
Synthesizing coalition strategies in parameterized concurrent games

Luc Lapointe
under Patricia Bouyer’s guidance

MPRI M2 Internship
Gif-sur-Yvette, LMF
March - July 2023

General Context
Lots of modern systems used in everyday life happen to be distributed systems. Examples include cloud computing,
blockchain technologies, servers with multiple clients, wireless sensor networks, bio-chemical systems, or fleets of
drones. Verification of distributed systems is consequently a major topic in verification, and potential applications
are numerous.

One additional difficulty is that some distributed systems may involve an arbitrary number of agents. To
address this issue, the model-checking community designed not only distributed but also parameterized models,
where the parameter is the number of agents.

Concurrent games model distributed systems by design. A previous work introduced concurrent games in
which the number of agents is arbitrary, called parameterized concurrent games [1]. As the model is very recent, it
is not a surprise that although some results on it have already been discovered with simple objectives [1, 2], most
problems on parameterized concurrent games, even some apparently very simple ones, remain unsolved for now.

Problem Studied
My internship’s goal was to find wether the cooperative reachability problem in parameterized concurrent games
is decidable, and if so to discover the complexity class where it lies. Problems that have already been studied are
reachability problem when one player faces all of the others [1] and safety problem when all players cooperate [2].
The cooperative reachability problem is at the crossroad of those two problems, and as such is a natural following
in studying parameterized concurrent games.

As the problem is mostly finite, the consensus at the beginning of my internship was that it should be decidable.
However, surprisingly, no algorithm was known yet, and a fortiori no complexity was known. Backing this
intuition of decidability with a proven algorithm was thus an important preliminary step in studying the problem.

Proposed Contributions
The first step I climbed to solve this problem was to study a simpler version of the problem, where both the arena
and expressivity of available plays are very restricted. Even this very restricted problem happened to be uneasy
to solve.

After formally defining the problem (section 2), my first contribution is the design of an algorithm solving
this restricted problem (section 3), thus establishing its decidability. Proving its correction, and in particular its
completeness, was the main focus of my internship (section 4). This proof of completeness gives a naive upper
bound on the complexity of the algorithm. I also established some lower bounds on its complexity for different
versions of the problem (section 2.2).

1

Arguments Supporting Their Validity
The algorithm I designed seems like a natural algorithm to solve the problem. Despite being applied to very
restricted cases, both in term of arena of the game and expressivity of what the agents can play, it can maybe be
extended to more regular cases, through upgrading technical details rather than having pioneer ideas.

The correctness, and in particular the completeness of the algorithm, is a technical proof that, in idea, allows
to truncate the infiniteness of the problem. This trick of making the problem finite to solve it seems like a core
idea to solve the problem, as it was a very necessary step in different approaches I tried to solve it.

Also, bounds on the efficiency of my algorithm are currently quite loose, but we conjecture, after extensively
studying different examples and prove schemes, that the actual complexity is the current lower bound.

Summary and Future Work
My contribution brings first pieces of knowledge about how to solve the parameterized cooperative reachability
problem. It also lays the foundations for a deeper understanding of how cooperative parameterized concurrent
games behave, as the algorithm I designed is both a natural first step for studying harder problems, and also
features a key technique of truncating infinity.

Immediate future works for cooperative parameterized concurrent games include : extending the algorithm
to less restricted cases of cooperative games, both in term of expressivity of plays and shape of the arena; and
establishing tighter bounds on its complexity. A more long-term goal would be to extend the problem to objectives
that are more general than only reachability, such as objectives described with temporal logic.

Other interesting future works tied to this problem are classifying problems on parameterized concurrent
games where agents are not all on the same team; or implementing algorithms for concurrent games to some
real-life system.

Luc Lapointe 2 ENS Paris-Saclay

Abstract

Traditional concurrent games on graphs involve a fixed number of players, who take decisions simultaneously,
determining the next state of the game. The aim of this internship is to study the problem of synthesizing
a coalition strategy to achieve a reachability objective in a variant of concurrent games with an arbitrary
number of agents. The problem is non-trivial since the agents do not know a priori how many they are when
they start to play. We give different upper and lower bounds on the difficulty of synthesizing arbitrarily-large
coalition winning strategy for reachability objectives depending on the form of the input, of the arena, and the
expressivity of available plays.

Contents
1 Introduction 3

2 Definitions 4
2.1 Defining the problem . 4
2.2 Theorem statement . 7
2.3 Technical definitions . 8

3 The algorithms 10
3.1 Correctness . 11
3.2 Complexity upper bound . 12

4 Winning strategies can have bounded dependencies 12
4.1 Correctness . 12
4.2 Completeness . 13

4.2.1 Backbone lemmata . 14
4.2.2 Structure of long paths . 15
4.2.3 Duplicating winning plays . 16
4.2.4 Pioneer play graph . 17
4.2.5 Generating periodic pioneer wins . 19
4.2.6 Generating enough consecutive wins with no larger dependencies 20

References 21

Appendix 22

1 Introduction
Context Lots of modern systems used in everyday life happen to be distributed systems. Examples include
cloud computing, blockchain technologies, servers with multiple clients, wireless sensor networks, bio-chemical
systems, or fleets of drones [5]. Synthesizing winning strategies for such systems means building controllers that
will allow them to coordinate and adapt their behavior to stay safe or achieve some goal. Potential long-term
applications are therefore numerous.

These systems are not only distributed, but they also involve an arbitrary number of agents. The model-
checking community is interested both in verifying parameterized systems [8, 4] and synthesizing systems to achieve
a given objective [12]. Our contribution is about synthesizing strategies to achieve a fixed goal in parameterized
distributed systems.

Parameterized verification What we mean by parameterized verification is verification of systems where the
number of agents can be arbitrarily large, and where most of the time each individual agent does not know how
much agents are interacting within the system. Despite this lack of information, algorithms and protocols applied
on such systems are designed to operate efficiently and correctly, whatever the number of agents involved.

In the last 15 years, parameterized verification algorithms were successfully applied to various case studies,
such as data-consistency for cache coherence protocols in uniform memory access multiprocessors [7], and the core
of simple reliable broadcast protocols in asynchronous systems [9].

Luc Lapointe 3 ENS Paris-Saclay

Distributed synthesis In general, the problem of distributed synthesis asks whether strategies for individual
agents to achieve a global objective can be computed, in a context where individuals have only a partial knowledge
of the environment. In the context of parameterized verification, the knowledge agents do not have is the number
of agents interacting with the system.

There are several possible formalizations for distributed synthesis, for instance via an architecture of processes
with communication links between agents [12], or using coordination games [11, 10, 3]. The two settings are
linked, and many (un)decidability results have been proven, depending on various parameters.

Concurrent games on graphs A concurrent game on graphs for n players is a turn-based game played inside
a given graph called the arena in which the game is playing. An arena for n players have edges labelled with
n-tuples of actions (or simply words of length n on the action alphabet). The game starts at a vertex v0 of the
arena. At each turn of the game, each of the n players selects an action, and the next vertex is determined by the
combination of actions.

With this definition, it is implicit that players have identifiers. Thus, when player i chooses action ai, next
vertex is the one pointed at by an edge labelled with the word a1 . . . an.

v0 v1 v2
aΣ2 ΣbΣ

v3
Σ2c

{b, c}Σ2 Σ{a, c}Σ Σ2{a, b} Σ3

Figure 1: A very simple example arena with action alphabet Σ = {a, b, c}. Players reach state v1 from state v0 if
the first player plays en a, whatever the other players chose to play. Similarly, they move from state v1 (resp. v2)
to state v2 (resp. v3) if the second (resp. third) player plays b (resp. c).

Parameterized concurrent games on graphs A previous work introduced concurrent games in which the
number of agents is arbitrary [1]. These games generalize concurrent games with a fixed number of agents, and
can be seen as a succinct representation of infinitely many games, one for each fixed number of agents. This is
done by replacing, on edges of the arena, words representing the choice of each of the agents by languages of
finite yet unbounded words. Such a parameterized arena can represent infinitely many interaction situations, one
for each possible number of agents. In parameterized concurrent games, the agents do not know at the start of
the game the number of agents participating to the interaction. Each agent observes the action she plays and
the vertices the play goes through. These pieces of information may refine the knowledge each agent has on the
number of involved agents.

In [1], the problem considered is whether Agent 1 can ensure a reachability objective independently of the
number of her opponents, and no matter how they play. The problem is non trivial since Agent 1 must win
with a uniform strategy. It has been proven in this paper that when edges are labeled with regular languages,
the problem is PSPACE-complete; and for positive instances one can effectively compute a winning strategy in
polynomial space.

An other problem one might consider is whether the agents can collectively ensure a safety objective, without
knowing how many they are. As in the previous problem, only a uniform strategy, this time of the coalition rather
that of agent 1 only, can ensure such objective. It has been proven in [2] that synthesizing such a strategy is a
PSPACE-hard problem that can be decided in exponential space.

Contributions The problem studied here is the cooperative reachability problem. It includes features of both
of the problems described above, but yet the complexity class where it stands, and even its decidability, is until
now unknown. In the following we define it precisely in section 2, where we also give the precise statements of
our main results. We exhibit an algorithm to solve a restricted version of the problem in section 3. Section 4
establishes the correction of the algorithm in its restricted setting, by exhibiting a periodic pattern that allows to
truncate infiniteness in the only unbounded parameter of the problem. This proof comes with an upper bound on
the complexity of the algorithm.

2 Definitions

2.1 Defining the problem
A specific type of concurrent game We are interested in solving a type of concurrent game on graphs
called Parameterized cooperative reachability problem. Let us look at what this long name means, by explaining
meaningful words in it :

Luc Lapointe 4 ENS Paris-Saclay

• parameterized : In this very problem, parameterized means that when you consider different runs on the
same arena, the number of players involved in a run might change from a run to another. It is fixed at the
beginning of a run, but at the start of the run it is not known by any player which is involved.

• cooperative : There are different players involved in a given run, but they win or lose all together. Thus,
they must not play against each other, but help each other.

• reachability : The aim of the unique team of players is to reach a state of the graph.

To model the fact that a given arena must be playable for any number of players, one must slightly modify the
concurrent game model explained above. In our model, arena edges are not labelled simply with words of length
n (which would fit for runs with n players only), but with languages instead.

Definition 1 : Parameterized arena

A parameterized arena is a triple A = (V, v0,Σ, δ) where

• V is a finite set whose elements are called the vertices or states of the arena,

• v0 ∈ V is the initial state of the arena,

• Σ is a finite set called the actions set of the arena,

• δ is a function from V × V to 2Σ
∗

called the transitions labels of the arena.

