Examen du cours Complexité (L3)

Les documents (notes, polycopiés, ..) et calculatrices (téléphone, tablette, ..)
ne sont pas autorisés.

Date : 13 janv. 2025 & 10h45 / Durée : 2 heures

Exercice : Fonctions polylogspace

Pour un entier k£ > 0 et un alphabet fini A, une fonction totale f : A* — A* est dite logFspace
s’il existe une machine de Turing déterministe qui calcule f(z) pour tout x € A* en utilisant
un espace de travail O(log® n), c.-a-d. < ¢(log |z|)*, pour un entier ¢. On dit que f est logspace
quand k = 1, et polylogspace si elle est logFspace pour un k € N. Note : pour simplifier les
calculs, on parle ici d’une fonction discréte log : N — N définie par log(0) = 0 et, pour n > 0,
log(n) = [logy n]. Toujours pour simplifier, on convient que 1'adjectif logspace et ses dérivés sont
invariables.
1. Donnez une fonction polylogspace qui n’est pas calculable en temps polynomial. Justifiez.

2. Montrez que si f est log¥space alors |f(z)| est en \a:|0(1°gk_1 D).

3. Est-ce que la composition de deux fonctions logFspace est elle-méme logFspace ? Justifiez.

Probléme : Sous-mots et sous-suites

On dit qu’'un mot u est sous-mot d’un mot v, noté u < v, si u est une sous-suite de v, c.-
a-d., obtenue en retirant un nombre arbitraire de lettres. P.ex. examen < inexorablement et
examen # existentialisme. Fn particulier, € < u < u pour tout u, ol € dénote le mot vide.

On s’intéresse au probléme LCS (pour “Long Common Subword”). Le probléme LCS prend en
entrée un alphabet A, une liste uq,...,u; de mots dans A*, ainsi qu'un entier N. La question &
résoudre est « existe-t-il un mot v € A* tel que |[v| = N et v < w; pouri=1,...,k7»

4. Parmi les deux instances suivantes

(A ={a,b,c}, u; = aabc, uy = bbca,ug = ccab, N =2),
(A=1{0,1,...,9}, u = 314159265358979323846, us = 141421356237309504880, N = §) ,

dites laquelle est positive et justifiez briévement.

On précise que le probléme LCS est un langage sur un alphabet 3 fixé. Donc la donnée d’un
alphabet A (qui peut étre n’importe quel alphabet fini) est codée sur ¥ et la donnée des u; reprend
ce codage. Par ailleurs 'entier N est donné en base 1, p.ex. sous la forme IV = II..-I avec
I € ¥. En fin de compte, la taille d’une instance sera en O (k+ N + (|A|+ |u1| +- - - + |ug|) log | A|)
ou le facteur multiplicatif log |A| rend compte du codage des lettres de A sur 'alphabet .

5. Montrez que LCS est dans NP.

Soit LCSy le probléme qui est comme LCS sauf que N est écrit en base 2, de sorte que la taille
d’une instance est en O(k +log N + (|A| + |ui| + - - - + |ug|) log | A]).

6. Donnez une réduction logspace de LCS a LCS.
Donnez ensuite une réduction logspace de LCS; a LCS.
Pour ces deux questions on justifiera la correction et on détaillera (sans forcément écrire un
programme) les algorithmes utilisés par les réductions de fagon & bien comprendre comment
un espace logarithmique est suffisant.

On veut montrer que LCS est NP—difficile. Pour cela on part du probléme NODECOVER vu en
TD et connu pour étre NP-complet. On rappelle qu’'une instance de NODECOVER est constituée
d’un graphe simple (i.e., non orienté, sans arétes multiples ni boucles) G = (V, E') et d’un entier
K et qu’on se demande si G admet un recouvrement de cardinal au plus K, sachant qu’un re-
couvrement est un ensemble de sommets C' C V tel que chaque aréte de E a au moins une de
ses extrémités dans C.

Soit une instance G = (V, E), K avec |V| = ¢ sommets et |E| = m arétes. On va considérer des
mots ug, U1, . . . , Uy sur alphabet V. On pose d’abord ug = v1vs ... v; en fixant une énumération
de V. On fixe ensuite une énumération ey, ez, ..., ey, des arétes et pour, i € {1,...,m}, on pose
ei = {vy,vs} de sorte que r < s. On pose alors

U; = V1V2 .. . Up—1Up41 ... 00102 ... Vg_1Vg41 ...

7. Prouvez que G admet un recouvrement de taille £ — N si et seulement si il existe un mot w
de longueur N qui soit sous-mot de chacun des u; pour ¢ =0,...,m.

8. Donnez une réduction logspace de NODECOVER a LCS. Justifiez soigneusement (sans écrire
de code) que votre réduction est bien calculable en espace logarithmique.

9. Conclure en donnant la complexité de LCS et celle de LCS,,.

On s’intéresse & deux versions de LCS. Pour deux mots u, v, on note u <n0 v, et on dit que « u
est un sous-mot non orienté de v », ssi u < v ou u < v. Ici w est le mot miroir de u : p.ex.
engager = regagne. De méme on note u <¢y v, et on dit que « u est cycliquement sous-mot
de v », si ugu; < v pour une factorisation u = ujus de u. P.ex., avril <., invraisemblable
puisque avril est sous-mot de able - invraisembl.

10. Montrez que <no et <cy sont des préordres, c.-a-d., des relations réflexives et transitives, sur
les mots ?

Le probléme LCS,, est une version de LCS ol on demande s’il existe un sous-mot non orienté v
de longueur N tel que v <po u; pouri=1,..., k7
11. Montrez que LCSy, est NP-complet.

12. Méme question pour le probléme LCS.y qui demande si les u;s admettent un sous-mot com-
mun de longueur N au sens de <cy.

On note LCS, la restriction de LCS ou les instances contiennent exactement deux mots, i.e.,
k=2.
13. Donnez un algorithme en PTIME qui résout LCSs. Justifiez sa correction et votre analyse de

complexité.

Plus généralement, pour k£ € N fixé, le probléme LCSy est la restriction de LCS o les instances
contiennent exactement k mots uq, ..., ug.

14. Soit k € N. Est-ce que LCSy est dans PTIME ?

Page 2

