
L3 Informatique 2025-2026 Complexité

Corrigé TD 6
Complexité

Luc Lapointe
luc.lapointe@ens-paris-saclay.fr

home.lmf.cnrs.fr/LucLapointe/

Exercice 1 – NL différent de P ?

On admet que la classe Space(log2 𝑛) est strictement incluse dans la classe

Space(log3 𝑛). Ce résultat est donné par le théorème dit de hiérarchie en espace, qui

exploite le fait que log2 = 𝑜(log3).

Vous voyez passer dans un échange de mail la preuve suivante que NL ≠ P :

NL inclus dans L^2 (Savitch)
L^2 strictement dans L^3 (hiérarchie)
L^3 inclus dans P (compter)

Qu’en dire ?

Solution

Déjà, toutes les ressources de référence indiquent que l’inclusion stricte de NL

dans P est un problème ouvert. Cette preuve est donc probablement fausse !

Le schéma global de la preuve est bon : 𝐴 ⊆ 𝐵 ⊊ 𝐶 ⊆ 𝐷 est bien une preuve de

𝐴 ≠ 𝐷.

Les L avec des puissances désignent Space(log2 𝑛) et Space(log3 𝑛).

Le théorème de Savitch est reconnu comme étant correct, et montre

effectivement que NL ⊆ L2.

Le théorème de hiérarchie en espace a bien pour corollaire que L2 ⊊ L3.

C’est donc la dernière hypothèse qui pose problème. On a bien que L ⊆ P, mais

ça ne vaut plus du tout1 pour L3 ! On pourrait penser que c’est vrai avec une
intuition qui dirait que « Une exponentielle de logarithmes est bornée par un
polynômes », sauf qu’on a en fait l’égalité

exp(log3(𝑛)) = 𝑛log ²(𝑛)

qui ne permet de conclure à aucune inclusion dans une classe Time (𝑛𝑘).

Exercice 2 – P-choix

1Ou du moins, si c’est vrai, on n’en a pas encore de preuve.

1

mailto:luc.lapointe@ens-paris-saclay.fr
https://home.lmf.cnrs.fr/LucLapointe/

L3 Informatique 2025-2026 Complexité

Un langage 𝐿 appartient à P-choix, écrit 𝐿 ∈ P𝑐, s’il existe une fonction

𝑓 : Σ∗ × Σ∗ → Σ∗, calculable en temps polynomial, telle que ∀𝑥, 𝑦 ∈ Σ∗ :
• 𝑓(𝑥, 𝑦) ∈ {𝑥, 𝑦},
• si 𝑥 ∈ 𝐿 ou 𝑦 ∈ 𝐿 alors 𝑓(𝑥, 𝑦) ∈ 𝐿.

Dans ce cas, 𝑓 est appelée la fonction de choix pour 𝐿.

1. Montrer que P ⊆ P𝑐.
2. Montrer que P𝑐 est clos par complémentaire.
3. Montrer que s’il existe un problème NP-dur dans P𝑐 alors P = NP.

Idée de solution

1. Soit 𝐿 ∈ P et 𝐴 un algorithme qui le résout en temps déterministe

polynomial. 𝑓 peut consister en : exécuter 𝐴 sur 𝑥, et renvoyer 𝑥 si et

seulement si 𝑥 ∈ 𝐿.
2. Soit 𝐿 ∈ P𝑐 et 𝑓 associée. La fonction f(𝑥, 𝑦) = 𝑓(𝑦, 𝑥) convient pour

montrer que le complémentaire de 𝐿 est dans P𝑐.
3. Soit 𝐿 un problème NP-dur dans 𝑃𝑐. Alors n’importe quel autre problème

NP est dans 𝑃𝑐, et notamment SAT. L’objectif est de montrer que SAT est

dans 𝑃 , en utilisant l’existence de fonctions de choix. Soit 𝜑 une entrée de

SAT. Deux preuves différentes et élégantes sont disponibles à partir de là :
• Comme 𝑃𝑐 est clos par complémentaire, alors notamment Tautologie

est dans 𝑃𝑐. Ce n’est pas exactement le complémentaire de SAT, mais

Tautologie est interréductible avec le complémentaire de SAT. On

utilise 𝑓 la fonction de choix de Tautologie sur l’entrée (¬𝜑, ⊥). Si la

réponse est ¬𝜑, alors 𝜑 n’est pas satisfiable. Si la réponse est ⊥, alors 𝜑
est satisfiable.

