
1/37

Local testing of MSCs

Paul Gastin

LSV, ENS Cachan

Joint work with
Puneet Bhateja, Madhavan Mukund, K Narayan Kumar

CMI, Chennai

ANR DOTS, Bordeaux
31 January 2008

2/37

Plan

1 MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents

3/37

Scenarios

◮ A scenario describes a pattern of interaction

◮ Attractive visual formalism

◮ Telecommunications

◮ Message sequence charts (MSC)

◮ Messages sent between communicating agents

◮ UML

◮ Sequence diagrams

◮ Interaction between objects

e.g., method invocations etc

4/37

An ATM

Customer ATM Bank

-
passwd

-authen

�
wrong

�
reject

4/37

An ATM

Customer ATM Bank

-
passwd

-authen

�
correct

� OK

-
amount

-funds?

�
no

�
sorry

4/37

An ATM

Customer ATM Bank

-
passwd

-authen

�
correct

� OK

-
amount

-funds?

�
yes

� cash

5/37

How do we formalize MSCs?

p q r

m1

m2

m3

5/37

An MSC with events

p q r

e1

e′
1

e2

e′
2

e3

e′
3

m1

m2

m3

5/37

An MSC with labelled events

p q r

p!q(m1) e1

p!r(m3) e′
1

e2 q?p(m1)

q!r(m2) e′
2 e3 r?q(m2)

e′
3 r?q(m3)

m1

m2

m3

5/37

MSCs as labelled partial orders

p!q(m1) e1

p!r(m3) e′
1

e2 q?p(m1)

q!r(m2) e′
2 e3 r?q(m2)

e′
3 r?q(m3)

5/37

MSCs as labelled partial orders

p!q(m1) e1

p!r(m3) e′
1

e2 q?p(m1)

q!r(m2) e′
2 e3 r?q(m2)

e′
3 r?q(m3)

◮ Linearizations give a word language
p!q(m1) p!r(m3) q?p(m1) q!r(m2) r?q(m2) r?q(m3),
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?q(m3),. . .

5/37

MSCs as labelled partial orders

p!q(m1) e1

p!r(m3) e′
1

e2 q?p(m1)

q!r(m2) e′
2 e3 r?q(m2)

e′
3 r?q(m3)

◮ Linearizations give a word language
p!q(m1) p!r(m3) q?p(m1) q!r(m2) r?q(m2) r?q(m3),
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?q(m3),. . .

◮ A single linearization is sufficient to reconstruct MSC

6/37

Plan

MSC

2 HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents

7/37

Collections of MSCs

◮ Often need to specify a collection of scenarios

◮ Finite collection can be exhaustively enumerated

◮ Infinite collection needs a generating mechanism

8/37

High level MSCs (HMSCs)

◮ A finite state automaton

◮ Each state is labelled by an MSC

◮ Each (legal) path in the automaton generates an MSC

8/37

High level MSCs (HMSCs)

◮ A finite state automaton

◮ Each state is labelled by an MSC

◮ Each (legal) path in the automaton generates an MSC

m

m′

m m′

⇓

8/37

High level MSCs (HMSCs)

◮ A finite state automaton

◮ Each state is labelled by an MSC

◮ Each (legal) path in the automaton generates an MSC

m

m′

m m′

⇓ m
-

m′

�

m
-

m
-

m′

�

m′

�

m
-

m′

�

8/37

High level MSCs (HMSCs)

◮ A finite state automaton

◮ Each state is labelled by an MSC

◮ Each (legal) path in the automaton generates an MSC

m

m′

m m′

⇓ m
-

m′

�

m
-

m
-

m′

�

m′

�

m
-

m′

�

9/37

HMSC semantics

◮ All processes must traverse the same path in an HMSC

9/37

HMSC semantics

◮ All processes must traverse the same path in an HMSC

◮ . . . but processes move asynchronously

◮ Some processes may be (unboundedly) far ahead of others

9/37

HMSC semantics

◮ All processes must traverse the same path in an HMSC

◮ . . . but processes move asynchronously

◮ Some processes may be (unboundedly) far ahead of others

⇒ M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

◮ After k iterations, we could have r and s in the final copy of M2 while p and
q are in the first copy of M1

