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Motivations

Define robust notions of local safety and local liveness for distributed system.

» Give topological characterizations
» Establish a decomposition theorem.

» Characterizations by canonical local temporal logic formulae.



Mazurkiewicz traces

» (X, D) dependence alphabet.

» I =% x ¥\ D independence relation.
t = (V,<,\) finite or infinite trace.

R set of finite or infinite traces.

v

v

M set of finite traces.

v

v

s < t prefix relation over traces

Pref(t) ={seM|s <t}

v

P set of prime traces, i.e., finite traces having a single maximal vertex.
Pref(t) = Pref(t) NP

» R! is the set of nonempty traces having a single minimal vertex.
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Safety properties

Definition: Safety

» An execution t is safe if and only if all partial executions of ¢ are Good.
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Safety properties

Definition: Safety

» An execution t is safe if and only if all partial executions of ¢ are Good.

» Global semantics: a partial execution is a (global) finite prefix.
A trace t € R is globally safe w.r.t. Good C M if Pref(t) C Good.
A language L is a global safety if there exists Good C M such that

L = {t e R | Pref(t) C Good}.

» Local semantics: a partial execution is a prime prefix.
A trace t € R is locally safe w.r.t. Good C P if Pref(¢t) C Good.

A language L is a local safety if there exists Good C P such that
L = {t € R | Pref(t) C Good}.

> Local safety can be enforced locally.



Safety properties

Example: Local safety
Y ={a,b,c} and I = {(a,b), (b,a)}.

L ={t e R|t=ucrcscv with |r|. = |s|. = 0 implies
e +|rls 7 |sla +|sls mod 2}

is a local safety property.



Safety properties

Example: Local safety
Y ={a,b,c} and I = {(a,b), (b,a)}.

L ={t e R|t=ucrcscv with |r|. = |s|. = 0 implies
[Pla + [7]s 7 |sla + [s]p mod 2}

is a local safety property.

Example: Global safety
Y ={a,b,c} and I = {(a,b), (b,a)}.

L ={t e R|t=ucrv with |r|. = 0 implies |r|, + |r|p < 3}

is a global safety property but not a local safety property.



Some Poset properties

Definitions and notations
» (E, <) Poset
» X C FE is coherent if for all z,y € X there exists z € ' with z < z and y < z.

» X C F is directed if X # () and for all z,y € X there exists z € X with
r<zandy<z

» LIX least upper bound of X when it exists.

» (R, <) is coherently complete, i.e., any coherent set has a lub.
» Pref(t) is coherent and ¢t = LIPref(t) for all ¢ € R.
» Pref(t) is directed and ¢ = LIPref(¢) for all t € R.




Local closure

Definition: Local closure

» L C R is locally closed if it is closed under prime prefixes and lub of coherent
subsets:

Pref(L) C L and LUK € L for all coherent K C L

Remark: if L is locally closed then Pref(L) C L.
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» The local closure L is the smallest set which is locally closed and contains L.

Remark: 1 =10 € I



Local closure

Definition: Local closure

» L C R is locally closed if it is closed under prime prefixes and lub of coherent
subsets:

Pref(L) C L and LUK € L for all coherent K C L

Remark: if L is locally closed then Pref(L) C L.

-0 . . . .
» The local closure L is the smallest set which is locally closed and contains L.

Remark: 1 =10 € fe

Proposition: Local closure

- I = {t € R | Pref(t) C Pref(L)}.
» L C R is a local safety property if and only if it is locally closed.




Global closure

Definition: Global closure = Scott closure
» L C R is Scott closed if it is closed under prefixes and lub of directed subsets:

Pref(L) C L and UK €L forall directed K C L

Remark: if L is locally closed then it is Scott closed.
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Global closure

Definition: Global closure = Scott closure
» L C R is Scott closed if it is closed under prefixes and lub of directed subsets:

Pref(L) C L and LUK € L for all directed K C L
Remark: if L is locally closed then it is Scott closed.

» The Scott closure L’ is the smallest set which is Scott closed and contains L.

Remark: L7 C fe

Proposition: Global closure

» T” = {t € R| Pref(t) C Pref(L)}.
» L C R is a global safety property if and only if it is Scott closed.

» Every local safety property is also a global safety property.
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Local temporal logic

Definition: Syntax of LocTLx[EX, U, EY, S]

pu=Tla|-p|pVe|EXe|pUp|EYp|pSep

where a ranges over Y.