Furthermore we add the following conditions to the transitions labels :

∀v, v′, v′′ ∈ V, v′ ̸= v′′ =⇒ δ(v, v′) ∩ δ(v, v′′) = ∅ (Deterministic arena)

∀v ∈ V,
⋃

v′∈V
δ(v, v′) = Σ∗ (Complete arena)

From now on, the word arena always refer to a parameterized arena.

What is a cooperative strategy We consider that information available to a given player prior to the start of
a run is : the whole parameterized arena, and her identifier. Thus, even though no player knows the number of
players involved in a given run, if player i is involved, she knows that there are at least i players involved.

Definition 2 : History, cooperative strategy, plays, run

Let A = (V, v0,Σ, δ) be an arena.
A history H ∈ V + of vertices of A is a finite sequence of vertices of A.
A strategy for the ith player is a function σi : V

+ → Σ that assigns to the history of vertices that she has
visited so far an action she plays.
A cooperative strategy is a function σ : V + → Σω. It can be seen as a profile of infinitely many strategies :

σ = σ1;σ2; . . .

An infinite sequence of actions p ∈ Σω is called a general play of a cooperative strategy. For a given history
of vertices H, the ith letter of the general play σ(H) denotes what the ith player must play when seeing
history H to follow the cooperative strategy σ.
Notation p|≤k denotes the prefix of size ka of p. We call p|≤k a play of a cooperative strategy when there
are k players. Playing a general play when there are k players consists in playing its prefix of length k.
For a given cooperative strategy σ and a number of players k, we say that the run for k players of σ is the
unique infinite sequence of plays p1 . . . pn . . . that σ plays in A. It is defined inductively together with its
sequence of visited vertices v0 . . . vn . . . :

p1 = σ(v0)|≤k
∀i ∈ J1,∞J, vi is the unique vertex v such that pi|≤k ∈ δ(vi−1, vi)

∀i ∈ J2,∞J, pi = σ(v0 . . . vi−1)|≤k

An infinite sequence of plays (pi)i∈N is coherent with σ if there exists a number of players k ∈ N such that
it is the run of σ for k players. A finite sequence of plays p1 . . . pn is coherent with σ if it is the prefix of a
infinite sequence of plays coherent with σ.

a we start indexing letters from 1.

Luc Lapointe 5 ENS Paris-Saclay

From now on, the word strategy always refers to a cooperative strategy, and the word play, when not explicitly
a play for k players, always refers to a general play.

Definition of the general problem We are interested in finding how an agent with identifier i can synthesize
a strategy with what she knows, such that if all agents locally synthesize their strategy, it creates a global strategy
winning whatever is the number of agents involved in a run.

This leads to the general definition of the decision problem :

Parameterized cooperative reachability problem (Pcrp)

Input: A parameterized arena A = (V, v0,Σ, δ), a target vertex t ∈ V .
Output: Is there a cooperative strategy σ such that for all numbers

of players k ∈ N, the run for k players of σ visits t ?

Note that if the answer is yes and the algorithm finding the answer is constructive, the input is such that any
agent can locally run the algorithm to find the global strategy σ from which she can deduce her own strategy.

State of the art The parameterized cooperative safety problem is a PSPACE-hard problem that can be decided
in exponential space [2]. To our knowledge, the decidability of the parameterized cooperative reachability problem,
and a fortiori the complexity classes where it lies, is an open problem. The following work achieves the very first
step towards a solution by studying a restricted version of the problem.

Definition 3 : Flat automaton, flat language, flat regular expression.

A flat automaton is a deterministic finite automaton whose induced graph contains no cycle except
self-loops. A flat language is a language recognized by a flat automaton. A flat regular expression is a
regular expression denoting a flat language.

Definition 4 : Tricolored flat arena

A tricolored flat arena A = (V,Σ, δ) is a parameterized arena
with target where transitions label languages are encoded
with regular expressions, and :

V =
{

, ,⃝
}

δ
(

,
)
= Σ∗ δ (,) = Σ∗

δ (⃝,⃝) = e◦ δ (⃝,) = e⊥ δ
(
⃝,

)
= e⊤

and Σ∗ is a disjoint union of flat languages L◦, L⊥ and L⊤ of
expressions e◦, e⊥, e⊤. Initial state is ⃝.

Σ∗ Σ∗e◦

e⊥ e⊤

Figure 2: Illustration of a tricolored
flat arena. L◦ ⊔ L⊥ ⊔ L⊤ = Σ∗.

In the following, we are interested in tricolored flat arenas, so the word arena alone will from now on always
refer to a tricolored flat arena.

One way to represent the three languages L⊤, L⊥ and L◦ is to build three different flat automata that recognize
them. There is even a simple representation using a joint automaton, as below.

Lemma 5 : Joint automaton

For every triple of flat languages L⊤, L⊥ and L◦ such that L◦ ⊔ L⊥ ⊔ L⊤ = Σ∗, there exists a structure
(Σ, Q, δ, q0, F⊤, F⊥, F◦) with F⊤ ⊔ F⊥ ⊔ F◦ = Q such that for every ∆ ∈ {⊤,⊥, ◦}, A∆ = (Σ, Q, δ, q0, F∆)
is a deterministic flat automaton that recognizes L∆. We call this structure a joint automaton.

Proof sketcha Use cartesian product of the three original automata.
a Proof sketches are shortened versions of complete proofs available in appendix.

Σ∗ Σ∗a∗ba+

a∗ | Σ∗bΣ∗bΣ∗ a∗b

a a

ab

b

b

Σ∗

Figure 3: On the left, a specific tricolored flat arena. On the right, a joint automaton describing the outgoing
languages at the ⃝ state. In this graphical representations, states of the joint automaton depicted with (resp.

,⃝) are states labelled with F⊤ (resp. F⊥, F◦) in the joint automaton.

Luc Lapointe 6 ENS Paris-Saclay

Playing on a joint automaton A joint automaton A of the⃝ state in an arena A can be an efficient structure
to check what is the outcome of a given play p ∈ Σω from⃝ in A. When considering a run where there are k
players involved, reading p with A until its kth letter leads to a state in F⊤ (resp. F⊥, F◦) if and only if playing p
with k players in A leads to the (resp. , ⃝) state of the arena.

Different kinds of inputs One considers two slightly different problem with this restricted version of Pcrp,
where the difference lies in the way the three languages are represented.

The first one takes a triple of regular expression (e⊤, e⊥, e◦) whose languages are flat as an input.
Parameterized cooperative reachability problem in Tricolored Arena

with Flat Regular Expression

Input: A triple of flat regular expressions (e⊤, e⊥, e◦) describing the outgoing
languages at the ⃝ state of a tricolored flat arena A.

Output: Is there a cooperative strategy σ such that for all numbers
of players k ∈ N, the run for k players of σ visits ?

The second is a slightly different version where it is a joint automaton of the ⃝ state that is given as input,
and not regular expressions.

Parameterized cooperative reachability problem in Tricolored Arena
with Joint Flat Automaton

Input: A joint flat automaton A describing the outgoing
languages at the ⃝ state of a tricolored flat arena A.

Output: Is there a cooperative strategy σ such that for all numbers
of players k ∈ N, the run for k players of σ visits ?

Example 6 : Solving Pcrp on a specific example For the arena of figure 3, a winning strategy is
that agent i plays b on the ith turn, and a on any other turn. We explain how to find it in the following
paragraphs.
It is important, when building a winning strategy, that it can never lose, whatever the number of players
involved. This is the reason why player 1 must play b on first turn : because she doesn’t know if there are
any other players involved, and playing an a would be losing if she is the only one involved.
Knowing this, any other player must play an a on turn 1, because the only allowed b is played by player 1.
So the first play of a winning strategy must be denoted by the expression

baω

whose ith letter denotes what action player i plays on turn 1.
Once baω is played, the game is over if there is only one player. Consequently, player 1 can play a rather
than b without losing instantly. But if she does so, exactly one of the other players must play b ; because if
no b or two b are played, the game is lost. If this one player is not player 2, then the game is lost when
there are exactly two players, because in this case what is played is aa. Taking this constraint into account,
one possible second non-losing play is

abaω.

By repeating the reasoning, one eventually exhibits the (winning) strategy where player i plays b at ith

turn, and a at any other turn, represented as the sequence

baω; abaω; a2baω; . . .

2.2 Theorem statement
The main theorem we prove is the following:

Theorem 7

Pcrp in tricolored arena with joint flat automaton is in Nexptime, and our algorithm solving
the decision problem also synthesizes a winning strategy if it exists.

The algorithm which solves this problem is algorithm 1. From it we can build a sibling algorithm to prove
corollary 8.

Corollary 8

Pcrp in Tricolored Arena with flat regular expression is in Nexptime, and our algorithm
solving the decision problem also synthesizes a winning strategy if it exists.

Luc Lapointe 7 ENS Paris-Saclay

We also discovered some hardness results on similar problems but whose inputs are slightly richer than those
of the two problems described above.

Theorem 9

Pcrp in Tricolored Arena with flat regular expressions is NP-hard when negation can be used
inside the regular expression it takes as an input.

Proof sketch Reduction from 3-SAT. Valuations on N variables are modelled by boolean words of size
N . For each clause of the input formula, add to L⊥ any word that evaluates this clause to false. The
complementary of all of these additions is in L⊤.

Theorem 10

Pcrp in Tricolored Arena with regular expressions is PSpace-hard when negation can be used
inside the regular expression it takes as an input.

Proof sketch Reduction from Non-Universality. Build an arena such that

• there exist a word in the complementary language of input regular expression e if and only if it is
possible to win for a given arbitrary number of players;

• a win for one single number of players allows to win for any number of players.

From now on, we fix an instance of our problem, that is, a triple of regular expressions (L⊤, L⊥, L◦) and a
joint automaton A, both describing the same tricolored arena A.

2.3 Technical definitions
Definitions in this section are mainly used to state and prove different intermediate lemmata.

Definition 11 : Winning play

Let (pi)i>0 ∈ (Σω)N be a sequence of plays. pi is winning for k players if when k players are involved, the
current state after playing pi is .

Representing the outcomes of a run during its execution For a given sequence of general plays coherent
with a winning strategy σ, the set of players for which it has already won at a given time of the sequence is
growing as more and more general plays are played. One can represent this growing set of achieved wins by a
sequence of words in {0, 1}ω where the jth letter of word i is 1 if and only if the game is won after play i when j
players are involved. Definition 12 and example 13 expand on this idea.