10/37

Regular MSC languages

◮ An MSC is (uniquely) determined by its linearizations

◮ Set of strings over send actions p!q(m) and receive actions p?q(m)

◮ Collection of MSCs ⇔
word language over send/receive actions

◮ Regular collection of MSCs
△
=

linearizations form a regular language

11/37

HMSCs and regularity

◮ HMSC specifications may not be regular

11/37

HMSCs and regularity
◮ HMSC specifications may not be regular
◮ Problem 1 Unbounded buffers

-

- �

⇓

� U

- �

11/37

HMSCs and regularity

◮ HMSC specifications may not be regular

◮ Problem 1 Unbounded buffers

◮ Problem 2 Global synchronization yields context-free behaviours

-
�

-
�⇒

-

�

11/37

HMSCs and regularity

◮ HMSC specifications may not be regular

◮ Problem 1 Unbounded buffers

◮ Problem 2 Global synchronization yields context-free behaviours

◮ Sufficient structural conditions on HMSCs to guarantee regularity
. . . [AY99,MP99]

◮ Locally synchronized

11/37

HMSCs and regularity

◮ HMSC specifications may not be regular

◮ Problem 1 Unbounded buffers

◮ Problem 2 Global synchronization yields context-free behaviours

◮ Sufficient structural conditions on HMSCs to guarantee regularity
. . . [AY99,MP99]

◮ Locally synchronized

◮ . . . but checking if an HMSC specification is regular is undecidable
[HMNST05]

11/37

HMSCs and regularity

◮ HMSC specifications may not be regular

◮ Problem 1 Unbounded buffers

◮ Problem 2 Global synchronization yields context-free behaviours

◮ Sufficient structural conditions on HMSCs to guarantee regularity
. . . [AY99,MP99]

◮ Locally synchronized

◮ . . . but checking if an HMSC specification is regular is undecidable
[HMNST05]

◮ Every regular MSC language can be implemented as network of
communicating finite-state automata with bounded channels [HMNST05]

12/37

Plan

MSC

HMSC

3 Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents

13/37

(Local) testing using scenarios

◮ Does an implementation conform to an HMSC specification?

13/37

(Local) testing using scenarios

◮ Does an implementation conform to an HMSC specification?

◮ Local testing

13/37

(Local) testing using scenarios

◮ Does an implementation conform to an HMSC specification?

◮ Local testing

◮ Inject messages from some process(es) and observe the response

13/37

(Local) testing using scenarios

◮ Does an implementation conform to an HMSC specification?

◮ Local testing

◮ Inject messages from some process(es) and observe the response
◮ For each process p, local observer records sequence of events at p

◮ If each local observation is consistent with some MSC defined by the HMSC,
the implementation passes the test

13/37

(Local) testing using scenarios

◮ Does an implementation conform to an HMSC specification?

◮ Local testing

◮ Inject messages from some process(es) and observe the response
◮ For each process p, local observer records sequence of events at p

◮ If each local observation is consistent with some MSC defined by the HMSC,
the implementation passes the test

◮ Does local testing suffice to check conformance of (regular) HMSC languages?

14/37

Implied scenarios [AEY00]

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

14/37

Implied scenarios [AEY00]

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ p and q believe M is M1

◮ r and s believe M is M2

14/37

Implied scenarios [AEY00]

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ p and q believe M is M1

◮ r and s believe M is M2

◮ MSC M is implied by L if for each process p, the p-projection of M matches
the p-projection of some MSC in L

14/37

Implied scenarios [AEY00]

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ p and q believe M is M1

◮ r and s believe M is M2

◮ MSC M is implied by L if for each process p, the p-projection of M matches
the p-projection of some MSC in L

◮ An MSC language is locally testable if it is closed with respect to implied
MSCs

14/37

Implied scenarios [AEY00]

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ p and q believe M is M1

◮ r and s believe M is M2

◮ MSC M is implied by L if for each process p, the p-projection of M matches
the p-projection of some MSC in L

◮ An MSC language is locally testable if it is closed with respect to implied
MSCs

