
MPRI M1 2024-2025 Tree Automata and Applications

Tree Automata and Applications
Exercise session 2 Solutions

Luc Lapointe
luc.lapointe@ens-paris-saclay.fr
home.lmf.cnrs.fr/LucLapointe/

Exercise 1 - Quizz

Be precise in your answers.

1. What is the most expressive, top-down or bottom-up?
2. What are the general techniques to prove that an automaton recognizes a language 𝐿?
3. What is the minimal number of states required by a bottom-up NFTA to recognize the

language made of a single term with one node and two leaves?
4. Can the language of trees such that all branches contain a specific symbol 𝑓 be

recognized by a NFTA?
5. Can it be recognized by a top-down DFTA?

Solution

1. In the deterministic case, bottom-up is more expressive. But only if there exist a
symbol of arity greater than 1.

2. Technique 1: Prove by induction what is the language of each state (the language
recognized by 𝒜 when starting in this specific state).
Technique 2: Closure properties.

3. Three if the leaves have distinct labels, two otherwise.
Proof that two is not enough with 𝐿 = {𝑓(𝑎, 𝑏)}: Assume 𝒜 recognizes 𝐿 with
states 𝑄 = {𝑞𝐼 , 𝑞1}, and 𝑞𝐼 ∈ 𝐼 .
Case 𝑞𝐼(𝑎) ⟶ 𝑎 or 𝑞𝐼(𝑏) ⟶ 𝑏 Then 𝑎 or 𝑏 is recognized: contradiction.
Case 𝑞1(𝑎) ⟶ 𝑎 and 𝑞1(𝑏) ⟶ 𝑏 Then 𝑓(𝑏, 𝑎) is recognized: contradiction.
Case everything else Then 𝑓(𝑎, 𝑏) is not recognized: contradiction.

4. Yes. Use a bottom-up NFTA. Whenever a 𝑓 is met, set a specific win state. For
every node, propagate the win state only if all children are winners.

5. In general, no. If 𝑓 is the only leaf symbol, or if all symbols have arity lower than
1, then the language is Σ∗, so yes.

Exercise 2 - Tree Automata

Let ℱ = {𝑓(2), 𝑔(2), 𝑎(0)}. Give NFTAs for the following languages:
1. {𝑡 ∈ ℱ | on some branch in 𝑡 there are two consecutive occurrences of 𝑓}
2. {𝑡 ∈ ℱ | on all branches in 𝑡 there are two consecutive occurrences of 𝑓}

1

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

MPRI M1 2024-2025 Tree Automata and Applications

Correct automata

I don’t give the proofs, as they are similar to the ones of exercise session 1. Do not
hesitate to send me an email if needed.

1. 𝑄 = {𝑞0, 𝑞1, 𝑞⊤}, 𝐼 = {𝑞0}. 𝑞1 means that the first 𝑓 has already been met, and 𝑞⊤
means that no more 𝑓 is needed. Transitions as follow:

𝑞0(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞1(𝑢), 𝑞⊤(𝑣)) | 𝑓(𝑞⊤(𝑢), 𝑞1(𝑣)) | 𝑓(𝑞0(𝑢), 𝑞⊤(𝑣)) | 𝑓(𝑞⊤(𝑢), 𝑞0(𝑣))

𝑞0(𝑔(𝑢, 𝑣)) ⟶ 𝑔(𝑞0(𝑢), 𝑞⊤(𝑣)) | 𝑔(𝑞⊤(𝑢), 𝑞0(𝑣))

𝑞⊤(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞⊤(𝑢), 𝑞⊤(𝑣)) 𝑞⊤(𝑔(𝑢, 𝑣)) ⟶ 𝑔(𝑞⊤(𝑢), 𝑞⊤(𝑣)) 𝑞⊤(𝑎) ⟶ 𝑎

𝑞1(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞⊤(𝑢), 𝑞⊤(𝑣))

2. 𝑄 = {𝑞0, 𝑞1, 𝑞⊤}, 𝐼 = {𝑞0}. 𝑞1 means that the first 𝑓 has already been met, and 𝑞⊤
means that no more 𝑓 is needed. Transitions as follow:

𝑞0(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞1(𝑢), 𝑞1(𝑣)) | 𝑓(𝑞1(𝑢), 𝑞0(𝑣)) | 𝑓(𝑞0(𝑢), 𝑞1(𝑣)) | 𝑓(𝑞0(𝑢), 𝑞0(𝑣))

𝑞0(𝑔(𝑢, 𝑣)) ⟶ 𝑔(𝑞0(𝑢), 𝑞0(𝑣))