Definition 12 : Wins word

Let B = {0, 1} and σ a winning strategy in A. Let (pi)i>0 a sequence of general plays in A coherent with
σ. When k players are involved, the game might or might not be won after pi is played.
We denote the unique set of numbers of players for which the game is won after pi is played by an infinite
word wi

σ ∈ Bω where

The jth letter of wi
σ, noted (wi

σ)j , is 1

if and only if
after pi is played, is in the history of visited vertices when there are j players involved.

wi
σ is called wins word of σ after the ith play.

This encoding is only defined for winning strategies. This is because it is winning strategies we will study, and
restricting the definition to winning strategies allows not to define how to encode losing plays.

Luc Lapointe 8 ENS Paris-Saclay

Example 13 : Wins word Consider the joint
automaton depicted in figure 4. p2(n) (resp. p5(n))
denotes the play going for the first (resp. second)
column and self-looping n times on the first self-loop ;
so pi(n) wins when there are i+ n players.
Consider a winning strategy σ starting with the
following sequence of plays :

p3; p5(1); p2(2); p5(2); p2(3); p2(0); p1

The sequence of wins word achieved by σ is of the
form :

What is played Wins word

p3 w1
σ = 00100000 . . .

p5(1) w2
σ = 00100100 . . .

p2(2) w3
σ = 00110100 . . .

p5(2) w4
σ = 00110110 . . .

p2(3) w5
σ = 00111110 . . .

p2(0) w6
σ = 01111110 . . .

p1 w7
σ = 11111110 . . .

p1p3p5(n)p2(n)

Figure 4: Example automaton. Action letters are
omitted for clarity. This can always be done without
loss of generality, and will be done from now on.

With such a representation, for a winning strategy σ, the path in automaton A that should be followed at
turn i is a path where the jth vertex is in F⊥ only if the jth letter of wi−1

σ is a 1. Also, when following a winning
strategy, the sequence of wins words tends to 1ω when the number of turns played tends to infinity :

lim
i→∞

wi
σ = 1ω

Definition 14 : Dependent wins

A play p depends on a win for n players if reading its prefix of length n reaches a state in F⊥ in the joint
automaton.

Example 15 : Dependent wins On example 13, p1 depends on wins for 2, 3, 4, 5 players. p2(n) depends
on a win for 4 + n players.

Definition 16 : Dependent plays

Let σ be a winning strategy, and (pi)i>0 be the sequence of plays coherent with σ. Let p be the kth play
of this sequence (so p is exactly pk). The set of direct dependencies of p, denoted dep1(p), is the set of
plays q where there exist n such that

• q = pl with l < k;

• p depends on a win for n players;

• and in a run where n players are involved, wl
σ is the first wins word whose nth bit is 1.

The set of all dependencies of p is
dep(p) =

⋃
i>0

depi1(p)

where dep11(p) = dep1(p) and for i > 1,

depi1(p) =
⋃

q∈depi−1
1 (p)

dep1(q).

Luc Lapointe 9 ENS Paris-Saclay

Example 17 : Dependent plays Consider the strategy described in example 13. We have the following
equalities :

dep1(p3) = ∅ dep1(p5(1)) = {p3} dep1(p2(2)) = {p5(1)} dep1(p1) = {p2(0), p3, p2(2), p2(3)}
dep(p3) = ∅ dep(p5(1)) = {p3} dep(p2(2)) = {p5(1), p3} dep(p1) = {p2(0), p3, p2(2), p2(3), p5(1), p5(2)}

Definition 18 : Depth

In a deterministic automaton, the depth of a state q is the maximum number of different vertices of a path
from the initial state to q. The depth of the automaton is the maximum of the depth of its states.

The automaton depicted in figure 4 has depth 7.

Definition 19 : Induced path and loopless path of a play, induced play of a path

Let G be the graph induced by A, and Σ the set of actions of the arena it denotes.
Let e be an ω-expression on Σ describing a play in A such that the only action with an ω-exponent is the
last one of ea. The path induced by e is the sequence of vertices of G visited when playing actions of e′,
where e′ is e but without the ω-exponent on the last action. The loopless path induced by e is the same
but going through each vertex only once.
Let ρ be a finite path of vertices of G ending with a vertex admitting a self-loop. The play induced by ρ is
the the sequence of actions that follows the path ρ until the self-loop is reached, and then self-loops.

a As the only cycles in A are self-loops, any ω-expression e describing a play in A admits an equivalent one whose only
action with an ω-exponent is the last.

Example 20 The function associating a play to the induced play of its induced path is identity. The
function matching a path to the induced path of its induced play is identity as well.
On figure 6 are depicted induced path and induced
loopless path of p2(1). For any integer n, induced
play of induced loopless path of p2(n) is p2(0).

ql qf
a

b

a a a a

a

Figure 5: p2(n) of example 13 with letters and some
state names.

ql qf

ql qfql

Figure 6: Induced path and induced loopless path
of p2(1) = abaaaaaω.

3 The algorithms
The algorithm we use to solve Pcrp with Tricolored Joint Flat Automaton consists in playing so-called
winning safe paths until it can not find any more, and returns true if and only if it was enough to win for all
integers below a given bound f we will explicit later.

Safe paths are (a subclass of) paths that can not lose for any number of players at the time they are played.

Definition 21 : Safe path

Let S be an array of ⊥ and ⊤ indexed from 1 to N , and sia∈ {⊤,⊥}. ρ = q1 . . . qk is a safe path according
to S and si if the two following properties hold.

1. ∀i ≤ k, qi ∈ F⊥ =⇒ i ≤ N ∧ S[i] = ⊤

2. qk ∈ F⊥ =⇒ si = ⊤ ∧ ∀i ∈ Jk,NK, S[i] = ⊤
a S stands for safe, and si stands for safe infinity.

Luc Lapointe 10 ENS Paris-Saclay

Algorithm 1 Solving Pcrp in Tricolored Arena with Joint Flat Automaton
Input: A flat joint automaton A = (Σ, Q, δ, q0, F⊤, F⊥, F◦) describing a tricolored flat arena A.
Output: Is there a cooperative winning strategy in A ?

1: h← depth of A
2: S ← array of ⊥ indexed from 1 to f(h) ▷ f is the function of theorem 23.
3: si← ⊥ ▷ si for safe infinity.
4: G← induced labelled graph of A

5: procedure Update_S(ρ) ▷ ρ = q1q2 . . . qk is a safe path.
6: for each vertex qi in ρ that is in F⊤ do
7: S[i]← ⊤
8: if qk ∈ F⊤ then ▷ The final self-loop solves all high numbers of players in one hit.
9: si← ⊤

10: for k ≤ i ≤ |S| do
11: S[i]← ⊤

12: while true do
13: Find a safe path ρ in G of length less than f(h) + h such that Update_S(ρ) sets at least one ⊥ of S

to ⊤.
14: Update_S(ρ)
15: if ∀1 ≤ i ≤ |S|, S[i] = ⊤ then
16: return true
17: if neither S nor si changed inside this while loop iteration then
18: return false

Example 22 : Execution on the joint automaton of figure 3 At the beginning of the game, as the
run has not won for any number of players yet, safe plays are exactly the ones never going through a
state. Thus, the only safe play available is baω.
It happens that this play wins for 1 player. Consequently, at second turn, another safe play available is
abaω.
At each new turn, there is exactly one new safe path that sets at least one 0 to 1 in the array. The sequence
of those paths is the one described in example 6.

Algorithm 1 solves the decision problem without synthesizing a winning strategy, but it can quite easily be
adapted to do so, by remembering in order the paths ρ such that Update_S(ρ) add ⊤s in S.

Corollary algorithm to solve Pcrp in Tricolored Arena with flat regular expressions
From algorithm 1 we can design another algorithm that takes the triple of expressions (e⊤, e⊥, e◦) as an input
rather than the deterministic joint automaton.

It starts with building three nondeterministic automata A⊤, A⊥, A◦, and then does roughly exactly the same
things, by guessing plays rather than paths. As we have three nondeterministic automata rather than one
deterministic joint automaton, testing if the play we guessed is safe or not, and testing the numbers of players for
which it is winning, is only quadratically slower, because it can be achieved by testing each prefix.

The depth of a nondeterministic automaton is the same as the depth of the deterministic one built with the
powerset construction. Thus, for a given regular expression, there exists a (non)deterministic automaton that
recognizes its language, and whose depth is linear in the size of the input expression. Consequently, if algorithm 1
is in P (resp. EXPTIME), this sibling algorithm also is.

3.1 Correctness
This algorithm is correct because there exists f : N → N such that theorem 23 is true. Please note that f is
hard-coded in the theorem statement. Section 4 is devoted to proving this theorem with an exponential such f .

Theorem 23

Let A be a tricolored flat arena, and A be a joint automaton describing the outgoing edges of the⃝ state
in A. Assume A has depth h.

Luc Lapointe 11 ENS Paris-Saclay

There exists a cooperative strategy σ winning whatever the number of players involved if and only if there
exists a cooperative strategy σ′ such that :

1. σ′ wins for any number of player n ≤ f(h);

2. no play of σ′ winning for n players with n ≤ f(h) requires that the game has been won by a previous
play for m players with m > f(h).

Reverse (⇐) implication of theorem 23 ensures correctness, meaning that algorithm 1 is right when it answers
true. Direct (⇒) implication ensures completeness, meaning that it is right when it answers false.

3.2 Complexity upper bound
There are two sources of high complexity in this algorithm :

1. The amount of iterations in the while loop line 12. It is bounded by f(h) + 2 due to the two stop conditions
that are tested.

2. Finding a convenient path on line 13. It can be done non-deterministically in time linear in f(h) + h.

Thus, assuming theorem 23 is true for some f(h) ≥ h, Pcrp in Tricolored Arena with Joint Flat
Automaton is in NTIME(f2). Section 4, which is devoted to proving the theorem, exhibits an exponential such
f .

4 Winning strategies can have bounded dependencies
The goal of this section is to prove that there exist a function f : N→ N such that theorem 23 is true. In the rest
of this section, A will be the flat automaton of a tricolored arena A, and h the depth of A.

4.1 Correctness
The reverse implication of the theorem is the easiest. It is what will prove the algorithm to be correct. It only
requires that

f(h) ≥ h+ 1.

The key idea to prove that a lot of consecutive wins is enough to win for arbitrarily large numbers of player is
that a winning strategy makes use of so-called pioneer plays.