◮ Originally studied in context of realizability

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

◮ Even if the original language has bounded channels, its implied scenarios may
not

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

◮ Even if the original language has bounded channels, its implied scenarios may
not

p q r s

M

�

-

�

�

p q r s

M ′

�

-

�
�
�

M M ′⇒ ⇐
-

�

U �

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

◮ Even if the original language has bounded channels, its implied scenarios may
not

p q r s

M

�

-

�

�

p q r s

M ′

�

-

�
�
�

M M ′⇒ ⇐
-

�

U �

p q r s

�
-

�
-

�
-

�
-

�
-

�
-

�

�

�

=

	
=

�
�

�

�

�

�

�

�

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

◮ Even if the original language has bounded channels, its implied scenarios may
not

p q r s

M

�

-

�

�

•

•

• •

p q r s

M ′

�

-

�
�
�

•

•

• •

•

•

M M ′⇒ ⇐
-

�

U �

p q r s

�
-•

�
-•

�
-•

�
-•

�
-•

�
-•

� ••

�
•

•

�
•

•

=

•

•

	

•

•=

•

•

�
•

•�
••

�•

�•

�•
�•

�•

�•

15/37

Implied scenarios . . .

◮ Even for regular MSC languages, checking local testability is undecidable!
[AEY01]

◮ Even if the original language has bounded channels, its implied scenarios may
not

p q r s

M

�

-

�

�

•

•

• •

p q r s

M ′

�

-

�
�
�

•

•

• •

•

•

Confusing M 2kM ′k and M ′kM 2k generates

upto k messages in p → s channel

p q r s

�
-•

�
-•

�
-•

�
-•

�
-•

�
-•

� ••

�
•

•

�
•

•

=

•

•

	

•

•=

•

•

�
•

•�
••

�•

�•

�•
�•

�•

�•

16/37

Joint observations

◮ What if we have observers who can record the behaviours of sets of processes?

16/37

Joint observations

◮ What if we have observers who can record the behaviours of sets of processes?

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

16/37

Joint observations

◮ What if we have observers who can record the behaviours of sets of processes?

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ M is detected as an illegal MSC by {p, s}.

16/37

Joint observations

◮ What if we have observers who can record the behaviours of sets of processes?

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

◮ M is detected as an illegal MSC by {p, s}.

◮ Joint observers have more discriminating power.

17/37

Joint observations . . .

◮ Fix some observers P1, P2, . . . , Pr

◮ Each observer records the events on the processes in the set Pi

17/37

Joint observations . . .

◮ Fix some observers P1, P2, . . . , Pr

◮ Each observer records the events on the processes in the set Pi

Given a HMSC G, is its language testable with observers

P1, P2, . . . , Pr?

18/37

P -Observations

M an MSC, P a set of processes

P -observation of M
△
= tuple of projections of M on each process in P

M↾P : P -observation of M .

L↾P = {M↾P | M ∈ L} : P -observation of a language L

p q r s

M

-
m

-
m

-
m

p s

M↾p,s

-
m

-
m

-
m

M↾p,s = 〈p!q(m)p!s(m),s?r(m)s?p(m)〉.

19/37

k-testability

◮ Record P -observations for every set P of processes of size k.

19/37

k-testability

◮ Record P -observations for every set P of processes of size k.

◮ k-closure of a language L
△
= {M | ∀P s.t. |P | = k, M↾P ∈ L↾P }

19/37

k-testability

◮ Record P -observations for every set P of processes of size k.

◮ k-closure of a language L
△
= {M | ∀P s.t. |P | = k, M↾P ∈ L↾P }

◮ Scenario k-implied by L
△
= MSC in the k-closure of L but not in L

19/37

k-testability

◮ Record P -observations for every set P of processes of size k.

◮ k-closure of a language L
△
= {M | ∀P s.t. |P | = k, M↾P ∈ L↾P }

◮ Scenario k-implied by L
△
= MSC in the k-closure of L but not in L

◮ A language is k-testable if it equals its k-closure

19/37

k-testability

◮ Record P -observations for every set P of processes of size k.

