
Examen du cours Complexité (L3)

Les documents (notes, polycopiés, ..) et calculatrices (téléphone, tablette, ..)
ne sont pas autorisés.

Date : 13 janv. 2025 à 10h45 / Durée : 2 heures

Exercice : Fonctions polylogspace

Pour un entier k > 0 et un alphabet fini A, une fonction totale f : A∗ → A∗ est dite logkspace
s’il existe une machine de Turing déterministe qui calcule f(x) pour tout x ∈ A∗ en utilisant
un espace de travail O(logk n), c.-à-d. ≤ c(log |x|)k, pour un entier c. On dit que f est logspace
quand k = 1, et polylogspace si elle est logkspace pour un k ∈ N. Note : pour simplifier les
calculs, on parle ici d’une fonction discrète log : N → N définie par log(0) = 0 et, pour n > 0,
log(n) = ⌊log2 n⌋. Toujours pour simplifier, on convient que l’adjectif logspace et ses dérivés sont
invariables.

1. Donnez une fonction polylogspace qui n’est pas calculable en temps polynomial. Justifiez.

2. Montrez que si f est logkspace alors |f(x)| est en |x|O(logk−1 |x|).

3. Est-ce que la composition de deux fonctions logkspace est elle-même logkspace ? Justifiez.

Problème : Sous-mots et sous-suites

On dit qu’un mot u est sous-mot d’un mot v, noté u ≼ v, si u est une sous-suite de v, c.-
à-d., obtenue en retirant un nombre arbitraire de lettres. P.ex. examen ≼ inexorablement et
examen ̸≼ existentialisme. En particulier, ϵ ≼ u ≼ u pour tout u, où ϵ dénote le mot vide.
On s’intéresse au problème LCS (pour “Long Common Subword”). Le problème LCS prend en
entrée un alphabet A, une liste u1, . . . , uk de mots dans A∗, ainsi qu’un entier N . La question à
résoudre est « existe-t-il un mot v ∈ A∗ tel que |v| = N et v ≼ ui pour i = 1, . . . , k ? »

4. Parmi les deux instances suivantes

(A = {a, b, c}, u1 = aabc, u2 = bbca, u3 = ccab, N = 2) ,

(A = {0, 1, . . . , 9}, u1 = 314159265358979323846, u2 = 141421356237309504880, N = 8) ,

dites laquelle est positive et justifiez brièvement.

On précise que le problème LCS est un langage sur un alphabet Σ fixé. Donc la donnée d’un
alphabet A (qui peut être n’importe quel alphabet fini) est codée sur Σ et la donnée des ui reprend
ce codage. Par ailleurs l’entier N est donné en base 1, p.ex. sous la forme IN = II · · · I avec
I ∈ Σ. En fin de compte, la taille d’une instance sera en O

(
k+N+(|A|+ |u1|+ · · ·+ |uk|) log |A|)

où le facteur multiplicatif log |A| rend compte du codage des lettres de A sur l’alphabet Σ.

5. Montrez que LCS est dans NP.

Soit LCSb le problème qui est comme LCS sauf que N est écrit en base 2, de sorte que la taille
d’une instance est en O(k + logN + (|A|+ |u1|+ · · ·+ |uk|) log |A|).

1

6. Donnez une réduction logspace de LCS à LCSb.
Donnez ensuite une réduction logspace de LCSb à LCS.
Pour ces deux questions on justifiera la correction et on détaillera (sans forcément écrire un
programme) les algorithmes utilisés par les réductions de façon à bien comprendre comment
un espace logarithmique est suffisant.

On veut montrer que LCS est NP–difficile. Pour cela on part du problème NODECOVER vu en
TD et connu pour être NP-complet. On rappelle qu’une instance de NODECOVER est constituée
d’un graphe simple (i.e., non orienté, sans arêtes multiples ni boucles) G = (V,E) et d’un entier
K et qu’on se demande si G admet un recouvrement de cardinal au plus K, sachant qu’un re-
couvrement est un ensemble de sommets C ⊆ V tel que chaque arête de E a au moins une de
ses extrémités dans C.

Soit une instance G = (V,E),K avec |V | = ℓ sommets et |E| = m arêtes. On va considérer des
mots u0, u1, . . . , um sur l’alphabet V . On pose d’abord u0 = v1v2 . . . vl en fixant une énumération
de V . On fixe ensuite une énumération e1, e2, . . . , em des arêtes et pour, i ∈ {1, . . . ,m}, on pose
ei = {vr, vs} de sorte que r < s. On pose alors

ui = v1v2 . . . vr−1vr+1 . . . vlv1v2 . . . vs−1vs+1 . . . vl

7. Prouvez que G admet un recouvrement de taille ℓ−N si et seulement si il existe un mot w
de longueur N qui soit sous-mot de chacun des ui pour i = 0, . . . ,m.

8. Donnez une réduction logspace de NODECOVER à LCS. Justifiez soigneusement (sans écrire
de code) que votre réduction est bien calculable en espace logarithmique.

9. Conclure en donnant la complexité de LCS et celle de LCSb.

On s’intéresse à deux versions de LCS. Pour deux mots u, v, on note u ≼no v, et on dit que « u
est un sous-mot non orienté de v », ssi u ≼ v ou ũ ≼ v. Ici ũ est le mot miroir de u : p.ex.
˜engager = regagne. De même on note u ≼cy v, et on dit que « u est cycliquement sous-mot

de v », si u2u1 ≼ v pour une factorisation u = u1u2 de u. P.ex., avril ≼cy invraisemblable
puisque avril est sous-mot de able · invraisembl.
10. Montrez que ≼no et ≼cy sont des préordres, c.-à-d., des relations réflexives et transitives, sur

les mots ?

Le problème LCSno est une version de LCS où on demande s’il existe un sous-mot non orienté v
de longueur N tel que v ≼no ui pour i = 1, . . . , k ?

11. Montrez que LCSno est NP-complet.

12. Même question pour le problème LCScy qui demande si les uis admettent un sous-mot com-
mun de longueur N au sens de ≼cy.

On note LCS2 la restriction de LCS où les instances contiennent exactement deux mots, i.e.,
k = 2.

13. Donnez un algorithme en PTIME qui résout LCS2. Justifiez sa correction et votre analyse de
complexité.

Plus généralement, pour k ∈ N fixé, le problème LCSk est la restriction de LCS où les instances
contiennent exactement k mots u1, . . . , uk.

14. Soit k ∈ N. Est-ce que LCSk est dans PTIME ?

Page 2