Definition 24 : Pioneer play

Let σ be a winning strategy, p a play of σ, and n ∈ N. p is said to be a pioneer play for n if it is the play
triggering the win when there are n players involved, and it depends on no wins for m players with m > n.

Please note that the notion of pioneer play depends on the strategy, and not only on the automaton.

Example 25 : Pioneer plays In the strategy
described in example 13, pioneer plays are
p3, p5(1), p5(2). In the alternative strategy

p3; p5(1); p5(4); p2(2); p5(2); . . .

whose wins word are described on the right, pioneer
plays are p3, p5(1), p5(4). In this alternative strategy,
p5(2) is not a pioneer play, because it wins for 7
players, but p5(4) was played prior to it and won for
9 players, which is larger than 7.

p3 001000000 . . .

p5(1) 001001000 . . .

p5(4) 001001001 . . .

p2(2) 001101001 . . .

p5(2) 001101101 . . .

...
...

The notion of pioneer plays allows a smooth proof of correctness of algorithm 1.

Proof sketch of reverse implication of theorem 23 Winning for h+ 1 players can only be achieved
by a pioneer play, and this pioneer play has a self-loop in its induced path. Progressively increase the
number of self-loopings on it to win for any number of players. Those plays are not losing because of the
consecutive wins achieved so far.

Luc Lapointe 12 ENS Paris-Saclay

4.2 Completeness
The other implication is the hard part. It is what will prove the algorithm to be complete.

An arbitrary winning strategy might be silly, and win for a number less than or equal to f(h) using dependencies
in a previous win against a number of players larger than f(h).

Example 26 Consider the automaton depicted
in figure 7. As in example 13, pi(n) denotes the
play with n self-loopings on the first self-loop, and
is winning for i+ n players.
To win with number of players 4, there exists a family
of silly strategies (σn) where the play winning for 4
players depends on each previous play, with number
of previous plays arbitrarily high, and the following
chain of dependencies (where i → j denotes a win
for j players, dependinga on a win for i players).

1, 2 5 8 . . . 3n+ 2 3n+ 5

3n+ 43n+ 1. . .74

A strategy σn achieving such dependency is:
1: Play p1
2: for j from 0 to n do
3: Play p5(3j)

4: Play p3(3n+ 1)
5: for j from n to 1 do
6: Play p2(3j − 1)

However, despite this, there exists one simple
strategy σ to win for 4 players, which is to play
p1, then p5(0) and p3(1).

p1p3(n)p5(n)p2(n)

Figure 7: Example automaton. Action letters are
omitted for clarity.

a Please note that in this paragraph, the first notion of dependencies is a dependency on previous plays (as in definition
16), and then it is the notion of dependencies on previous wins that is used (as in definition 14).

The aim of this section is to prove that an arbitrary strategy (including silly ones) can actually be modified in
order not to depend on wins against a number of players larger than f(h).

Subsections of this proof are the following. Their content is described in the table below.
4.2.1 Backbone lemmata . 14
4.2.2 Structure of long paths . 15
4.2.3 Duplicating winning plays . 16
4.2.4 Pioneer play graph . 17
4.2.5 Generating periodic pioneer wins . 19
4.2.6 Generating enough consecutive wins with no larger dependencies 20

Subsection Contents

4.2.1 Proves that winning enough consecutive wins at a given position
is a sufficient condition not to depend on farther wins.

4.2.2 Gives some properties of long paths in an automata,
and gives more hypothesis for the hard case of the proof by getting rid of easy cases.

4.2.3 Explains how to, from a winning play, deduce some other winning plays.

4.2.4 Describes and proves the correctness of pioneer play graphs,
a technical construction that will provide a proof in the next subsection.

Makes use of a pioneer play graph to build
4.2.5 a periodic wins pattern in the strategy. This allows to think modulo the period,

and thus truncates infiniteness in the number of players.

4.2.6 Fills the missing wins in the periodic pattern built in the previous section.

Luc Lapointe 13 ENS Paris-Saclay

4.2.1 Backbone lemmata

The aim of subsection 4.2.1 is to establish that winning for a large enough number of consecutive players with no
dependencies larger than f(h) is a sufficient condition to prove the reverse implication.

A first step is to ensure that whenever a winning strategy wins for a large enough number of consecutive players,
then one can modify the strategy in order to win for arbitrarily large numbers of players without depending on
wins against even larger numbers of players. This is what ensures lemma 28, but we suggest first to take a look at
example 27 to understand why this lemma is useful.

Example 27 : Silly winning strategy Consider
the automaton on figure 8. p(n) (resp. p′(n)) denotes
the play going for the first (resp. second) row with
n self-loopings on the first state; thus, both p(n)
and p′(n) win for n players. One winning strategy
σ could be :
1: Play p(0)
2: i← 0
3: while ⊤ do
4: Play p(2i)
5: for j from 2i − 1 to 2i−1 + 1 do
6: Play p′(j)

7: i← i+ 1

By following such a strategy, only plays that are
powers of 2 do not depend on wins for larger numbers
of players. However, there exists one winning
strategy τ that never relies on wins for a larger
number of players : playing p(n) for n from 0 to
infinity.

p′(n)

p(n)

Figure 8: An example automaton.

τ needs no consecutive wins to start generating wins
for an arbitrarily large number of players without
dependencies in larger number of players. Lemma
28 aims at proving that for any winning strategy,
one can replace strategies depending on wins for a
larger number of players by strategies that do not,
as τ in this example.

Lemma 28 ensures that winning for large enough consecutive numbers of players allows to modify a winning
strategy in order not to depend on wins for larger numbers of players in order to win for increasingly larger
numbers of players.

Lemma 28 : Winning window

Let σ be a winning strategy, and (pi)i>0 be a sequence of plays coherent with σ. Assume that there exist
integers N and j such that when the number of players is between N + 1 and N + 3h, the vertex is
among the first j visited verticesa.
Then there exists one single path (containing a self-loop before a state in F⊤) that is sufficient to win for
all numbers of players larger than N + 3h from turn j + 1.

a In other words, the game is won before play j + 1 when there are between N + 1 and N + 3h players.

Proof sketch

Case 1 : there exist a play σ plays whose final self-loop is not in F◦. This means that it plays
at some previous point a play p whose final self-loop is in F⊤. After the window is complete, copy the
beginning of p. When it enters the window, fork it and go straight to the final self-loop. Protection
of the window allows not to care of losing states in the path.

Case 2 : plays of σ always end with a final self-loop in F◦. To win before this window : copy
plays of σ winning before the window, but when they enter the window, fork them and use the
protection given by the window to reach a terminal neutral self-loop.

To win after this window : use any pioneer play.

From now on we write W (h) := 3h (W for Window).
Lemma 29 allows to make winning for small numbers of players not being dependent on winning for large

numbers of players.

Luc Lapointe 14 ENS Paris-Saclay

Lemma 29 : No distant dependencies

Let N ∈ N, and σ be a winning strategy. Assume that when the number of players is between N + 1 and
N + h, the vertex is among the first i visited verticesa
Then there exists a winning strategy σ′ where plays winning for a number of players n ∈ J1, NK after the
ith one do not depend on any win for a number of players larger than N + h.

a In other words, the game is won before play i+ 1 when there are between N + 1 and N + h players.

Proof sketch Copy plays of σ in order but truncate their ends thanks to the consecutive achieved
wins.

Lemmata 28 and 29 combined makes winning for W (h) consecutive number of players with no
dependencies larger than f(h) a sufficient condition to prove the first implication of theorem 23.
Proving that a winning game always admits a strategy satisfying such sufficient condition is the aim of the rest of
section 4.2.

4.2.2 Structure of long paths

The aim of this section is to identify what is the structure of plays in an automaton winning for a very large
number of players. Knowing this structure, we will be able to focus on hard cases of the proof of theorem 23 for
the rest of section 4.2.

Lemma 30 allows us to solve the easy cases of section 4.2 where a winning strategy choses a pioneer play p
that wins for infinitely many numbers of players, and gives stronger hypothesis in the other cases.

Lemma 30 : Winning paths final state

Let σ be a winning strategy, i an integer, and ρ the path of the ith play of σ. Let qfinal be the last state ρ
is visiting. One of the following holds :

1. qfinal is in F◦, or

2. There exists N ∈ N such that for all numbers of players M > N , when there are M players involved,
either σ wins before playing ρ or by playing ρ.

Proof To win for any number of players with a finite number of plays, as described in assumption 2, a
strategy must go for a play ending in a F⊤ state. Thus, 2 holds as long as either ρ ends with a state in
F⊤, or a previous play ends in a state in F⊤. As σ is winning, this must be the case if ρ ends with a state
in F⊥. If ρ ends with a state neither in F⊤ nor in F⊥, then 1 holds.

Next lemma ensures that when there are enough vertices on a path ρ followed by a winning strategy, either
there is a self-looping vertex in F◦ on this path, or ρ either needs or generate W (h) consecutive wins.

Lemma 31 : Long paths loops

Let σ a winning strategy, and ρ the path of a play such that its hW (h)th state q is not its final state. One
of the following holds :

1. There is on ρ a self-looping state in F◦, or

2. ρ needs W (h) consecutive wins prior to q made by previous plays, or

3. ρ generates W (h) consecutive wins prior to q.

In particular, in case 2, as σ is winning, it means that W (h) consecutive wins have been previously
generated.

Proof Only self-looping states can appear multiple times on ρ. If the hW (h)th state q is not final, then
one self-looping state qloop repeats at least W (h) time before q. If qloop ∈ F◦, 1 holds. If it is in F⊥, as
σ is winning, ρ requires W (h) consecutive wins prior to being played, so 2 holds. If it is in F⊤, then 3
holds.

Luc Lapointe 15 ENS Paris-Saclay

From now on we write L(h) := hW (h) (L for Long).

Figure 9 illustrates what the following paragraph explains.
Lemma 31 allows us to assume that if a play p wins for n ≥ L(h) players, and W (h) consecutive wins is not

fulfilled after playing p, then there is a self-looping state in F◦ on the path induced by p. Name qloop the last
self-loop in F◦ before qn the nth state of the path. By using lemma 31 again with the path starting at qloop,
there are at most L(h) states between qloop and qn, because there are no other self-looping state in F◦ between
qloop and qn, and it is an hypothesis that playing p does not generate W (h) consecutive wins. It is an important
hypothesis to enforce next lemmata. Also, lemma 30 gives that the final state of all such paths are neutral.