◮ k-closure of a language L
△
= {M | ∀P s.t. |P | = k, M↾P ∈ L↾P }

◮ Scenario k-implied by L
△
= MSC in the k-closure of L but not in L

◮ A language is k-testable if it equals its k-closure

◮ Local testability is 1-testability

20/37

k-testability . . .

p q r s

M1

-
m

-
m

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

The set {M1, M2} is 2-testable but not 1-testable.

21/37

k-testability . . .

◮ 1-testability is undecidable for 4 or more processes. [AEY 01]

21/37

k-testability . . .

◮ 1-testability is undecidable for 4 or more processes. [AEY 01]

◮ n-testability is trivial

21/37

k-testability . . .

◮ 1-testability is undecidable for 4 or more processes. [AEY 01]

◮ n-testability is trivial

◮ What about k-testability for 1 < k < n?

21/37

k-testability . . .

◮ 1-testability is undecidable for 4 or more processes. [AEY 01]

◮ n-testability is trivial

◮ What about k-testability for 1 < k < n?

◮ What is the smallest k ≤ n such that k-testability is decidable?

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

◮ k-testability is undecidable for n ≥ 3 processes and 1 < k < n

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

◮ k-testability is undecidable for n ≥ 3 processes and 1 < k < n

◮ 1-testability is undecidable for 2 processes

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

◮ k-testability is undecidable for n ≥ 3 processes and 1 < k < n

◮ 1-testability is undecidable for 2 processes

◮ Improves result from 4 processes in [AEY01]

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

◮ k-testability is undecidable for n ≥ 3 processes and 1 < k < n

◮ 1-testability is undecidable for 2 processes

◮ Improves result from 4 processes in [AEY01]

◮ k-testability remains undecidable for n ≥ 3 processes and 1 < k < n even
without message contents

22/37

Our results

◮ For all n and k < n there are regular HMSC languages over n processes that
are not k-testable

◮ k-testability is undecidable for n ≥ 3 processes and 1 < k < n

◮ 1-testability is undecidable for 2 processes

◮ Improves result from 4 processes in [AEY01]

◮ k-testability remains undecidable for n ≥ 3 processes and 1 < k < n even
without message contents

◮ 1-testability is decidable without message contents

23/37

Plan

MSC

HMSC

Local testing of HMSC

4 Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents

24/37

1-testability for 2 processes

Theorem : 2 processes

For n ≥ 2, 1-testability is undecidable for regular 4-bounded MSG-definable lan-
guages over n processes.

Proof :

Reduction to Modified Post Correspondence Problem (MPCP).

25/37

Modified Post Correspondence Problem

Definition : MPCP

Instance: sequence (v1, w1), (v2, w2), . . . , (vr, wr) of pairs of words such that

◮ 1 ≤ |vi| ≤ 4 and 1 ≤ |wi| ≤ 4 for 1 ≤ i ≤ r,

◮ w1 < v1 and is shorter by at least 2 letters.

Solution: sequence 1 = i1, i2, i3, . . . , im of indices from {1, 2, . . . , r} such that

wi1wi2 · · ·wim
= vi1vi2 · · · vim

and for k < m,
wi1wi2 · · ·wik

< vi1vi2 · · · vik

Theorem : MPCP

The Modified Post Correspondence Problem is undecidable.

26/37

Undecidability: Reduction

Proof :

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

26/37

Undecidability: Reduction

Proof :

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2

ℓ

a1

a2

...

ar

Mvℓ
with vℓ = a1a2 . . . ar

26/37

Undecidability: Reduction

Proof :

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2

ℓ

a1

a2

...

ar

Mvℓ
with vℓ = a1a2 . . . ar

1 2

ℓ

b1

b2

...

bs

Mwℓ
with wℓ = b1b2 . . . bs

26/37

Undecidability: Reduction

Proof :

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2

ℓ

a1

a2

...

ar

Mvℓ
with vℓ = a1a2 . . . ar

1 2

ℓ

b1

b2

...

bs

Mwℓ
with wℓ = b1b2 . . . bs

L∆ = Mv1
.{Mv1

, . . . , Mvt
}∗ + Mw1

.{Mw1
, . . . , Mwt

}∗

26/37

Undecidability: Reduction

Proof :

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2

ℓ

a1

a2

...

ar

Mvℓ
with vℓ = a1a2 . . . ar

1 2

ℓ

b1

b2

...

bs

Mwℓ
with wℓ = b1b2 . . . bs

L∆ = Mv1
.{Mv1

, . . . , Mvt
}∗ + Mw1

.{Mw1
, . . . , Mwt

}∗

Lemma :

The MPCP ∆ has a solution iff L∆ has some 1-implied scenario.

