achieving this is called polynomial reductions.

6

https://en.wikipedia.org/wiki/List_of_NP-complete_problems#Games_and_puzzles
https://en.wikipedia.org/wiki/List_of_NP-complete_problems#Games_and_puzzles

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: Reduction

Let 𝒫1 and 𝒫2 two decision
problems. A reduction from 𝒫1 to
𝒫2 is a computable function 𝑟 that
maps inputs of 𝒫1 into inputs of 𝒫2,
and such that

𝑥 is a positive instance of 𝒫1

⇔ 𝑟(𝑥) is a positive instance of 𝒫2

Notation 𝒫1 ≼ 𝒫2 means that there
exist a reduction from 𝒫1 to 𝒫2. We
also say that 𝒫1 reduces to 𝒫2, or
that 𝒫2 is harder than 𝒫1.

Figure 2: A reduction.

Note When there is a reduction from 𝒫1 to 𝒫2, then all possible instances of 𝒫1
must be encoded into instances of 𝒫2, but not all instances of 𝒫2 have to be
encodings of an instance of 𝒫1.

Definition: Polynomial reduction

A polynomial reduction is a reduction whose underlying Turing machine time
complexity is bounded by a polynomial function.

Definition: NP-hardness

Let 𝒫 a decision problem. It is a NP-
hard problem if, for all problem 𝒫′

in NP, there exist a polynomial
reduction 𝑟𝒫′ from 𝒫′ to 𝒫.

Note
• A NP-hard problem do not have to be

in NP. Indeed, there might be
problems way harder than NP
problems that are “as hard as any NP
problems”.

• A problem that is both NP-hard and in
NP is called NP-complete. NP-complete
problems are considered
representative problems of the class
NP.

• All “representative NP problems” in
Section 3.3 are NP-complete problems. Figure 3: NP-hardness.

7

ARTeQ - Initiation to theoretical computer science 2024-2025

• A similar definition exists for other classes. All “representative P problems” in
Section 2 are actually P-complete (and thus P-hard) problems.

Theorem: Use of polynomial reduction

Let 𝒫1 and 𝒫2 two decision problems. If both
• 𝒫1 is a NP-hard problem, and
• there exist a polynomial reduction from 𝒫1 to 𝒫2,

then 𝒫2 is also a NP-hard problem.

Theorem: Use of NP-hardness

Let 𝒫 a NP-hard problem. If 𝒫 ∈ P, then all problems in NP are also in P.

Exercise

Prove each of the two previous theorems.
Hint: do not hesitate to think with drawings.

Recap A NP-complete problem 𝒫 is a problem that both is in NP, and is NP-hard.
The consequence of being NP-hard is that if a polynomial algorithm is find for 𝒫,
then the whole NP class falls into P.

Our failings When we do not find an efficient (i.e. polynomial) algorithm to solve a
problem 𝒫, it might be because there are none, or because we have not find it yet,
and we should look more carefully, or discover some new revolutionary technique.
NP-hardness allows to link our failings in finding such techniques to those of
decades of past researchers, who also failed to find them³. Not finding a polynomial

³Or, sometimes, indeed found some new revolutionary techniques but with unexpected
applications.

algorithm for a NP-hard problem becomes expected, rather than a failing. This is why
proving that a problem is NP-hard also amounts to proving that a nondeterministic
polynomial algorithm to solve it is some form of lower bound to its complexity.

4. Allowing uncertainty: BPP
One other way to extend P is to allow mistakes in the answer. This can be achieved
by adding probabilities to Turing machines solving the problems.

A probabilistic Turing machine is a machine that can, at some points of its
computation, test a random variable, and act depending on the result. It allows to
design probabilistic algorithms, that are likely to answer correctly, but can still
sometimes fail if not lucky enough.

The class BPP is a class that allows both false positive and false negative results.

8

ARTeQ - Initiation to theoretical computer science 2024-2025

Definition: BPP

A problem 𝒫 is in BPP if there exist a probabilistic machine ℳ such that:
• The time complexity of ℳ is bounded by a polynomial function,
• For all positive instances, ℳ answers True with probability at least 23 ,
• For all negative instances, ℳ answers False with probability at least 23 .

BPP stands for Bounded-error Probabilistic Polynomial time.

Note
• Decision problems in BPP do not a priori need to have probabilities in their

statements.
• Iterating the algorithm and picking the majority answer allows to have more

precise results.
• Choosing any constant between 0 and 12 defines the same class⁴.
• BPP has a quantum complexity class equivalent, named BQP. You will learn more

about it in some next lecture.

⁴This actually is a theorem.

How are P, NP and BPP linked? P is
included in BPP, as solving a problem in
polynomial time with no possible
mistake is indeed solving the problem
with mistake probability less than 13 . We
however do not know if it is included in
NP, nor if NP is included in BPP.

In other words, we do not know if
adding randomness improves
computation power. It is currently
believed that it does not, as more and
more problems in BPP are proven to be
in P. One recent example is primality
testing: efficient probabilistic algorithms
have been known for a long time, and it
is only recently that a deterministic
polynomial one has been discovered [1].

Figure 4: State of the art on complexity
classes inclusions.

9

ARTeQ - Initiation to theoretical computer science 2024-2025

Bibliography
[1] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of mathematics,

pp. 781–793, 2004, doi: 10.4007/annals.2004.160.781.

[2] R. M. Karp, “Reducibility among Combinatorial Problems,” R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, Eds., Boston, MA: Springer US, 1972, pp. 85–103.
doi: 10.1007/978-1-4684-2001-2_9.

[3] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the Third Annual ACM Symposium on Theory of Computing, in STOC '71. Shaker
Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158.
doi: 10.1145/800157.805047.

[4] Л. А. Левин, “Универсальные задачи перебора,” Проблемы передачи
информации, vol. 9, no. 3, pp. 115–116, 1973.

I hope you liked this course! I would like to have your anonymous opinion about it.

https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026

10

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/800157.805047
https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026
https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026
https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026
https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026
https://framaforms.org/avis-cours-informatique-arteq-1-a-4-1728399026

	What does "complexity" mean
	A class of tractable problems: P
	At the edge of real-world computability: NP
	NP as a solution verifier
	NP with nondeterministic machines
	Some problems in NP
	One solution to solve them all

	Allowing uncertainty: BPP
	Bibliography