·
∗ ∗ ∗

size ≤ L(h) P P ′

qn

|P | ≤ L(h)

∗

qloop

Figure 9: Some plays winning to more than L(h) players follow paths of this form.

From now on we add a formal definition of strategies such that all paths of interest are of the form described
in figure 9.

Definition 32 : Non-trivial strategy

Let σ be a winning strategy. It is a non-trivial strategy if all plays winning for n players with L(h) ≤ n ≤ f(h)
have each of the following properties :

1. they have a self-loop in F◦ visited before their L(h)th state, and

2. they end with a state in F◦, and

3. between the last state in F⊤ and the last self-loop in F◦ before it, there are at most L(h) (non-
necessarily different) visited states.

Until the very end of section 4.2, we will only consider non-trivial strategies, because a strategy that is not
non-trivial will easily ensure completeness, as we will see in the proof of theorem 23 at the end of section 4.2.

4.2.3 Duplicating winning plays

The aim of this section is to explain how, from some given winning plays played by a non-trivial winning strategy,
deduce some other winning plays.

For the rest of section 4.2.3, fix τ any non-trivial winning strategy playing infinitely many pioneer plays. This
seems a quite restrictive hypothesis, but it happens to be a finer definition of the hard case of the proof. We will
see in the proof of the first implication of theorem 23, in subsection 4.2.6, that if any of those hypothesis doesn’t
hold, proof is much shorter.

Next ideas are a bit more tricky to understand. The main plan is the following. As τ is winning, it will
eventually win for W (h) consecutive number of players. However, dependencies of such consecutive wins might
include a number of players larger than f(h). In such case, the loopless path induced by plays of τ will allow to
build a new strategy achieving W (h) consecutive wins without dependencies in number of players greater than f(h).

When following τ , consider pn any pioneer play winning for n with n ≥ L(h). Let ρn be the induced path
of pn. Call qn the state in F⊤ that is the nth state of pn, and qnloop the state of ρ before qn, in F◦ and with a
self-loop on it, that is the closest to qn. As described by lemma 31, pn is of the form described in figure 9, its nth

winning state being the one between P and P ′.
The trick is that one can generate new different plays by playing along ρn, but changing the amount of

self-loopings on qloop, in order to shift the number of players for which the play is winning. However, by doing so,
dependencies in the P and P ′ part will also shift. Half of the problem is already solved because as pn is a pioneer
play, it has no state in F⊥ in its P ′ part by design. Thus, if the amount of self-loopings on qloop changes, the
dependencies we will actually have to care about are only the ones in the P part. This is our main concern until

Luc Lapointe 16 ENS Paris-Saclay

the end of section 4.2.

To describe what are the dependencies needed to play a path of the form described in figure 9, one can use
boolean words of size (at most) L(h). Reading from right to left, the ith letter is a 1 if and only if the ith state
before qn is in F⊥. This implies that if the ith state before qn is the jth state played, the game must have been
previously won for j players. Figure 10 illustrates this idea with a word of length much shorter than L(h).

qn

0 1 0 1

qnloop

Figure 10: Consider the play consisting in visiting exactly once each vertex on the illustrated graph. A sequence
of bit of length 4 describing the dependencies of qn is 0101.

More precisely, we will pay attention to dependencies between qnloop and qn, as they are the only ones that will
shift. Knowing this, we can build the following proof scheme :

• Consider each pioneer play for n where 3L(h) ≤ n ≤ f(h). This bound of 3L(h) rather than L(h) allows not
to consider limit cases in the transition from "not a long path" to "long path";

• Keep track of their dependencies, in the form of a word in {0, 1}L(h);

• If two different plays pi and pj have the same dependencies, repeating the sequence of plays pi . . . pj can
achieve pioneer plays for arbitrarily high n.

It is the aim of subsection 4.2.5 to describe precisely this proof scheme. It relies on a so-called pioneer play
graph, whose definition and correctness are given in subsection 4.2.4.

4.2.4 Pioneer play graph

The aim of this section is to model the sequence of pioneer plays described in subsection 4.2.3 with a path in a
"De Bruijn-like" graph [6], where vertices are words of {0, 1}L(h), and edges are pioneer plays. Informally, the
meaning of an edge from v to w is "There exist a pioneer play that can be played from a v pattern, and from
which a w pattern can be reached farther". From now on, we define

L′(h) := 3L(h).

The notion of pioneer resources described below is a different notion from what we named dependencies in
subsection 4.2.3. The pioneer resources of a pioneer play describes some sufficient condition for it to be played,
where its dependencies described a necessary condition for it to be played.

Definition 33 : Pioneer resources

Let σ be a non-trivial winning strategy, and PP∞ be the set of pioneer plays for n played by σ, where
n ≥ L′(h). Let p ∈ PP∞, and w the wins word right before playing p. The pioneer resources of p is the
factor of w of size L(h) whose last letter is the (m− 1)th letter of w, where m is the maximum number of
players for which p is winning.

Why considering pioneer resources and not just dependencies of pioneer plays ? Sometimes, between
two consecutive pioneer plays p and p′, some wins that are not dependencies of p′ might be achieved by non-pioneer
plays. Considering that the dependencies of p are enough to fulfill the dependencies of p′ would be true, but
would forget all of those intermediate wins achieved by non-pioneer plays. Considering that dependencies of p can
fulfill resources of p′ is a way to capture all wins achieved in between by non-pioneer plays, even though those
wins might not be dependencies of p′.

Example 34 : Pioneer resources To illustrate the notion of pioneer resources, one ignores for the sake
of clarity the two conditions of using words of size L(h), and of considering pioneer plays for n ≥ L′(h).
Consider again example 13. p5(1) and p5(2) are pioneer plays. Their pioneer resources are 00100 and
001101. Should p5(3) be played right after p1, its pioneer resources would be 1111111.

We are now armed to define vertices of our pioneer play graph. Next step is to know how to define edges.

Luc Lapointe 17 ENS Paris-Saclay

The following definition describes triples (r1, n, r2). Informally, they mean that going from resources r1, there
exist a pioneer play that can achieve a win for a number of players increased by n (in other words, a shift of n in
the wins word) and still reach pioneer resources r2.

Definition 35 : Pioneer transition

Let σ be a non-trivial winning strategy, and p a pioneer play for n played by σ, where n ≥ L′(h)a. Assume
that p is the ith pioneer play played by σ, and consider q the (i+ 1)th pioneer play it plays, which is a
pioneer play for n+ nq.
Let rp (resp. rq) the pioneer resources of p (resp. q). The pioneer transition PT (p) for p is the transition
(rp, nq, rq) ∈ {0, 1}L(h) × N× {0, 1}L(h).

a Pioneer transitions are undefined when n < L′(h).

The ideas behind this definition is that if a pioneer play can be played under some resource condition, it can
be played again under the exact same resource conditions.

Example 36 : Pioneer transition Consider example 13 again, and assume p5(3) is played right after
p1. As in example 34, forget conditions on size of words and of being pioneer for a large number of players.
Then PT (p5(1)) = (00100, 3, 001101) and PT (p5(2)) = (001101, 1, 1111111).

Lemma 37 ensures that the definition of pioneer transition is of use. Figure 11 illustrates it.

Lemma 37 : Pioneer transitions to pioneer plays

Let σ be a non-trivial winning strategy, and e = (y, k, z) = PT (p) an edge of the pioneer play graph of σ.
Assume the ith wins word of σ is of the form

wy0ω

where wy ∈ {0, 1}≥L′(h), and y = y1y2 with |y1| = k. Then one can insert right after the ith play of σ a
pioneer play followed by some other plays resulting in a wins word, larger than or equal, according to
pointwise order, to

wy1z0
ω

and keep the property that this new strategy is winning.

w y1 y2 . . .0ω

y = previous resource

resource translation

≥ w ≥ y1 . . .0ω

z = new resource
k to the right

sequence of plays to
a new wins word
greater or equal

to this one ∗

≥ y2

Figure 11: Meaning of lemma 37.

Proof sketch If e = (y, k, z) = PT (p) is in the pioneer play graph of σ, it means that when p is played
by σ, it has resources y and can reach with a sequence of plays farther resources z. Copy this sequence of
plays but with a number of self-looping on their self loop modified, so that indices of resource of p when p
is played are shifted to indices of resource y in the word wy0ω.

Definition 38 : Pioneer plays graph

Let σ be a winning strategy, and PP∞ the set of pioneer plays of σ for n where n ≥ L′(h). The pioneer
plays graph of σ is a graph (V,E) where :

• V = {0, 1}L(h)

• E =
⋃

p∈PP∞
PT (p) where PT (p) is the pioneer transition for p.

Luc Lapointe 18 ENS Paris-Saclay

Part of the construction of a pioneer plays graph is depicted in figure 12.

3

1

pa

pb

pc

pd

strategy

1

pa

•
∗∗ ∗

pa pb pc

0111 1100

1011

w0111000000ω

w0111100000ω

w0111100100ω

w0111101100ω

pd

∗

w0111101110ω

Wins words Partial
pioneer plays graphPartial automaton

...

Figure 12: How a pioneer plays graph is built and used. Words described in the wins graph are shorter than
L(h) but sufficient for clarity. On the left is part of an automaton. In the middle is a sequence of plays in this
automaton, progressively increasing the wins word. On the right is part of the pioneer plays graph one can deduce
from this sequence of plays.
Underlined bits are the ones added by previous play. Bold bits are the ones that will be considered for the pioneer
plays graph. In the sequence of wins word, they are located in wins word right before a pioneer play. Inside a
wins word, they are located right before the next (underlined) bit added by the next pioneer play.

4.2.5 Generating periodic pioneer wins

See in figure 12 that the sequence of plays pa; pb; pc; pd can be repeated to generate periodic wins. Lemma 39
ensures that one can always find such sequence.

Lemma 39 : Generating periodic wins

Let σ be a non-trivial winning strategy such that if a pioneer play is winning for n < f(h), the next pioneer
play winning for m is such that n+ L(h) ≥ m.
Assume that from all vertex v in the pioneer plays graph, there is a path of length at most k visiting
some vertex v′ twice.
Then one can insert plays in σ to generate wins for numbers of players periodically increasing to infinity
through pioneer plays, with a period of less than kL(h).

Note that in any pioneer play graph G = (V,E), any path of length at least |V |+ 1 meets some vertex twice.