Definition: Semantics: t = [V, <, A\] e R\ {1} andz € V

t,x = a if AMz)=a

t,r EEXe if Jyet(z<yandt,ylp)

t,rlEpUy if Fzet(z<zandt,zEvYandVyect(z<y<z=tykEp)
t,r EEYp if Jyet(y<zandt,ykEp)

t,rl =Sy if Jzet(z<zandt,zEvYandVyct(z<y<z=tykEyp)

Abbreviations
» Fp=TUp




Local temporal logic

Definition: Future formulae
Future formulae: LocTLy[EX, U]

Remark: if ¢ € LocTLx[EX, U] then for all t € R\ {1} and x € ¢ we have
teke ff lnoke

Theorem: Diekert & G., IC 06

Let L C R be a first-order definable real trace language.
Then there is a future formula ¢ € LocTLyx[EX, U] such that

LNR! = {t ¢ R' | t,min(t) = ¢}



Local temporal logic

Definition: Past formulae
Past formulae: LocTLy[EY, 5]

Remark: if ¢ € LocTLx[EY,S] then for all t € R\ {1} and = € ¢ we have
toky W lnoke

Corollary: Diekert & G., IC 06

Let L C R be a first-order definable real trace language.
Then there is a past formula ¢ € LocTLy[EY, S] such that

LNP={teP|tmax(t) E v}
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F and G formulae

Definition: Direct semantics for F and G

t=cFe if Jxet, t,xEgp
tee Gy if Vzet t,xkEq.

Remark: 1 = Gy but 1}~ Fo for all ¢ € LocTLy




F and G formulae

Definition: Direct semantics for F and G

t=cFe if Jxet, t,xEgp
tee Gy if Vzet t,xkEq.

Remark: 1 = Gy but 1}~ Fo for all ¢ € LocTLy

Extension to any boolean combination  of F and G formulae.

Liy)={teR |t}



Concurrent modality

Definition: Local decompotion of traces

Lett =[V,<,\]eRandz €t




Concurrent modality

Definition: Local decompotion of traces
Lett =[V,<,\]eRandz €t

Jx Tt

| H

Definition: Concurrent modality

Let v be any Boolean combination of F and G formulae.
Then, CO~ is a concurrent formula with semantics

t,x ECOy if |z ken.



Decomposition formulae

Definition:
A decomposition formula is a disjunction

5=\ a; A Ap; ACOY;
jeJ
where J is some finite index set, and for each j € J
»a; €X
» 1p; € LocTLx(EY,S) is a past formula
» ¢; € LocTLx (EX, U) is a future formula
> 7; isan F or G formula
Note that, if J = () then we get § = L by convention.

[l
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Local decomposition

Theorem: Decomposition

Let L C R be a first-order definable real trace language.
There exists a decomposition formula

8=\ a; A¥; Ap; ACO;
jed
such that
1. LU{1} = £L(GY),
2. L\ {1} = L(F9),
3. Pref(L) = {r € P | r,max(r) & V,c;a; A},
4. for each j € J, the formula a; A ¥; A p; A CO~; is satisfiable.



Local decomposition: proof sketch

The proof uses

Theorem: Ebinger & Muscholl, TCS 96

A language L C R is a first-order definable if and only if it is aperiodic.

Let h: M(3, D) — S be a morphism recognizing L with S finite aperiodic monoid.
Assume h alphabetic.
Lett € L\ {1} and z € t. Then,

t € [Ua] - M) - [lJ«] - [] € L

[
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Let J = {(A(z), [Jz], [||=], [ftz]) | t € L\ {1} and x € t} finite index set.
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Local decomposition: proof sketch
Let h : M(X, D) — S be a morphism recognizing L with S finite aperiodic monoid.

Lett € L\ {1} and z € t. Then,
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By induction on the alphabet, we find a decomposition formula 6; for LL!.

Lot _ JGO if1EL]
L Fo; otherwise.



Local decomposition: proof sketch
Let h : M(X, D) — S be a morphism recognizing L with S finite aperiodic monoid.

Lett € L\ {1} and z € t. Then,
t € [ba] - A2) - ll] - [fra] < L
Let J = {(A(z), [Jz], [||=], [ftz]) | t € L\ {1} and x € t} finite index set.
Fix j = (a5, LY, L), L) € J.
There exists a future formula ¢; and a past formula v; such that
a; - L;T NR! = {seR'|s,min(s) = ¢,}

L} a;nP = {reP|rmax(r) v}

By induction on the alphabet, we find a decomposition formula 6; for Ly.

