

Exercise Session 3: Büchi Automata Solutions

Exercise 1

We construct the new automaton in the following way: we create $n + 1$ "copies" of the automaton, having the same states and transitions for all non-accepting states. We number them from 0 to n . In copy number k , we call s_k the state corresponding to $s \in Q$ in the original automaton. The set of initial states of the new automaton is the set $\{s_0 | s \in I\}$. Given a transition $s \rightarrow s'$ in the original automaton where $s \notin F_i$ for any i we create transitions $s_k \rightarrow s'_k$ in all copies. Given a transition $s \rightarrow s'$ in the original automaton where $s \in F_i$ for some i , we create transitions $s_k \rightarrow s'_k$ for $k \neq i$ and a transition $s_i \rightarrow s'_{i+1}$ if $i \neq n$, $s_i \rightarrow s'_0$ else. Finally, the set of final states in the new automaton is the set $\{s_n | s \in F_n\}$.

The idea is that an execution in the new automaton goes from copy i to copy $i + 1$ when a state from F_i is visited, hence it can visit the set of final states infinitely many times if and only if the corresponding execution in the original automaton visits each F_i infinitely often.

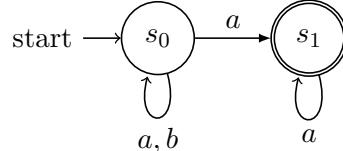
Exercise 2

We first show that $\text{Rec}(\Sigma^\omega) \subseteq \text{Rat}(\Sigma^\omega)$. Let $\mathcal{A} = (Q, \Sigma, I, T, F)$ be a Büchi automaton recognizing some rational language L . For each $i \in I$, and $f \in F$, let $X_{i,f}$ be the language recognized by the finite-word automaton $(Q, \Sigma, \{i\}, T, \{f\})$ and Y_f the language recognized by the finite-word automaton $(Q, \Sigma, \{f\}, T, \{f\})$. We then have $L = \bigcup_{(i,f) \in I \times F} X_{i,f} Y_f^\omega$ (the idea is that an accepting execution in \mathcal{A} ends looping infinitely from some final state to itself).

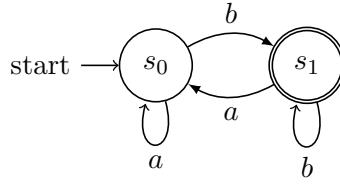
To show that $\text{Rat}(\Sigma^\omega) \subseteq \text{Rec}(\Sigma^\omega)$, let us consider a rational language $L = \bigcup_{0 \leq i < n} X_i Y_i^\omega$. Consider finite-words automata \mathcal{X}_i and \mathcal{Y}_i that recognize X_i and Y_i respectively. To construct a Büchi automaton recognizing L , we only need to connect final states in \mathcal{X}_i to initial states in \mathcal{Y}_i , and final states in \mathcal{Y}_i to initial states in \mathcal{Y}_i for all i . The final states of our new automaton are final states in \mathcal{Y}_i for some i .

Exercise 3

1. The two automata are described below:



A nondeterministic Büchi automaton for $(a + b)^* a^\omega$.



A deterministic Büchi automaton for $(a^*b)^\omega$.

2. Suppose there exists some deterministic automaton \mathcal{A} for L . Let i be its initial state, F its set of final states, and for any state s of \mathcal{A} and any word $w \in (a+b)^*$ let $\delta(s, w)$ be the state we end up in when reading w from s (notice this is always well-defined because with the help of a bin-state we can make the automaton complete). Since $a^\omega \in L$ there exists some $n_0 \in \mathbb{N}$ such that $\delta(i, a^{n_0}) \in F$. Similarly, since $a^{n_0}ba^\omega \in L$ there exists some n_1 such that $\delta(i, a^{n_0}ba^{n_1}) \in F$. By repeating this ad infinitum, we construct a sequence of natural numbers $(n_k)_{k \in \mathbb{N}}$ such that the word $a^{n_0}ba^{n_1}ba^{n_2}b\dots$, which does not belong to L , is accepted by \mathcal{A} .

3. We show that $L' = \overrightarrow{L}$

$L' \subseteq \overrightarrow{L}$: Let w be a word in L' . Thus, the path labeled by w in \mathcal{A} visits infinitely often a final state, say at steps $(n_i)_{i \in \mathbb{N}}$. Then, denoting $w[0, k]$ the word composed of the $k+1$ first letters of w , the words $(w[0, n_i])_{i \in \mathbb{N}}$ are prefixes of w , each recognized by \mathcal{A} . Thus, $w \in \overrightarrow{L}$.

$\overrightarrow{L} \subseteq L'$: Let w be a word in \overrightarrow{L} . Then, w has infinitely many prefixes in L , each recognized by \mathcal{A} as a DFA. By ordering them according to the prefix order, we obtain a sequence $(w_i)_{i \in \mathbb{N}}$. During the reading of w with \mathcal{A} as a Büchi Automaton, the final states will be visited successively after reading the w_i 's, and w is accepted by the automaton, hence $w \in L'$

We can conclude that $\overrightarrow{L} = L'$.

Exercise 4

(We need to define two similar equivalences over Σ^* and Σ^+ respectively in the exercise. Otherwise, this correction holds.)