• 𝑃𝑐 peut être vue comme une classe où on dispose d’une forme faible de

non-déterminisme. Nous pouvons l’utiliser pour résoudre SAT avec
l’algorithme suivant :

Soit n le nombre de variables dans phi.
Soit f la fonction de choix de SAT.
phi[0] <- phi
Pour i allant de 1 à n :
 phi[i] <- f(phi[i-1][x_i <- true], phi[i-1][x_i <- false])
Évaluer phi[n], renvoyer le résultat obtenu.

Exercice 3 – Caractériser P = NP

Étant donné un alphabet Σ, une fonction 𝑓 : Σ∗ → Σ∗ est un morphisme si 𝑓(Σ) ⊆ Σ

et pour tout 𝑚 = 𝑚1…𝑚𝑛 ∈ Σ∗, 𝑓(𝑚) = 𝑓(𝑚1)…𝑓(𝑚𝑛). Autrement dit, 𝑓 est

entièrement déterminée par les valeurs prises sur Σ.

2

L3 Informatique 2025-2026 Complexité

Montrer que P = NP si et seulement si P est clos par morphisme.

Idée de solution

Supposons P = NP. Soit 𝐿 un langage dans P, et soit 𝑓 un morphisme. On

propose un algorithme non-déterministe en temps polynomial pour décider 𝑓(𝐿)

qui consiste à deviner l’image réciproque de chaque lettre de Σ par 𝑓 , puis à
résoudre en temps polynomial le problème sur l’image réciproque de l’entrée

avec l’algorithme en temps polynomial qui résout 𝐿. On conclut avec P = NP.

Supposons maintenant que P est clos par morphisme. Soit 𝐿 dans NP. On

considère 𝑀 la machine déterministe qui le résout avec un certificat. En

particulier, le problème de décision 𝐿′ qui prend en entrée un certificat de taille

exactement polynomiale en l’entrée et une entrée de 𝐿 est dans P. On modifie 𝑀
pour séparer artificiellement les lettres utilisées pour le certificat et pour l’entrée,
et on considère le morphisme qui est l’identité sur les caractères de l’entrée, et un

caractère ⊥ sur les caractères du certificat. L’image de 𝐿′ par ce morphisme, qui

est toujours dans P, est quasiment 𝐿, sauf qu’il y a un nombre de caractères
inutiles en entrée polynomial en la taille de l’entrée. Étant donné que ce nombre
est fonction de la taille de l’entrée, il ne donne aucune info, et on peut en déduire

que 𝐿 est dans P.

Exercice 4 – Des problèmes à classer

Pour les problèmes suivants, donner une borne inférieure et supérieure sur leur

appartenance aux classes de complexité parmi L,NL,P,NP (ou co-NP) et PSpace.
Donner une borne inférieure correspond à établir la dureté du problème pour des
réductions en espace logarithmique. Idéalement, ces deux bornes sont les mêmes,
mais ce n’est parfois ce n’est pas le cas. On rappelle différents problèmes complets.

Le problème Reach est NL-complet.

Entrée: Un graphe 𝐺 et deux sommets 𝑠 et 𝑡.
Question: Existe-t-il un chemin de 𝑠 à 𝑡 ?

Le problème BinOpGen est P-complet.

Entrée: Un ensemble fini 𝑆, une opération binaire ∗ : 𝑆 × 𝑆 → 𝑆,

un sous-ensemble initial 𝐼 ⊆ 𝑆 et une cible 𝑡 ∈ 𝑆.

Question: 𝑡 est-il dans la clôture transitive de l’ensemble 𝐼 par ∗ ?