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 2

a1

a2

aℓ

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 2

a1

a2

aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 2

a1

a2

aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

i1

i2

i3

i4

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 2

a1

a2

aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

i1

i2

i3

i4

L = Mv1
.{Mv1

, . . . , Mvt
}∗+Mw1

.{Mw1
, . . . , Mwt

}∗

◮ M /∈ L

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1

a1

a2

aℓ

vi1

vi2

vi3

vi4

i1

i2

i3

i4

L = Mv1
.{Mv1

, . . . , Mvt
}∗+Mw1

.{Mw1
, . . . , Mwt

}∗

◮ M /∈ L

◮ M↾1 = (Mvi1
Mvi2

. . . Mvim
)↾1 ∈ L↾1

27/37

Undecidability: Reduction

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

2

a1

a2

aℓ

wi1

wi2

wi3

wi4

i1

i2

i3

i4

L = Mv1
.{Mv1

, . . . , Mvt
}∗+Mw1

.{Mw1
, . . . , Mwt

}∗

◮ M /∈ L

◮ M↾1 = (Mvi1
Mvi2

. . . Mvim
)↾1 ∈ L↾1

◮ M↾2 = (Mwi1
Mwi2

. . .Mwim
)↾2 ∈ L↾2

28/37

Plan

MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

5 Undecidability of k-testability

Decidability of 1-testability without message contents

29/37

k-testability

Theorem : k-testability

For 1 < k < n, k-testability is undecidable for regular 1-bounded MSG-definable
languages over n processes.

Proof :

Reduction to Modified Post Correspondence Problem (MPCP).

30/37

Undecidability: Reduction

A basic MSC

i i + 1 i + 2 j − 2 j − 1 j

m m . . . m m

mm. . .
mm

30/37

Undecidability: Reduction

A basic MSC

i i + 1 i + 2 j − 2 j − 1 j

m m . . . m m

mm. . .
mm

i i + 1 i + 2 j − 2 j − 1 j

m

31/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

31/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2 k − 1 k

ℓ
a1

a2

...
ar

Mvℓ
with

vℓ = a1a2 . . . ar

31/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 2 k − 1 k

ℓ
a1

a2

...
ar

Mvℓ
with

vℓ = a1a2 . . . ar

1 2 k − 1 k

ℓ
b1

b2

...
bs

Mwℓ
with

wℓ = b1b2 . . . bs

32/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 j k

ℓ

a1
b1

a2
b2... ...

as
bsas+1

...
ar

M j
vℓ,wℓ

with vℓ = a1a2 . . . ar and wℓ = b1b2 . . . bs

32/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 j k

ℓ

a1
b1

a2
b2... ...

ar
br

...
bs

M j
vℓ,wℓ

with vℓ = a1a2 . . . ar and wℓ = b1b2 . . . bs

32/37

Undecidability: Reduction

Let ∆ = (v1, w1), (v2, w2), . . . , (vt, wt)} be an instance of the MPCP.

1 j k

ℓ

a1
b1

a2
b2... ...

ar
br

...
bs

M j
vℓ,wℓ

with vℓ = a1a2 . . . ar and wℓ = b1b2 . . . bs

L∆ = Mv1
.{Mv1

, . . . , Mvt
}∗ ∪ Mw1

.{Mw1
, . . . , Mwt

}∗

∪
⋃

j

M j
v1,w1

{M j
v1,w1

, . . . , M j
vt,wt

}∗

33/37

Undecidability: Reduction

Lemma :

The MPCP ∆ has a solution iff L∆ has some (k − 1)-implied scenario.

Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

We build an MSC M /∈ L∆ which is (k − 1)-implied by L∆.