Proof Consider r the pioneer resource of p the first pioneer play for n where n ≥ L′(h) = 3L(h). r is a
vertex of the pioneer plays graph of σ. Let ρ be a path in the pioneer plays graph of length at most k
with a cycle in it. It exists by hypothesis.
After p, apply successively lemma 37 to all edges in the path, to deduce new plays to add to the strategy.
This process can be repeated an arbitrarily long time, as there is a cycle in ρ.
As pioneer wins are distant of at most L(h) number of players by hypothesis, and there is a cycle in ρ, the
period is at most kL(h).

From now on, we denote by C(h) the minimum k such that from all vertex v in the pioneer play graph of an
arbitrary winning strategy, there is a path of length at most k meeting some vertex twice. As the pioneer plays
graph has 2L(h) vertices, we know that C(h) ≤ 2L(h) + 1. Lemma 39 is true for k := C(h) by design.

Luc Lapointe 19 ENS Paris-Saclay

4.2.6 Generating enough consecutive wins with no larger dependencies

A strategy achieving pioneer wins with a period of P allows to think about wins for large numbers of players
modulo P .

Lemma 40 : From periodic wins to consecutive wins

Let σ be a non-trivial winning strategy, verifying the same hypothesis as in lemma 39. Let P be the period
of the periodic wins given by this lemma.
One can build a new strategy τ by inserting plays such that τ wins for W (h) consecutive number of players
without any such play depending on a win for a number of players larger than

3L(h) + 2P 2 +W (h).

Proof sketch Think modulo P . Add enough periodic patterns. Then use q1, . . . , qK plays of σ winnings
for different values modulo P but shifted to fill the holes in the added periodic patterns.

. . .0ωπ π π

Playing q1 on this cell
can have dependencies only
in the neighbouring cells
because of non-triviality

play q1 (depending on π) in

and last periodic patterns

play q2 (depending on π and n1)

and last two periodic patterns
...

q1 wins for
n1 mod P

q2 wins for
n2 mod P

π ππ

everything but the first

in everything but the first

Figure 13: How to fill missing wins in periodic pattern.

Now we are armed to prove the hard implication of our main theorem.

Restate of theorem 23

Let A be a tricolored flat arena, and A be a joint automaton describing the outgoing edges of the⃝ state
in A. Assume A has depth h.
There exists a cooperative strategy σ winning whatever the number of players involved if and only if there
exists a cooperative strategy σ′ such that :

1. σ′ wins for any number n ≤ f(h) of player;

2. no play of σ′ winning for n players with n ≤ f(h) requires that the game has been won by a previous
play for m players with m > f(h).

Proof sketch of first implication Let σ be a winning strategy. If it is non-trivial, by lemma 40, we’re
done by simply applying it, as long as

f(h) ≥ 3L(h) + 2C(h)2 +W (h).

If not, any of the hypothesis of σ that can make it not non-trivial allows to easily prove the theorem.

This concludes that theorem 23 is true with

f(h) = 3L(h) + 2C(h)2 +W (h).

where L(h) = hW (h) = 3h2, and C(h) ≤ 2L(h) + 1. This simple bound on C(h) is enough to show that
Pcrp in Tricolored Arena with Joint Flat Automaton is in NEXPTIME.

Luc Lapointe 20 ENS Paris-Saclay

References
[1] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. “Concurrent Parameterized Games”. In:

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019). Ed. by Arkadev Chattopadhyay and Paul Gastin. Vol. 150. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
31:1–31:15. isbn: 978-3-95977-131-3. doi: 10.4230/LIPIcs.FSTTCS.2019.31. url: https://drops.
dagstuhl.de/opus/volltexte/2019/11593.

[2] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. “Synthesizing Safe Coalition Strategies”.
In: 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2020). Ed. by Nitin Saxena and Sunil Simon. Vol. 182. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
39:1–39:17. isbn: 978-3-95977-174-0. doi: 10.4230/LIPIcs.FSTTCS.2020.39. url: https://drops.
dagstuhl.de/opus/volltexte/2020/13280.

[3] Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala. “A Perfect-Information Construction for Coordination
in Games”. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2011). Ed. by Supratik Chakraborty and Amit Kumar. Vol. 13. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011, pp. 387–398. isbn: 978-3-939897-34-7. doi: 10.4230/LIPIcs.FSTTCS.2011.387. url: http://drops.
dagstuhl.de/opus/volltexte/2011/3335.

[4] Roderick Bloem et al. “Decidability in parameterized verification”. In: ACM SIGACT News 47.2 (2016),
pp. 53–64.

[5] Tristan Charrier et al. “Reachability and Coverage Planning for Connected Agents”. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. International Joint
Conferences on Artificial Intelligence Organization, July 2019, pp. 144–150. doi: 10.24963/ijcai.2019/21.
url: https://doi.org/10.24963/ijcai.2019/21.

[6] Nicolaas Govert De Bruijn. “A combinatorial problem”. In: Proceedings of the Section of Sciences of the
Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 49.7 (1946), pp. 758–764.

[7] Giorgio Delzanno. “Constraint-based verification of parameterized cache coherence protocols”. In: Formal
Methods in System Design 23 (2003), pp. 257–301.

[8] Javier Esparza. “Keeping a Crowd Safe: On the Complexity of Parameterized Verification (Invited Talk)”.
In: 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Ed. by
Ernst W. Mayr and Natacha Portier. Vol. 25. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 1–10. isbn: 978-3-939897-
65-1. doi: 10.4230/LIPIcs.STACS.2014.1. url: http://drops.dagstuhl.de/opus/volltexte/2014/
4498.

[9] Igor Konnov, Helmut Veith, and Josef Widder. “What You Always Wanted to Know About Model Checking
of Fault-Tolerant Distributed Algorithms”. In: Perspectives of System Informatics. Ed. by Manuel Mazzara
and Andrei Voronkov. Cham: Springer International Publishing, 2016, pp. 6–21. isbn: 978-3-319-41579-6.

[10] Swarup Mohalik and Igor Walukiewicz. “Distributed Games”. In: FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science. Ed. by Paritosh K. Pandya and Jaikumar Radhakrishnan.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 338–351. isbn: 978-3-540-24597-1.

[11] Gary L. Peterson and John H. Reif. “Multiple-person alternation”. In: 20th Annual Symposium on Foundations
of Computer Science (sfcs 1979). 1979, pp. 348–363. doi: 10.1109/SFCS.1979.25.

[12] A. Pneuli and R. Rosner. “Distributed reactive systems are hard to synthesize”. In: Proceedings [1990] 31st
Annual Symposium on Foundations of Computer Science. 1990, 746–757 vol.2. doi: 10.1109/FSCS.1990.
89597.

Luc Lapointe 21 ENS Paris-Saclay

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.31
https://drops.dagstuhl.de/opus/volltexte/2019/11593
https://drops.dagstuhl.de/opus/volltexte/2019/11593
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.39
https://drops.dagstuhl.de/opus/volltexte/2020/13280
https://drops.dagstuhl.de/opus/volltexte/2020/13280
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.387
http://drops.dagstuhl.de/opus/volltexte/2011/3335
http://drops.dagstuhl.de/opus/volltexte/2011/3335
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.4230/LIPIcs.STACS.2014.1
http://drops.dagstuhl.de/opus/volltexte/2014/4498
http://drops.dagstuhl.de/opus/volltexte/2014/4498
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597

Appendix
Algorithm to solve Pcrp in Tricolored Flat Arena

Definition 41 : Safe play

Let S be an array of ⊥ and ⊤ indexed from 1 to N , and sia∈ {⊤,⊥}. p = a1 . . . ak is a safe play according
to S and si if the two following properties hold.

1. ∀i ≤ k, p|≤i ∈ L⊥ =⇒ i ≤ N ∧ S[i] = ⊤

2. p|≤k ∈ L⊥ =⇒ si = ⊤ ∧ ∀i ∈ Jk,NK, S[i] = ⊤

a S stands for safe, and si stands for safe infinity.

Algorithm 2 Solving Pcrp in Tricolored Flat Arena
Input: A triple of regular expressions (e⊤, e⊥, e◦) describing a tricolored flat arena A. Their languages are

(L⊤, L⊥, L◦).
Output: Is there a cooperative winning strategy in A ?

1: Build A⊤, A⊥, A◦ nondeterministic automata recognizing L⊤, L⊥, L◦.
2: h← the maximum height of A⊤, A⊥ and A◦.
3: S ← array of ⊥ indexed from 1 to f(h) ▷ f is the function of theorem 23.
4: si← ⊥ ▷ si for safe infinity.

5: procedure Update_S(p) ▷ p = a1a2 . . . a
ω
k is a safe play.

6: for i from 1 to k do
7: Guess one language between L⊤, L⊥ or L◦
8: Check that p|≤i is in it by nondeterministically using the relevant automaton
9: if p|≤i ∈ L⊤ then

10: S[i]← ⊤
11: if p|≤k ∈ L⊤ then
12: si← ⊤
13: for k ≤ i ≤ |S| do
14: S[i]← ⊤

15: while true do
16: Find a safe play p of length less than f(h) + h such that Update_S(p) sets at least one ⊥ of S to ⊤.
17: Update_S(p)
18: if ∀1 ≤ i ≤ |S|, S[i] = ⊤ then
19: return true
20: if neither S nor si changed inside this while loop iteration then
21: return false

Algorithm 2 is correct because algorithm 1 is.

Detailed proofs

Restate of lemma 5 : Joint automaton

For every triple of flat languages L⊤, L⊥ and L◦ such that L◦ ⊔ L⊥ ⊔ L⊤ = Σ∗, there exists a structure
(Σ, Q, δ, q0, F⊤, F⊥, F◦) with F⊤ ⊔ F⊥ ⊔ F◦ = Q such that for every ∆ ∈ {⊤,⊥, ◦}, A∆ = (Σ, Q, δ, q0, F∆)
is a deterministic flat automaton that recognizes L∆. We call this structure a joint automaton.

Proof Let A⊤,A⊥ and A◦ three flat automaton recognizing languages L⊤, L⊥ and L◦. Consider
A = (Σ, Q, δ, q0) the product automaton (without final state) of A⊤,A⊥ and A◦; so Q is made of triple
of states of A⊤,A⊥ and A◦. As L⊤, L⊥ and L◦ are partitioning Σ∗, each state in Q has exactly one

Luc Lapointe 22 ENS Paris-Saclay

component of its triple of states that is final in its original automaton. Label states of A accordingly with
F⊤, F⊥ and F◦ to get an automaton as described in the lemma statement.
Furthermore, as A is a product of flat automata, it also is one.