𝑞⊤(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞⊤(𝑢), 𝑞⊤(𝑣)) 𝑞⊤(𝑔(𝑢, 𝑣)) ⟶ 𝑔(𝑞⊤(𝑢), 𝑞⊤(𝑣)) 𝑞⊤(𝑎) ⟶ 𝑎

𝑞1(𝑓(𝑢, 𝑣)) ⟶ 𝑓(𝑞⊤(𝑢), 𝑞⊤(𝑣))

Exercise 3 - Regular expressions

1. Describe the language recognized by the following regular expressions over alphabet
ℱ = {𝑓(2), 𝑔(2), 𝑎(0), 𝑏(0)}:

𝐸 = 𝑓(□1, □1)
∗□1 ⋅□1[𝑔(□2, □2)⋅□2(𝑓(□1, □1))

∗□1 ⋅□1𝑏]

Detailed solution

We will describe the language of parts of this expression before describing the
whole. Let

𝐸1 =def (𝑓(□1, □1))
∗□1 ⋅□1𝑏

𝐸2 =def 𝑔(□2, □2)⋅□2𝐸1

so that

𝐸 = 𝑓(□1, □1)
∗□1 ⋅□1𝐸2

2

MPRI M1 2024-2025 Tree Automata and Applications

The language of 𝐸1 is the set of trees over ℱ′ =def {𝑓(2), 𝑏(0)}. To prove
this, prove by induction on 𝑛 that (𝑓(□1, □1))

𝑛,□1 ⋅□1𝑏 is exactly the set of
trees of height at most 𝑛 over ℱ′.

The language of 𝐸2 is the set of trees of ℱ with 𝑔 at their root and nowhere
else, and no 𝑎 at their leaves. This proof follows directly from the language of
𝐸1.

The language of 𝐸 is the set of trees over ℱ″ =def {𝑓(2), 𝑔(2), 𝑏(0)} with exactly
one 𝑔 on each path from the root to a leaf.

To prove this, prove by induction on 𝑛 ≥ 1 that

(𝑓(□1, □1))
𝑛,□1 ⋅□1𝐸2 ∖ (𝑓(□1, □1))

𝑛−1,□1 ⋅□1𝐸2

is exactly the set of trees over ℱ″ of height 𝑛 with exactly one 𝑔 on each path
from the root to a leaf.

2. Give a regular expression for:
1. the set 𝑇 (ℱ) of all finite trees on alphabet ℱ = {𝑓(2), 𝑔(2), 𝑎(0), 𝑏(0)};
2. {𝑡 ∈ 𝑇 (ℱ) | 𝑡 contains the subtree 𝑓(𝑎, 𝑏)} where ℱ = {𝑓(2), 𝑎(0), 𝑏(0)};
3. {𝑡 ∈ 𝑇 (ℱ) | the frontier word of 𝑡 contains an infix 𝑎𝑏} with same ℱ.

Correct expressions

1. (𝑓(□, □) + 𝑔(□, □))∗□ ⋅□(𝑎 + 𝑏)
2. (𝑓(□1, □2) + 𝑓(□2, □1))

∗□1 ⋅□1𝑓(𝑎, 𝑏)⋅□2(𝑓(□, □)∗□ ⋅□(𝑎 + 𝑏))
3. Let 𝐸ℱ describing the language of all trees over ℱ:

𝐸ℱ =def 𝑓(□, □)∗□ ⋅□(𝑎 + 𝑏)

Let 𝐸𝑎 describing the language of trees whose frontier word ends with 𝑎:

𝐸𝑎 =def (𝑓(□ℱ, □)∗□ ⋅□𝑎)⋅□ℱ𝐸ℱ

Let 𝐸𝑏 describing the language of trees whose frontier word starts with 𝑏:

𝐸𝑏 =def (𝑓(□, □ℱ)∗□ ⋅□𝑏)⋅□ℱ𝐸ℱ

The following expression describes the language of trees whose frontier word
contains an infix 𝑎𝑏:

[𝑓(□ℱ, □) + 𝑓(□, □ℱ)]∗□ ⋅□𝑓(𝐸𝑎, 𝐸𝑏)⋅□ℱ𝐸ℱ

Homework - Satisfiability (again)

3

MPRI M1 2024-2025 Tree Automata and Applications

Let ℱ = {and(2), or(2), not(1), 0(0), 1(0), 𝑥(1), 𝑠(1), 𝑧(0)}, i.e. we now handle an arbitrary
number of variables instead of a fixed one (encoding 𝑥2 as 𝑥(𝑠(𝑠(𝑧)))). The same variable
may appear several times in a formula, and should be evaluated consistently.

1. Is the set of well-formed formulae using this syntax recognizable by an NFTA?
2. Is the set of satisfiable formulae using this syntax recognizable by an NFTA?

4

	Quizz
	Tree Automata
	Regular expressions
	Homework - Satisfiability (again)