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 k

a1

a2

aℓ

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 k

a1

a2

aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 k

a1

a2

aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

i1

i2

i3

i4

M /∈ L∆

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 k − 1

a1 a1

a2 a2

aℓ aℓ

vi1

vi2

vi3

vi4

i1

i2

i3

i4

M↾1,...,k−1 = (Mvi1
Mvi2

. . . Mvim
)↾1,...,k−1

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

k2

a1a1

a2a2

aℓaℓ

wi1

wi2

wi3

wi4

i1

i2

i3

i4

M↾2,...,k = (Mwi1
Mwi2

. . .Mwim
)↾2,...,k

34/37

Undecidability: Reduction
Proof : Let 1 = i1, i2, . . . , im be a solution of MPCP

vi1vi2 . . . vim
= a1a2 . . . aℓ = wi1wi2 . . . wim

1 kj − 1 j + 1

a1 a1
a2 a2

aℓ aℓ

vi1

vi2

vi3

vi4

wi1

wi2

wi3

wi4

i1

i2

i3

i4

M↾1,...,j−1,j+1,...,k = (M j
vi1

,wi1

M j
vi2

,wi2

. . . M j
vim

,wim
)↾1,...,j−1,j+1,...,k

35/37

Plan

MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

6 Decidability of 1-testability without message contents

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

1. Check if net has B + 1 messages in a channel en route to final marking

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

1. Check if net has B + 1 messages in a channel en route to final marking

2. If yes, implied scenario exists

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

1. Check if net has B + 1 messages in a channel en route to final marking

2. If yes, implied scenario exists

3. Otherwise, language of net is regular

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

1. Check if net has B + 1 messages in a channel en route to final marking

2. If yes, implied scenario exists

3. Otherwise, language of net is regular

◮ Check if net exhibits any behaviour not described by HMSC

36/37

1-testability over the singleton alphabet

◮ Each channel behaves as counter

◮ Encode the behaviours of the HMSC as a Petri Net

◮ HMSC defines a regular language ⇒ channels are bounded by some constant
B

1. Check if net has B + 1 messages in a channel en route to final marking

2. If yes, implied scenario exists

3. Otherwise, language of net is regular

◮ Check if net exhibits any behaviour not described by HMSC

◮ Special case of a result due to Morin [M02]

37/37

Future work

◮ Local testability is undecidable in most situations

37/37

Future work

◮ Local testability is undecidable in most situations

◮ Look for sufficient conditions that indicate violation of testability

37/37

Future work

◮ Local testability is undecidable in most situations

◮ Look for sufficient conditions that indicate violation of testability

◮ Testability by piggybacking auxiliary information?
p q r s

M1

m

-
m

-

p q r s

M2

-
m

-
m

p q r s

M

-
m

-
m

-
m

37/37

Future work

◮ Local testability is undecidable in most situations

◮ Look for sufficient conditions that indicate violation of testability

◮ Testability by piggybacking auxiliary information?
p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m

By tagging auxiliary information to m,
p informs s whether it has sent a message to q

This rules out the implied scenario M

37/37

Future work

◮ Local testability is undecidable in most situations

◮ Look for sufficient conditions that indicate violation of testability

◮ Testability by piggybacking auxiliary information?
p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m

By tagging auxiliary information to m,
p informs s whether it has sent a message to q

This rules out the implied scenario M

◮ Can we piggyback a bounded amount of auxiliary information to ensure
testability?

37/37

Future work

◮ Local testability is undecidable in most situations

◮ Look for sufficient conditions that indicate violation of testability

◮ Testability by piggybacking auxiliary information?
p q r s

M1

(m,1)

-
m

-

p q r s

M2

-
m

-
(m,2)

p q r s

M

-
m

-
m

-
m

By tagging auxiliary information to m,
p informs s whether it has sent a message to q

This rules out the implied scenario M

◮ Can we piggyback a bounded amount of auxiliary information to ensure
testability?

◮ Bounded auxiliary information suffices to check causal closure [AMNN05]

	MSC
	HMSC
	Local testing of HMSC
	Undecidability of 1-testability for 2 processes
	Undecidability of k-testability
	Decidability of 1-testability without message contents