1. Le problème BinOpGenassoc qui correspond au problème BinOpGen mais

avec une opération binaire ∗ associative.
2. Le problème MonotoneCir de la satisfaction d’un circuit.

Entrée: Un circuit booléen 𝐶 et l’un de ses sommets 𝑛

3

L3 Informatique 2025-2026 Complexité

Question: 𝑣(𝑛) = ⊤ ?

où un circuit booléen est un graphe acyclique 𝐶 = (𝑉 , 𝐸) avec deux types de

sommets : ∧ et ∨. La valeur booléenne d’un sommet 𝑣 est alors la conjonction
ou la disjonction des sommets vers lesquels il pointe, initialisée avec la

convention que ∧ ∅ = ⊤ et ∨ ∅ = ⊥.
3. Le problème 1-Reach de l’atteignabilité dans un graphe de degré 1.
4. Le problème MAJSAT de la satisfiabilité par la moitié des valuations.

Entrée: Une formule quantifiée 𝜑 de la logique propositionnelle.

Question: Est-ce que au moins la moitié des valuations satisfont 𝜑 ?
5. Le problème 2-SAT de la satisfiabilité d’une 2-CNF.

Idée de solution

1. Dans P en utilisant le même algorithme que BinOpGen. En fait, le

problème est même dans NL : deviner le successeur petit à petit, en
retenant juste le sommet courant. Notez que c’est une technique qui ne
fonctionne pas si la loi de composition n’est pas associative, car un chemin
peut nécessiter de faire des compositions « lointaines » avant de faire
celles proches de la source.

Réduction depuis Reach pour montrer qu’il est NL-dur : pour 𝐺 =
(𝑆, 𝐴), 𝑠, 𝑡 une entrée de Reach, on construit l’entrée de BinOpGenassoc

𝑋, ∗, 𝐼, 𝑡′ suivante :
• 𝑋 = 𝑆2

• 𝑡′ = (𝑠, 𝑡)
• 𝐼 = 𝐴 ∪ {(𝑥, 𝑥), 𝑥 ∈ 𝑆}
• (𝑠1, 𝑠2) ∗ (𝑠3, 𝑠4) = {(𝑠1,𝑠4) si 𝑠3=𝑠4

(𝑠1,𝑠2) sinon.
2. Dans P en étiquetant petit à petit les sommets du circuit. Également P-dur,

cf Wikipedia.
3. Dans L, en retenant le sommet en cours et le nombre de sommets visités.

Donc notamment, L-complet pour les réductions logspace (comme tout

problème non-trivial dans L).
4. Dans PSpace, en testant toutes les valuations et en les comptant. NP-dur,

en rajoutant autant de variables 𝑦𝑖 que de variables dans l’entrée de SAT,

et en rajoutant au début de la formul (𝑦0 ∨ ¬𝑦𝑛) ∧ … ∧ (𝑦𝑛 ∨ ¬𝑦𝑛).

MAJSAT est un problème complet pour la classe probabiliste PP, et prouver

que MAJSAT est dans NP ou est PSpace-dur résoudrait des problèmes

ouverts concernant PP. cf le cours de Complexité avancée de M1.

5. NL-complet. Pour montrer que c’est NL, on utilise que NL = coNL.
Deviner au fur et à mesure un « chemin » de variables (une chaîne

4

https://fr.wikipedia.org/wiki/Probl%C3%A8me_de_l%27%C3%A9valuation_d%27un_circuit

L3 Informatique 2025-2026 Complexité

d’implications) qui doivent nécessairement être vraies, qui commence à

une variable 𝑥 et finit par atteindre une variable ¬𝑥.

Pour NL-dur : depuis Reach. Pour chaque arête (𝑥, 𝑦) rajouter une clause

¬𝑥 ∨ 𝑦, choisie ainsi pour modéliser 𝑥 ⇒ 𝑦.

5

	1 NL différent de P ?
	2 P-choix
	3 Caractériser P = NP
	4 Des problèmes à classer