Restate of theorem 9

Pcrp in Tricolored Arena with flat regular expressions is NP-hard when negation can be used
inside the regular expression it takes as an input.

Proof Reduction from a variant of 3-SAT where all clauses have exactly 3 literals, and no clause
contains two literals corresponding to the same variable. Let

φ =

n∧
i=1

(li1 ∨ li2 ∨ li3)

an input of this variant of 3-SAT, where variables are vi’s indexed from 1 to a given N ∈ N. We consider
w.l.o.g. that i1 < i2 < i3. One consider the tricolored arena whose inputs are the following actions set
and regular expressions :

Σ = B := {0, 1} e◦ = ∅

e⊥ =

n∨
i=1

Bαi4 b̄i1Bαi5 b̄i2Bαi6 b̄i3Bαi7 e⊤ = ¬L2

where :

• In the word
wi = Bαi4 b̄i1Bαi5 b̄i2Bαi6 b̄i3Bαi7 ,

α’s are such that boolean b̄j is the jth letter of wi, and

∀i ≤ n, αi4 + αi5 + αi6 + αi7 + 3 = N ;

• bj is the boolean 0 if and only if lj is a negative literal;

• The .̄ function matches 0 to 1 and 1 to 0.

The idea is that words of length N will encode truth functions.

3-SAT returns true on φ =⇒ Pcrp returns true on the input described above There exist
a truth function τ such that τ(φ) = ⊤. Consider the strategy consisting in one single play

p = τ(v1 . . . vN)0ω

Then as τ values any clause to ⊤, p is not in the language of e⊥, so it is in the language of e⊤.

3-SAT returns true on φ ⇐= Pcrp returns true on the input described above Let p the
first play of an existing winning strategy. Consider strategy τ such that τ(vi) = pi. As p is a play of
a winning strategy, it is not in the language of e⊥. Thus τ evaluates no clause to ⊥.

As this reduction is clearly polynomial (even linear), this concludes the proof of theorem 9.

Restate of theorem 10

Pcrp in Tricolored Arena with regular expressions is PSpace-hard when negation can be used
inside the regular expression it takes as an input.

Proof Consider the well-known PSpace-complete Universality problem :

Luc Lapointe 23 ENS Paris-Saclay

Input: A regular expression e on alphabet Σe

Output: Are all words in the language of e ?

The output of Universality is the same as : "Is the complementary of the language of e empty ?". As
PSpace = Co-PSpace, we design a reduction from Non-Universality the complementary problem of
Universality, whose output is : "Is the complementary of the language of e non-empty ?".

The main idea is to build an equivalence between
"The complementary language of e is not empty"
and "There exist a strategy winning for at least one
number of players". We achieve this first equivalence
with the arena described by the following actions et
and regular expressions :

Σ = Σe e◦ = e

e⊥ = ∅ e⊤ = ¬e

From there, we add a way to win for each player
that can be used only when there is at least one win.
This can for example be achieved by automaton
described in figure 14. From a win for n players,
this automaton can achieve a win for n− 1 players
with its left branch and a win for n+ 1 players with
its right branch.

#← #→

#

##

#

#

Figure 14: A joint automaton that can win for any
number of players from one single win.

In term of inputs of Pcrp, it can be performed by the followings :

Σ = Σe ⊔ {#,#←,#→} e◦ = e ∨#∗ ∨#∗(#← ∨#→)#+

e⊥ = #∗(#←# ∨#→) ∨ Lmix e⊤ = ¬e ∨#∗(#← ∨#→#)

where :

• #,#← and #→ are fresh letters;

• Lmix describes the language of words with at least one letter of Σe and one of {#,#←,#→} :

Lmix = Σ∗ΣeΣ
∗{#,#←,#→}Σ∗ ∨ Σ∗{#,#←,#→}Σ∗ΣeΣ

∗

Non-Universality returns true on e =⇒ Pcrp returns true on the described input
There exist a word w in the complementary language of e. Consider as a first play any infinite word
of Σω

e with prefix w. This play is winning for |w| players, and safe for any other number of player.
From there, play words of the form

#∗#←#ω

whose first prefix of # ranges from |w| − 2 to 0. Those words are safe, and winning for |w| − 1 to 1
players. After they are played, play words of the form

#∗#→#ω

whose first prefix of # ranges from |w| − 1 to ∞. Those words are safe, and winning for |w|+ 1 to
∞ players.

Non-Universality returns true on e ⇐= Pcrp returns true on the described input
If there is a winning strategy, its first winning can not have any prefix in L⊥. The only possible such
plays, when winning for n players, are the ones admitting a prefix of length n in the complementary
language of e.

Luc Lapointe 24 ENS Paris-Saclay

A winning strategy either wins for infinitely many players with one single play, or plays infinitely many pioneer
plays, as lemma 42 points out.

Lemma 42 : Number of pioneer plays

Let σ be a winning strategy. One of the two following properties hold :

• One play of σ ends with a self-looping play in F⊤;

• σ plays infinitely many pioneer plays.

Proof As σ is a winning strategy, it wins for any number of players. If none of its plays ends with a
state in F⊤, all of its plays win for finitely many different numbers of players. Thus, at any given time
of a run, there exists a maximum number of players M such that σ has already won for this number of
players. The next of its plays winning for a number of players larger than M will be a pioneer play.

Restate of lemma 28 : Winning window

Let σ be a winning strategy, and (pi)i>0 be a sequence of plays coherent with σ. Assume that there exist
integers N and j such that when the number of players is between N + 1 and N + 3h, the vertex is
among the first j visited verticesa.
Then there exists one single path (containing a self-loop before a state in F⊤) that is sufficient to win for
all numbers of players larger than N + 3h from turn j + 1.

a In other words, the game is won before play j + 1 when there are between N + 1 and N + 3h players.

Proof As σ is winning, one can go for a case disjunction according to lemma 42 :

Case 1 At some point, σ follows a path ρ whose last state qfinal, on which there is a self-loop, is in
F⊤. In this case, ρ satisfies the hypothesis we’re looking for, because when the game is won for
JN + 1, N + 3hK players, ρ can be used to win for any large number of players the following way:

1. Follow ρ as when it’s played by σ until the N + 1 state of the path;

2. Then stop following intermediate self-loopings of ρ, and instead go straight to qfinal.

Part 1 of the path is not losing, as it is played by a winning strategy. Part 2 neither, because from
any state of the path, qfinal can be reached in less than h transitions, and the game is already won
when there are n ∈ JN + 1, N + h+ 1K players.

Case 2 σ plays infinitely many pioneer plays. In this case, consider the path ρ induced by the first
pioneer play p winning for a number of players n > N + 3h. ρ satisfies the following :

• The nth state on this path, called q⊤, is in F⊤;

• There is a state ql between the N +1th and N +h+1th state of ρ admitting a self-loop, because
of the pigeonhole principle. q⊤ is distant of at most h states from ql;

• There is a state qfinal that can be reached from q⊤ in at most h states;

• There are no state in F⊥ between q⊤ and qfinal, because p is a pioneer play for n. (†)

ρ can be used to win for any large number of players in the following way:

1. Follow ρ (as done by σ) until reaching ql;

2. Self-loop on ql an amount of time such that right after self-looping, by going straight to q⊤, it
is the N + 3h+ 1 state met on the path;

3. Then end the path by simply going from q⊤ to qfinal.

This path is safe. Part 1 because it’s played by a winning strategy, part 2 because of the previous
consecutive wins, and part 3 because of (†) hypothesis. Also, this path is winning for N + 3h+ 1
players. One can then repeatingly using this path by progressively incrementing the number of times
it is looping on ql to progressively win for larger number of players.

Luc Lapointe 25 ENS Paris-Saclay

Restate of lemma 29 : No distant dependencies

Let N ∈ N, and σ be a winning strategy. Assume that when the number of players is between N + 1 and
N + h, the vertex is among the first i visited verticesa
Then there exists a winning strategy σ′ where plays winning for a number of players n ∈ J1, NK after the
ith one do not depend on any win for a number of players larger than N + h.

a In other words, the game is won before play i+ 1 when there are between N + 1 and N + h players.

Proof Consider pi the first play after which the game is won when there are between N + 1 and N + h
players. From then, follow as long as it is possible this procedure :

1. Consider the smallest j > i such that the jth play pj wins for some n ≤ N number of players.

2. Build p′j from pj the following way :

(a) Copy pj until its N th state;

(b) Then go straight to the last self-loop of pj .

3. Play p′j right before pj .

The only case where self-looping to infinity is not safe is if this self-loop is in F⊥. If so, as it is the same
self-loop as the safe play pj , it means that a play ending with a self-looping state in F⊤ has been met
prior to pj . Let p⊤ be such a play. Apply to p⊤ transformation of step 2 described to get p′⊤, and insert
it before p′j . p′⊤ is winning for all numbers of players larger than N + h, and thus makes self-looping on
the final state of p′j safe.
Part 2a of p′j is safe if played right before pj , because pj is safe. Part 2b is also safe until the self-loop,
because any state can reach a self-loop at most h states away, and the game is won if there are between
N + 1 and N + h players. Finally, self-looping to infinity can be made safe. Hence p′j wins for n ans
satisfies the conditions of the statement.

Restate of lemma 37 : Pioneer transitions to pioneer plays

Let σ be a non-trivial winning strategy, and e = (y, k, z) = PT (p) an edge of the pioneer play graph of σ.
Assume the ith wins word of σ is of the form

wy0ω

where wy ∈ {0, 1}≥L′(h), and y = y1y2 with |y1| = k. Then one can insert right after the ith play of σ a
pioneer play followed by some other plays resulting in a wins word, larger than or equal, according to
pointwise order, to

wy1z0
ω

and keep the property that this new strategy is winning.

w y1 y2 . . .0ω

y = previous resource

resource translation

≥ w ≥ y1 . . .0ω

z = new resource
k to the right

sequence of plays to
a new wins word
greater or equal

to this one ∗

≥ y2

Figure 15: Meaning of lemma 37.

Proof Throughout this proof, references to figure 16 will appear in gray to help understanding ideas
and concepts.
We prove this lemma by induction on the structure of PT (p).

1. Assume (y, k, z) is of the form (rp, nq, rq), where p is winning for n ≥ L′(h) and q is winning for
n+ nq. For example, pa is winning for n, and pb is winning for n+ 3.

