TD 3 Calculabilité

Luc Lapointe lapointe@lmf.cnrs.fr

Exercice 1 Diagonalisations

Montrer par un argument diagonal (et donc sans réduction) que les langages suivants sont indécidables :

- $--L_{\text{accepte}} = \{(\langle M \rangle, w)^{\text{bin}} \mid M \text{ accepte } w\},\$
- $-L_{\text{arret}} = \{(\langle M \rangle, w)^{\text{bin}} \mid M \text{ termine avec l'entrée } w\}$

Exercice 2 Vers la réduction (1)

En supposant que le langage L_{arret} est indécidable (et seulement celui-ci), montrez que

$$L_{\emptyset} = \{ \langle M \rangle^{\text{bin}} \mid \mathcal{L}(M) = \emptyset \}$$

l'est également. Vous raisonnerez par l'absurde et supposerez l'existence d'une machine de Turing M_{\emptyset} décidant L_{\emptyset} . Vous construirez ensuite une machine M décidant L_{arret} en utilisant M_{\emptyset} .

Exercice 3 Vers la réduction (2)

En supposant que le langage L_{accepte} est indécidable (et seulement celui-ci), montrez que

$$L_{\rm arret}$$

l'est également. Vous raisonnerez par l'absurde et supposerez l'existence d'une machine de Turing $M_{\rm arret}$ décidant $L_{\rm arcepte}$. Vous construirez ensuite une machine M décidant $L_{\rm accepte}$ en utilisant $M_{\rm arret}$.

Les preuves des exercices 2 et 3 ont toutes un point commun expliqué ci-dessous. On dit que ce sont des preuves **par réduction**.

Rappel (ou non) : Soit Σ un alphabet. Un *problème* \mathfrak{A} sur Σ est un langage sur Σ . Les mots de \mathfrak{A} sont les *instances acceptantes* du problème, et les mots de Σ^* sont les *instances* du problème.

Si on considère deux problèmes $\mathfrak A$ et $\mathfrak B$, on dit que

$${\mathfrak A}$$
 se réduit à ${\mathfrak B}$ (noté ${\mathfrak A} \preccurlyeq {\mathfrak B})$

si on peut exhiber une fonction calculable f qui pour toute instance a de \mathfrak{A} , renvoie une instance b = f(a) de \mathfrak{B} telle que

a est une instance acceptante de A

si et seulement si

b est une instance acceptante de \mathfrak{B} .

Attention! Il n'est pas nécessaire que toutes les instances de \mathfrak{B} soient dans l'image de f.

Si on a $\mathfrak{A} \preccurlyeq \mathfrak{B}$, alors:

- si \mathfrak{A} est indécidable, alors \mathfrak{B} est indécidable;
- si \mathfrak{B} est décidable, alors \mathfrak{A} est décidable.

* *

Exercice 4 Est-ce décidable?

Dire si les problèmes suivants sont décidables ou non. Si c'est le cas, donnez l'idée de la machine de Turing décidant le langage, et si non, faites une preuve **par réduction**.

1. Donnée : le code $\langle M \rangle^{\rm bin}$ d'une machine de Turing

Question: M s'arrête-t-elle sur le mot vide?

2. **Donnée :** le code $\langle M \rangle^{\text{bin}}$ d'une machine de Turing

Question: M s'arrête-t-elle sur au moins une donnée?

3. **Donnée :** les codes $\langle M \rangle^{\text{bin}}$ et $\langle M' \rangle^{\text{bin}}$ de deux machines de Turing

Question: L(M) = L(M')?

4. **Donnée :** le code $(\langle M \rangle, w)^{\text{bin}}$ d'une machine de Turing et d'un mot w et un entier n (en base 2)

Question: M accepte-t-elle w après au plus n transitions?

5. **Donnée :** le code $\langle M \rangle^{\text{bin}}$ d'une machine de Turing

Question: M calcule en temps polynomial (i.e. M termine en temps polynomial)?

6. **Donnée :** les codes $\langle M \rangle^{\text{bin}}$ d'une machine de Turing et le code $\langle M' \rangle^{\text{bin}}$ d'une machine de

Turing qui s'arrête pour tout mot w en au plus 2.|w| transitions

Question: Pour tout mot w, M(w) = M'(w)?

Exercice 5 Automates linéairement bornés

Un automate linéairement borné est une machine de Turing qui lorsqu'elle lit un blanc, écrit un blanc et se déplace vers la gauche.

- 1. Montrer que le problème de l'arrêt des automates linéairement bornés est décidable.
- 2. Montrer que le problème de l'arrêt universel des automates linéairement bornés est indécidable :

Donnée : $\langle M \rangle^{\text{bin}}$ où M est un automate linéairement borné

Question : est ce que M s'arrête sur toute donnée?