Go; iflelL)
Let "y] = J : .]
Fo; otherwise.
Claim: the decomposition formula § = \/ aj N Ap; ACOwy;
JjeJ
satisfies statements (1-4) of the decomposition theorem.



Canonical local safety formulae

Definition:
A canonical local safety formula is a formula of type G where ¢ € LocTLg[EY, 5]
is a past formula.

Theorem: local safety

A first-order definable language is a local safety property if and only if it can be
expressed by a canonical local safety formula.
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Canonical local safety formulae

Definition:
A canonical local safety formula is a formula of type G where ¢ € LocTLg[EY, 5]
is a past formula.

Theorem: local safety

A first-order definable language is a local safety property if and only if it can be
expressed by a canonical local safety formula.

More precisely:
1. Let ¢ € LocTLg[EY,S]. Then, £(G1)) is locally closed.

2. Let L C R be a first-order definable language.
Let 6 =V c;a; A Apj ACO~; be a decomposition formula for L.
Then,

ZZZE G\/CLj/\?/}j

jeJ



Canonical local safety formulae

Example:
Let ¥ = {a,b,c} and T = {(a,b), (b,a)}.

L ={t € R|t=wucrecscv with |r|. = |s|. = 0 implies
[7|a + 7|6 # |s|a + |s|s mod 2}

is a local safety property but is not first-order definable.



Canonical local safety formulae

Example:
Let ¥ = {a,b,c} and T = {(a,b), (b,a)}.

L ={t € R|t=wucrecscv with |r|. = |s|. = 0 implies
[rla +|rls 7 |sla +|sls mod 2}

is a local safety property but is not first-order definable.

Example:

L ={teR|t=ucrcv with |r|. =0 implies |r|, < 2A|r|p < 2}

is a local safety property which is first-order definable.
It is defined by the canonical local safety formula

G(cANEY(TS¢) — —EY(a AEY(a AEYa)) A-EY(bAEY(bAEYD)))
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Liveness properties

Definition: Liveness

» A partial execution 7 is live if it can be extended to some Good execution.

» Global semantics: a partial execution is a (global) finite prefix.
A trace r € M is globally live w.r.t. Good C R if r € Pref(Good).
L C R is a global liveness property if all partial executions are live w.r.t. L:

Pref(L) =M

» Local semantics: a partial execution is a prime prefix.
A trace r € P is locally live w.r.t. Good C R if r € Pref(Good).

L C R is a local liveness property if all partial executions are live w.r.t. L:
Pref(L) =P

> Any global liveness property is also a local liveness property.



Liveness properties

Example: Local liveness

Let ¥ = {a, b} with (a,b) € I.
The language L = {a®,b“} is a local liveness property since

P=atUb" = Pref(L)
But L is not a global liveness property since

Pref(L) = Pref(L) # M



Liveness properties

Example: Local liveness

Let ¥ = {a, b} with (a,b) € I.
The language L = {a®,b“} is a local liveness property since

P=atUb" = Pref(L)
But L is not a global liveness property since
Pref(L) = Pref(L) # M

Example: Global liveness

The language L = {(ab)*“} is a global liveness property,
hence also a local liveness property.



Local density

Definition: Local density

A language L C R is locally dense if
I' =R
Recall that fe is the smallest set which is locally closed and contains L:

I' = {t € R | Pref(t) C Pref(L)}

Proposition: local density

A trace language L C R is a local liveness property if and only if it is locally dense.



Canonical local liveness formulae

Definition:
A canonical local liveness formula is of the form F where
8=\ a; A; Ap; ACO;
JjEJ
is a decompotion formula such that
> )= \/jeJ a; A is valid,
> a; A pj A COv; is satisfiable for all j € J.



Canonical local liveness formulae

Definition:
A canonical local liveness formula is of the form F¢§ where

8=\ a; A; Ap; ACO;
jeJ

is a decompotion formula such that
> ) = VjeJ a; A is valid,
> a; A\ @; A CO~; is satisfiable for all j € J.

Proposition: local liveness

Let F§ be a canonical local liveness formula.
Then the language L = L(F §) is a local liveness property.



Canonical local liveness formulae

Proof: Sketch
Let r € IP.

Let j € J with 7, max(r) &= a; A ¢, (¢ valid)
Let ¢t € R\ {1} and = € ¢ such that t,z = a; A p; A CO~; (satisfiable)




Canonical local liveness formulae

Proof: Sketch
Let r € IP.