Luc Lapointe 26 ENS Paris-Saclay

3

1

pa

pb

pc

pd

strategy

1

pa

•
∗∗ ∗

pa pb pc

0111 1100

1011

w0111000000ω

w0111100000ω

w0111100100ω

w0111101100ω

pd

∗

w0111101110ω

Wins words Partial
pioneer plays graphPartial automaton

...

Figure 16: How a pioneer plays graph is built and used. Words described in the wins graph are shorter than
L(h) for clarity. On the left is part of an automaton. In the middle is a sequence of plays in this automaton,
progressively increasing the wins word. On the right is part of the pioneer plays graph one can deduce from this
sequence of plays.
Underlined bits are the ones added by previous play. Bold bits are the ones that will be considered for the pioneer
plays graph. In the sequence of wins word, they are located in wins word right before a pioneer play. Inside a
wins word, they are located right before the next (underlined) bit added by the next pioneer play.

Their induced path is long (greater than L′(h)). The main idea is to use the safe self-loop in it given
by the fact that σ is non-trivial. Adding more self-loopings to it will increase the number of players
those paths are winning for. However, doing so will also shift the number of wins those plays depend
on. If pa is winning for n, it depends on wins for n − 1, n − 2 and n − 3 players. Adding 3 more
self-loopings makes it winning for n+ 3, but then it depends on wins to n+ 2, n+ 1 and n players.

One can not just simply play q right after p, because there might be some needed non-pioneer plays
in between. For pa and pb there are none, but between pb and pd, there is pc that must be played in
between.

Consider the sequence of plays p, p1, . . . , pk played between p and q and of length at least L′(h),
where pk is the play right before q. If p = pb, then this sequence is pb, pc. This sequence of plays,
starting with pioneer resources rp whose last bit was at position n− 1, resulted in achieving pioneer
resources rq whose last bit was at position n− 1 + nq.

Among the plays p, p1, . . . , pk, first consider p. It is played by a non-trivial strategy, so it admits a
safe self-loop before its nth state qn. Let qloop the last safe self-looping state before its last state in
F⊤. We want to deduce from p a play winning for |wy| + 1. Let δ := |wy| + 1 − n. δ, which
can be either positive or negative, is the number of self-looping we will add (or remove) on qloop.

Build a play p′ by copying p but it self-loops on qloop δ times more (or |δ| less, in case δ is negative),
so that p′ wins for n+ δ players. Due to the last hypothesis in the definition of a non-trivial winning
strategy, the last visit of qloop is at most L(h) states before the visit of qn.

If p′ depends on a win to α players, then either

The αth state of p′ appears before qloop. Such dependencies are hidden in the →∗ arrows in
figure 12. In this case, this dependency is not shifted by self-looping more on qloop, so this
dependency is also a dependency of p. As σ is winning, one of the plays before p is winning to
α players. This play is also before p when p′ is inserted after p, so it solves the dependency.

Luc Lapointe 27 ENS Paris-Saclay

The αth state of p′ appears after qloop. Those are the visible dependencies in figure 12. In this
case, (n+ δ)− α ≤ L(h), because of non-triviality of σ.
If p′ depends on a win to α players, then p depends on a win to α − δ players. This is due
to the fact that the distance between the win and the dependency is the same in p and in p′,
because no self-loopings were added in between :

(n+ δ)− α = n− (α− δ)

From this, we deduce that the n− (α− δ) bit in rp, counting from the right, is a 1, because σ
is winning. This bit exists because (n+ δ)− α ≤ L(h).
Thus, as rp = y, the (n+ δ)− α bit in y counting from the right is also a 1. This bit happens
to be the αth bit of wy, because its index is the index of the winning state, n+ δ, minus the
distance between the winning state and the dependency, (n + δ) − α. As the αth bit of the
word is a 1, the dependency is solved.

This concludes that p′ can be inserted after p in σ if at some point the wins words ends with y. But
we are not done yet; it remains to prove that shifted versions of p1, . . . , pk can also be inserted.

What we prove is that when wins words is wy0ω and p0, . . . , pk have been played (with p0 = p), one
can insert p′0, . . . , p

′
k where the primed versions of played have increased the number of self-loopings

on their last self-loop before a state of q⊤ by δ. We prove this by induction on i the index of the
plays. Case i = 0 has been treated above.

Let i ≤ k. Let p′i the play pi with δ more self-loopings on qloop its last safe self-loop before its last
winning state.

• Dependencies of p′i before qloop are solved for the same reasons as explained in the initialization.

• Dependencies of p′i after qloop might be at positions that are not winning in y. If so, as pi is
not losing, it means that a play between p and pi has been played to add a 1 bit at the relevant
position. This play can be shifted by induction hypothesis, so this case is also solved.

Restate of lemma 40 : From periodic wins to consecutive wins

Let σ be a non-trivial winning strategy, verifying the same hypothesis as in lemma 39. Let P be the period
of the periodic wins given by this lemma.
One can build a new strategy τ by inserting plays such that τ wins for W (h) consecutive number of players
without any such play depending on a win for a number of players larger than

3L(h) + 2P 2 +W (h).

Proof Let π be the periodic pattern achieving periodic wins of period P . By definition, |π| = P .
First, if P ≤ L(h), consider instead of P its smallest multiple greater than L(h). We assume next that
P ≥ L(h).
Build σ′ by adding to σ through lemma 39 periodic wins by repeating the periodic pattern
2P + ⌈ W (h) / P ⌉ times. Let n0 be the number of players where the periodic wins start. This
construction is illustrated in figure 17.

. . .0ω

size ≤ 3L(h)

n0

π π

size P

π

2|π|+ ⌈W (h)/|π|⌉ occurrences of π

Figure 17: Generate through lemma 39 wins of this form. π is the factor of wins generated. In figure 12,
π is 10111.

Luc Lapointe 28 ENS Paris-Saclay

For i ∈ J1, P − 1K, consider Wi the sets of plays p in σ′ where there exist z > 0 such that p is winning for
a number of players n0 + L(h) + i+ zP . The L(h) addition is here to get rid of limit cases where the
transition from short paths to long paths happen.
For each of those sets, pick the first play in this set that σ′ plays. Order them by time of play to get a
sequence of plays q1, . . . , qK (where K ≤ P − 1). In this sequence, denote by ni the index modulo P for
which qi is winning.
For i ≤ K, qi can only have dependencies moduloa P that appears either in f , or that are solved by qj
for j < i. Thus, next plays added to σ the following way have all of their dependencies solved. This
construction is illustrated by figure 18.

. . .0ωπ π π

Playing q1 on this cell
can have dependencies only
in the neighbouring cells
because of non-triviality

play q1 (depending on π) in

and last periodic patterns

play q2 (depending on π and n1)

and last two periodic patterns
...

q1 wins for
n1 mod P

q2 wins for
n2 mod P

π ππ

everything but the first

in everything but the first

Figure 18: How to fill missing wins in periodic pattern.

This construction propagates the limit case where we are not sure that dependencies are solved. After
repeating the first for loop K times, the patterns π that are fulled are the ones that are not the K first
from the left nor from the right. As 2P + ⌈W (h)/P ⌉ consecutive patterns π have been built and K ≤ P ,
there are at least ⌈W (h)/P ⌉ consecutive full patterns pi when this constructions is over.
After all of these copies are played, there are W (h) consecutive wins in the wins word.

a counting from n0

Restate of theorem 23

Let A be a tricolored flat arena, and A be a joint automaton describing the outgoing edges of the⃝ state
in A. Assume A has depth h.
There exists a cooperative strategy σ winning whatever the number of players involved if and only if there
exists a cooperative strategy σ′ such that :

1. σ′ wins for any number of player n ≤ f(h);

2. no play of σ′ winning for n players with n ≤ f(h) requires that the game has been won by a previous
play for m players with m > f(h).

Proof of reverse implication Let σ′ be a convenient strategy. The first pioneer play p winning for
h+ 1 players satisfies the following :

• There is a state ql on the first h+ 1 states of this path admitting a self-loop, because f(h) ≥ h+ 1
and pigeonhole principle;

• There is a state q⊤ in F⊤ on this path after ql, because it wins when there are h+1 players involved;

• There is no state in F⊥ on this path after q⊤, because it is a pioneer play.

Thus, as the only dependencies of this play are met before q⊤ and there is a loop before q⊤, one can build
σ the following way :

Luc Lapointe 29 ENS Paris-Saclay

1. Copy σ′ until it has won for any number of player up to f(h);

2. Then forget σ′, and instead copy p but progressively increase the number of self-looping on ql to win
against f(h) + 1 players, then f(h) + 2, and so on.

Proof of first implication Let σ be a winning strategy. The aim is to build from σ a strategy winning
for W (h) number of players, such that any of the plays achieving this is losing to a number of players
more than f(h) if played first. Lemmata 28 and 29 will conclude from there.

If σ matches the hypothesis of lemma 40, we’re done by simply applying it, as long as

f(h) ≥ 3L(h) + C(h)2 +W (h).

If not, then it depends on what assumption breaks :

1. There exists a play winning for number of players between L(h) and f(h) such that one of these
holds:

(a) It has no self-loop in F◦ visited before its L(h)th state. Then lemma 31 concludes.

(b) It ends with a state not in F◦. Assume the final state is the ith one. If it is in F⊤, it wins for all
numbers of players larger than i in one single play, so in particular it wins for W (h) consecutive
numbers of players. If it is in F⊥, then as σ is winning, one of the previous plays has already
won for all players larger than i, so again in particular for W (h) consecutive number of players.

(c) There are more than L(h) visited states between the last self-loop in F◦ and the final state.
Then applying lemma 31 to the path starting right after the last self-loop in F◦ concludes.

2. There exist a pioneer play winning for n < f(h) such that the next pioneer play p is winning for
m with m > n+ L(h). Then as σ is winning, p has no state in F⊥ after its nth state. If 1c holds,
we already proved we are done. If not, we know that the last self-loop in F◦ in p is at most L(h)
states before m. Combined, it means that there are no state in F⊥ between the last self-loop in F◦
of p and its following state in F⊤. Thus, one can repeat it W (h) times by each time increasing the
number of self-loopings on the safe loop by one to conclude.

Luc Lapointe 30 ENS Paris-Saclay

	Introduction
	Definitions
	Defining the problem
	Theorem statement
	Technical definitions

	The algorithms
	Correctness
	Complexity upper bound

	Winning strategies can have bounded dependencies
	Correctness
	Completeness
	Backbone lemmata
	Structure of long paths
	Duplicating winning plays
	Pioneer play graph
	Generating periodic pioneer wins
	Generating enough consecutive wins with no larger dependencies

	References
	Appendix