1. Each congruence class is associated with a unique function $Q^2 \rightarrow \{0, 1, 2\}$ mapping pairs of states (q, q') to 2 if and only if all words u in the congruence class satisfy $q \xrightarrow{u} q'$, 1 if and only if all words u in the congruence class satisfy $q \xrightarrow{u} q'$ but not $q \xrightarrow{u} q'$ and 0 if no word u in the class satisfies $q \xrightarrow{u} q'$. Two different congruence classes cannot be associated to the same function: this would mean the words in the two classes are equivalent to each other, and thus the two congruence classes are actually one and the same. Q being finite, there is a finite number of functions $Q^2 \rightarrow \{0, 1\}$ and hence \mathcal{A} has a finite number of congruence classes.

2. For any pair of states (q, q') , we define by $\mathcal{L}(q, q')$ the language $\{u \in \Sigma^* \mid q \xrightarrow{u} q'\}$ and $\mathcal{L}_F(q, q')$ the language $\{u \in \Sigma^* \mid q \xrightarrow{u} q'\}$. Each of these languages is regular: $\mathcal{L}(q, q')$ is quite obviously recognized by the automaton $(Q, \Sigma, \{q\}, T, \{q'\})$ and $\mathcal{L}(q, q')$ is recognized by a slightly more complicated automaton built from two copies of \mathcal{A} , with transitions from one copy to another from states in F , q as the only initial state and the copy of q' as the only accepting one. Each congruence class can be expressed as a finite intersection of languages of the form $\mathcal{L}_F(q, q')$, $\mathcal{L}(q, q')$ or the complement of one or the other. More precisely, for $u \in \Sigma^*$:

$$[u] = \bigcap_{u \in \mathcal{L}_F(q, q')} \mathcal{L}_F(q, q') \cap \bigcap_{\substack{u \in \mathcal{L}(q, q') \\ u \notin \mathcal{L}_F(q, q')}} \mathcal{L}(q, q') \cap \overline{\mathcal{L}_F(q, q')} \cap \bigcap_{u \notin \mathcal{L}(q, q')} \overline{\mathcal{L}(q, q')}$$

Hence, as a finite intersection of regular languages, each congruence class is itself a regular language.

3. As seen in exercise 2, since each congruence class is a regular language, each $[u][v]^\omega$ is a recognizable language. Since there are finitely many congruence classes, $K(L)$ is thus a finite union of recognizable languages, which means it is itself a recognizable language.

4. Consider some word $w \in K(L(\mathcal{A}))$. By design there exist words $u, v_0, v_1 \dots \in \Sigma^*$ such that $w = uv_0v_1\dots$ and there exists v such that for all i $v_i \in [v]$ and $[u][v]^\omega \cap L(\mathcal{A}) \neq \emptyset$. This means there exist words u' and $v'_0, v'_1 \dots$ such that $u \sim_{\mathcal{A}} u'$, for all i $v_i \sim_{\mathcal{A}} v'_i$ and $u'v'_0v'_1\dots \in \mathcal{A}$. Consider an accepting execution $q_0q_1q_2\dots$ of $u'v'_0v'_1\dots$ in \mathcal{A} . In particular there exist k_0, k_1, \dots such that $q_0 \xrightarrow{u'} q_{k_0}$, $q_{k_0} \xrightarrow{v'_0} q_{k_1}$ etc. Since this execution is accepting there exists k_{i_0}, k_{i_1}, \dots such that $q_{k_{i_0}} \xrightarrow{v'_{i_0-1}} q_{k_{i_0}+1}$, $q_{k_{i_1}} \xrightarrow{v'_{i_1-1}} q_{k_{i_1}+1}\dots$ Since $u \sim_{\mathcal{A}} u'$ and for all i $v_i \sim_{\mathcal{A}} v'_i$ we also have $q_0 \xrightarrow{u} q_{k_0}$, $q_{k_0} \xrightarrow{v_0} q_{k_1}$ etc., and for all n $q_{k_{i_n}} \xrightarrow{v_{i_n-1}} q_{k_{i_n}+1}$, hence there exists an accepting execution of $uv_0v_1\dots$ in \mathcal{A} , which means $w \in L(\mathcal{A})$.

5. For all i, j with $i < j$, let $c(i, j)$ be the congruence class of $\sigma_i\dots\sigma_{j-1}$. As there is a finite number of congruence classes, we can apply Ramsey's theorem: there exists an infinite set $A \subseteq \mathbb{N}$ and a congruence class $[v]$ such that for all $i, j \in A^2$ with $i < j$ we have $c(i, j) = [v]$. Let us order the elements in A : $A = \{i_n \mid n \in \mathbb{N}\}$ with for all n $i_n < i_{n+1}$. We then have that for all n $\sigma_{i_n}\dots\sigma_{i_{n+1}-1} \in [v]$. This means that $\sigma \in [\sigma_{i_0}][v]^\omega$.

6. Using the previous question, we show that $\overline{L(\mathcal{A})} \subseteq K(\overline{L(\mathcal{A})})$, and thus $\overline{L(\mathcal{A})} = K(\overline{L(\mathcal{A})})$. Since $K(\overline{L(\mathcal{A})})$ is recognizable, this means $\overline{L(\mathcal{A})}$ is recognizable.