Let j € J with 7, max(r) &= a; A ¢, (¢ valid)
Let ¢t € R\ {1} and = € ¢ such that t,z = a; A p; A CO~; (satisfiable)




Canonical local liveness formulae

Proof: Sketch

Let r € IP.

Let j € J with 7, max(r) &= a; A ¢, (¢ valid)
Let ¢t € R\ {1} and = € ¢ such that t,z = a; A p; A CO~; (satisfiable)
Then, r- |z = Fé.

[l




Local liveness

Theorem: Local liveness
Let L C R be a first-order definable real trace language and let

0= \/aj/\ibj/\ng/\CO’Yj
jeJ
be a decomposition formula for L

Let also v =V, ya; A ;. Then.,
1. T = £(G ).




Local liveness

Theorem: Local liveness

Let L C R be a first-order definable real trace language and let

8=\ a; A; Ap; ACO;

jeJ
be a decomposition formula for L.
Let also 1) = ;. ya; A9;. Then,

1. T = £(G ).
2. If L is a local liveness property, then 1 is a valid formula and
L\ {1} = L(F¢) is defined by a canonical local liveness formula.



Local liveness

Theorem: Local liveness

Let L C R be a first-order definable real trace language and let

8=\ a; A; Ap; ACO;

jeJ

be a decomposition formula for L.

Let also 1) = ;. ya; A9;. Then,
1. T = £(G ).

2. If L is a local liveness property, then 1 is a valid formula and
L\ {1} = L(F¢) is defined by a canonical local liveness formula.

3. F(—p Vv §) is a canonical local liveness formula.
L= LF(—yp V)= (L\{1}H)UR\ fe) is a local liveness property.
Moreover, L is the largest set K such that L\ {1} = I'nK.
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Local liveness

Example: Motivation

Let ¥ = {a, b} with (a,b) € I.

The language L = {a*,b“} is a local liveness property.
Consider the global partial execution ab?.
The local partial executions are a® and b2.
Both local partial execution are locally live.

But the global partial execution is not live.



Strong local liveness



Strong local liveness
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Strong local liveness
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Strong local liveness

Yu cL

Definition: Strong local liveness

L C R is a strong local liveness property (SLLP) if

> L is a local liveness property (LLP)
» for all t = raus € R\ {1} with ra € P, a € X, as € R! and alph(u) C I(a),

raus € L = ras € L
If (a,b) € I then L = a*b> U a™b* is a SLLP.



Strong local liveness

Yu cL

<
IS

L

V)

Definition: Strong local liveness

L C R is a strong local liveness property (SLLP) if
> L is a local liveness property (LLP)
» for all t = raus € R\ {1} with ra € P, a € X, as € R! and alph(u) C I(a),

raus € L = ras € L
If (a,b) € I then L = a*b> U a™b* is a SLLP.

Proposition: Various liveness

SLLP ¢ GLP C LLP.
If (a,b) € I then L = (ab)¥ is a GLP but not a SLLP.



Strong local liveness

Theorem: Canonical formulae

L C R is a first-order definable strong local liveness property if and only if
there is a finite decomposition formula with no concurrent part

5=\ a; A Ao;

jeJ
such that
> =V esa; A valid,
> aj N, N\ @; satisfiable for each j € J
and such that

L\{1}=L£(F§) and LU{1} = L(G?)
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Strong or not?

Any property L C R is the intersection of a local safety and a local liveness:

L=T'Nn(LUR\I"



Strong or not?

Any property L C R is the intersection of a local safety and a local liveness:

-0 -t

L=L Nn(LUR\L))

If we wish that every language is the intersection of a local safety property and a
liveness property then each locally dense language must be a liveness property.

SLLP C GLP C LLP = LD




Strong or not?

Any property L C R is the intersection of a local safety and a local liveness:

L=T'Nn(LUR\I"

Remark:
If we wish that every language is the intersection of a local safety property and a
liveness property then each locally dense language must be a liveness property.

SLLP C GLP C LLP = LD

Proof:

Let L be locally dense.
Assume that L = K7 N Ko with K; local safety and K5 liveness.

Then R :fe - ?i = K.
We deduce L = K> is a liveness property.



Local separation

With a proof similar to the decomposition theorem, we obtain

Theorem: Separation

Let ¢ be a first-order formula with one free variable.
Then there exists a decomposition formula

5=\ a; A Ap; ACOY;

jeJ
such that for all t € R\ {1} and all z € ¢ we have

t,x = p(z) ifandonlyif t,zkE=o
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