TD 2 Complexité

Luc Lapointe luc.lapointe@ens-paris-saclay.fr

home.lmf.cnrs.fr/LucLapointe/

On rappelle quelques définitions de classes de complexité usuelles :

- L = $SPACE(\log n)$ est la classe des langages décidés par une machine de Turing déterministe utilisant un espace logarithmique.
- $P = \bigcup_{k \in \mathbb{N}} TIME(n^k) = TIME(n^{O(1)})$ est la classe des langages décidés par une machine de Turing déterministe en temps polynomial.
- NP = $\cup_{k \in \mathbb{N}}$ NTIME (n^k) = NTIME $(n^{O(1)})$ est la classe des langages décidés par une machine de Turing non déterministe en temps polynomial.

Vous pouvez reprendre les exercices du TD précédent si vous le souhaitez.

Exercice 1 – Échauffement

Soit $L\subseteq \Sigma^*$ un langage sur l'alphabet Σ . À quelles conditions L est PTIME-dur pour les réductions en temps polynomial ?

Exercice 2 - Prototype de problème NP-complet

Montrer que le langage suivant est NP-complet :

$$\{ \left(M, x, 1^t \right) \mid M \text{ accepte sur } x \text{ en temps au plus } t \}$$

avec M le code d'une machine de Turing non-déterministe.

Exercice 3 - Définition alternative de NP

Montrer qu'on définit de manière équivalente la classe NP comme étant la classe de langages L (sur Σ) tels qu'il existe un langage L' (sur $\Sigma \cup \{\#\}$) dans P et un polynôme p tels que

$$L = \{x \in \Sigma^* \mid \exists y \in \Sigma^*, |y| = p(|x|) \text{ et } x \# y \in L'\}$$

Exercice 4 - 3-SAT

Exhiber une réduction en temps logarithmique de SAT vers 3-SAT.

Exercice 5 - 3-SAT en FND

Le problème SAT reste-t-il NP-complet si la formule est en forme normale disjonctive (au lieu de conjonctive) ? Si non, à quelle classe de complexité appartient-il ? Est-il complet pour cette classe ?

Exercice 6 - NAE-SAT

Prouver que le problème de décision NAE-SAT suivant est NP-complet :

Entrée: Une formule propositionnelle φ sous forme normale conjonctive. **Question:** Existe-t-il une valuation telle que, dans chaque clause de φ avec au moins deux littéraux, il y a au moins un littéral satisfait et un littéral non satisfait ?

Les clauses à un littéral ont seulement besoin d'être satisfaites. Une telle valuation nae-satisfait φ .