Tree Automata and Applications Exercise session 5

Luc Lapointe luc.lapointe@ens-paris-saclay.fr home.lmf.cnrs.fr/LucLapointe/

Exercise 1 - To the infinity...

Let $\Sigma = \{a, b\}$. Define a DFHA \mathcal{A} such that $L(\mathcal{A})$ is the set of all trees such that

For every leaf labeled with a, there is an ancestor from which there is a path whose nodes are labeled with b.

Here, *ancestor* means strict ancestor, and *from which there is a path* means that there is a path from a son of this ancestor to a leaf.

Exercise 2 - PDL

Definition (PDL) The syntax of PDL is the following:

$$\begin{split} \varphi &\coloneqq a \mid \top \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \pi \rangle \varphi & \text{(position formulae)} \\ \pi &\coloneqq \downarrow \mid \rightarrow \mid \leftarrow \mid \pi^{-1} \mid \pi; \pi \mid \pi + \pi \mid \pi^* \mid \varphi? & \text{(path formulae)} \end{split}$$

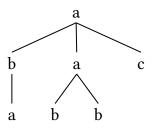
Let *t* be a tree. We define the semantic $\llbracket \varphi \rrbracket_t$ (resp. $\llbracket \pi \rrbracket_t$) as a set of positions of *t* (resp. a relation on positions of *t*) by induction on the size of φ (resp. π).

$$\begin{split} \llbracket a \rrbracket_{t} &= \{ w \in \operatorname{Pos}(t) \mid t(w) = a \} & \llbracket \downarrow \rrbracket_{t} = \{ (w, w.i) \mid w, w.i \in \operatorname{Pos}(t) \} \\ \llbracket \top \rrbracket_{t} &= \operatorname{Pos}(t) & \llbracket \rightarrow \rrbracket_{t} = \{ (w.i, w.(i+1)) \mid w.i, w.(i+1) \in \operatorname{Pos}(t) \} \\ \llbracket \leftarrow \rrbracket_{t} &= \{ (w.(i+1), w.i) \mid w.i, w.(i+1) \in \operatorname{Pos}(t) \} \\ \llbracket \neg \varphi \rrbracket_{t} &= \operatorname{Pos}(t) \smallsetminus \llbracket \varphi \rrbracket_{t} & \llbracket \pi^{-1} \rrbracket_{t} = \llbracket \pi \rrbracket_{t}^{-1} \\ \llbracket \varphi_{1} \lor \varphi_{2} \rrbracket_{t} &= \llbracket \varphi_{1} \rrbracket_{t} \cup \llbracket \varphi_{2} \rrbracket_{t} & \llbracket \pi_{1}; \pi_{2} \rrbracket_{t} = \llbracket \pi_{2} \rrbracket_{t} \circ \llbracket \pi_{1} \rrbracket_{t} \\ \llbracket \langle \pi \rangle \varphi \rrbracket_{t} &= \llbracket \pi \rrbracket_{t}^{-1} (\llbracket \varphi \rrbracket_{t}) & \llbracket \pi_{1} + \pi_{2} \rrbracket_{t} = \llbracket \pi_{2} \rrbracket_{t} \cup \llbracket \pi_{1} \rrbracket_{t} \\ \llbracket \pi^{*} \rrbracket_{t} &= \llbracket \pi \rrbracket_{t}^{*} & \llbracket \varphi ? \rrbracket_{t} = \Delta_{\llbracket \varphi \rrbracket_{t}} = \{ (w, w) \mid w \in \llbracket \varphi \rrbracket_{t} \} \end{split}$$

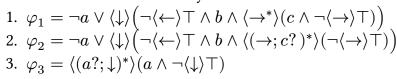
Let t be a tree and $w,w'\in \operatorname{Pos}(t).$ We write:

- $t, w \vDash \varphi$ if $w \in \llbracket \varphi \rrbracket_t$
- $t\vDash\varphi$ if $t,\varepsilon\vDash\varphi$ and we say that t satisfies φ
- $t, w, w' \vDash \pi$ if $(w, w') \in \llbracket \pi \rrbracket_t$

Let t be the tree:



Which formulae are satisfied by t?



Exercise 3 - The power of PDL?

Give a translation of PDL in MSO that preserves models. That is, given a position formula φ (resp. a path formula π), construct a MSO formula $\tilde{\varphi}$ (resp. $\tilde{\pi}$) whose set of free variable is $\{X_a \mid a \in \mathcal{F}\} \cup \{x\}$ (resp. $\{X_a \mid a \in \mathcal{F}\} \cup \{x, y\}$) such that

$$\begin{split} t,w\vDash\varphi \text{ iff } \left(P_a(t)\right)_{a\in\mathcal{F}},w\vDash\tilde{\varphi}\\ \text{resp. } t,w,w'\vDash\pi \text{ iff } \left(P_a(t)\right)_{a\in\mathcal{F}},w,w'\vDash\tilde{\pi} \end{split}$$

where $P_a(t) = \{w \in \operatorname{Pos}(t) \mid t(w) = a\}.$

Exercise 4 - Propositional Linear-time Temporal Logic

The logic **PTL** is defined as follows:

Syntax *P* is a finite set of *propositional variables*. Each symbol of *P* is an atomic formula. If φ and ψ are formulae, then the following also are:

 $\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \varphi \to \psi, \varphi \mathbf{U} \psi, \mathbf{N} \varphi, \mathbf{L} \varphi$

Semantics Let P^* be the set of words over the alphabet P. A word $w \in P^*$ is identified with the sequence of letters w(0)w(1)...w(|w|-1).w(i..j) is the word w(i)...w(j). The satisfaction relation is defined by:

- If $p \in P$, $w \models p$ if and only if w(0) = p.
- The interpretation of logical connectives is the usual one.
- $w \models \mathbf{N}\varphi$ if and only if $|w| \ge 2$ and $w(1..|w| 1) \models \varphi$.
- $w \models \mathbf{L}\varphi$ if and only if |w| = 1 and $w \models \varphi$.
- $w \vDash \varphi \mathbf{U} \psi$ if and only if there is an index $i \in \llbracket 0, |w| 1 \rrbracket$ such that for all $j \in \llbracket 0, i 1 \rrbracket$, $w(j..|w| 1) \vDash \varphi$ and $w(i..|w| 1) \vDash \psi$.

Let us recall that the language defined by a formula φ is the set of words w sich that $w \models \varphi$.

- 1. What is the language defined by $\mathbf{N}(p_1\mathbf{U}p_2)$ (with $p_1,p_2\in P$?)
- 2. Give **PTL** formulae defining respectively $P^*p_1P^*, p_1^*, (p_1p_2)^*$.

Homework - PTL to WS1S

Give a first-order WS1S formula (i.e. without second-order quantification) that defines the same language as $N(p_1Up_2)$.