TD 1: Temporal Logics

Note: As in the course, we will interpret LTL on discrete linear time. This means that every execution of a Kripke structure can be seen as an infinite word, i.e. an element of Σ^{ω} , where $\Sigma = 2^{AP}$.

Moreover, in the following, only future modalities are needed.

Exercise 1 (Specification). We would like to verify the properties of a boolean circuit with input x, output y, and a register r. We define accordingly $AP = \{x = 0, x = 1, y = 0, y = 1, r = 0, r = 1\}$ as our set of atomic propositions and consider the linear time flow $(\mathbb{N}, <)$ where the runs of the circuit can be seen as temporal structures.

Translate the following properties into LTL.

- 1. "it is impossible to get two consecutive 1 as output"
- 2. "each time the input is 1, at most two ticks later the output will be 1"
- 3. "each time the input is 1, the register contents remain the same over the next tick"
- 4. "The register is infinitely often 1"

Note that there might be several, non-equivalent formal specifications matching these informal descriptions. Indeed, fixing one precise formal specification is the whole point of writing them! equivalent.

Exercise 2 (Equivalences). We fix a set AP of atomic propositions including $\{p, q, r\}$.

- 1. For the following pairs of formulae, determine whether ϕ_1 implies ϕ_2 and vice versa.
 - (a) $\phi_1 = \mathsf{F} \mathsf{G}(p \mathsf{U} q)$ et $\phi_2 = \mathsf{F} \mathsf{G}(\neg p \rightarrow q)$;
 - (b) $\phi_1 = \mathsf{G}((\mathsf{F} p) \to q)$ et $\phi_2 = \mathsf{G}(q \mathsf{U} p);$
- 2. Simplify the following formula:

$$\mathsf{F}(((\mathsf{G} r) \mathsf{U} p) \land (\neg q \mathsf{U} p)) \lor \mathsf{F}(\neg p \lor \mathsf{F} q) .$$

- 3. Consider the formula $\psi := (p \cup q) \cup r$. Show that ψ is not equivalent to $p \cup (q \cup r)$.
- 4. For ψ from the previous question, give an equivalent LTL formula ψ' , where the only allowed temporal modality is U, and for any subformula $\phi \cup \phi'$ of ψ' , ϕ does not contain U.

Exercise 3 (Expressiveness). We fix $AP = \{p\}$, so $\Sigma = \{\emptyset, \{p\}\}$.

- 1. Show that the following subsets of Σ^{ω} are expressible in LTL.
 - (a) $\{p\}^* \cdot \emptyset^{\omega}$, and
 - (b) $\{p\}^n \cdot \emptyset^{\omega}$ for each fixed $n \ge 0$.
- 2. Is the language $(\{p\} \cdot \emptyset)^{\omega}$ expressible in LTL?
- 3. Consider the infinite sequence $\sigma_i = \{p\}^i \cdot \emptyset \cdot \{p\}^\omega$ for $i \ge 0$. Show by induction on LTL formulæ φ that, for all $n \ge 0$, if φ has less than $n \times \infty$ modalities, then for all i, i' > n, $\sigma_i \models \varphi$ iff $\sigma_{i'} \models \varphi$. (*Hint: For the case of* \cup , show that $\sigma_i \models \varphi$ iff $\sigma_{n+1} \models \varphi$.)
- 4. Using the previous question, show that the set $(\{p\} \cdot \Sigma)^{\omega}$ is not expressible in LTL.