TD 2: LTL Expressivity

Exercise 1 (First order equivalence). Let SU be the temporal operator such that

 $\mu, i \models \varphi_1$ SU φ_2 iff $\exists k \ i < k \text{ and } \mu, k \models \varphi_2 \text{ and } \forall j \in \mathbb{N}, i < j < k \rightarrow \mu, j \models \varphi_1$

- 1 Show that for any LTL(AP, SU) formula φ , there exists an equivalent FO(AP, <) formula $\overline{\varphi}$ namely $\overline{\varphi}$ satisfiable iff φ is. Try using only 3 variables.
- 2. Express the operators X and U using only $\mathsf{SU}, \lor, \neg, \top$
- 3. Show that for any LTL(AP, X, U) formula, there exists an equivalent FO(AP, <) formula using only 3 variables.

Exercise 2 (Game). Consider the game $\mathcal{G}(M, M')$ with M and M' being linear temporal structures with labeling in 2^{AP} . A configuration corresponds to a pair (x, x') with x being a position in M et x a position in M'. A configuration is said *compatible* iff the labeling of x and x' are the same.

On each turn, the player 0 (P_0) chooses either M or M' and changes the associated position x (resp. x') to a y (resp. y') s.t. $y \ge x$ (resp. $y' \ge x'$). The player 1 (P_1) must then change the position on the other structure so the new configuration is compatible. P_0 wins the game $\mathcal{G}_r(M, M')$ if P_1 can not play anymore, and P_1 wins if they can respond a given number r of turns.

Let $LTL_r(F, G)$ be the fragment of LTL(F, G) with formulas of temporal height at most r.

We want to show by induction on r that P_1 has a winning strategy in $\mathcal{G}_r(M, M')$ iff M, 0and M', 0 satisfy the same formulas of $\mathrm{LTL}_r(F, G)$.

- 1. Show the result for r = 1
- 2. Show the direct implication using an induction on a formula φ satisfied by M, 0.
- 3. Show the inverse implication by contraposition.

Homework

To hand in on October 10th at the beginning of the exercise session, or at any earlier time by email at nicolas.dumange@ens-paris-saclay.fr. You can use either French or English.

Exercise 3 (Gabbay separation). Express the following LTL(AP, Y, S, X, U) formula as an equivalent boolean combination of pure future (LTL(AP, X, U)) and pure past (LTL(AP, Y, S)) formulas.

- $\bullet \ \top$
- 1. $a \cup Yb$
- 2. $G(a S (\neg X b))$
- 3. F(P(a))
- 4. GF(a S b)