Distributed Timed Automata with
Independently Evolving Clocks

Paul Gastin
LSV, ENS Cachan, CNRS

Séminaire LIAFA, 6 April 2009

Motivations

Study the expressive power of local clocks as a synchronization mechanism in a
distributed system.

» Distributed systems with no explicit communication or synchronization.
» Clocks as a synchronization mechanism.

» Clocks on different processes evolve independently according to local times.

Plan

© Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

DA

Timed automata (Alur & Dill)

Example: TA
a,{x} a, {y}
s levm{y}‘ s y>1b _
‘ N '@
y<3 <3
r=0 0 20 Yoo 2?18 7Y 25

y=0 0.7 1.5 0 0 1.7

Distributed Timed automata

Definition: DTA
D= ((Ap>pEProc, 71—) where
» each A, is a classical timed automaton

» 7 : Z — Proc assigns processes to clocks. If w(xz) = p then

» clock z evolves according to local time on process p
> only process p may reset clock x
> all processes may read clock z (i.e., use z in guards or invariants)

Example: DTA with 7(z) = p and 7(y) = ¢

y<1

A, x>1,b o 0<$<1,b=@

Local Times

Local Times
» Processes do not have access to the absolute (global) time.
> Each process has its own local time: 7, : R>g — R>g
Tp(t): local time on process p at absolute time ¢

continuous, strictly increasing, diverging, 7,(0) = 0.

Example: Local Times

A Tp f § Tp

\
~+
\
~+

Runs of DTA’s & Untimed Behaviours
Example: DTA with 7(z) = p and 7(y) = ¢

Ay _»@ y<1l,a =@ a,{z} =@

y<1

x>1,b 0<ax<1,b

Runs of DTA’s & Untimed Behaviours
Example: DTA with 7(z) = p and 7(y) = ¢

Ay _»@ y<1l,a =@ a,{z} =@

y<1

x>1,b 0<ax<1,b

Formal Semantics of DTA’s
Let D = ((Ap)pe Proc, ™) be an DTA with local times 7 = (7,) pe Proc-

Definition: (Infinite) Transition System TS(D, 7)

» Configurations are tuples (s, ¢, v) where

> s = (Sp)peproc Where s, is a state of A, for each p € Proc
» t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

Formal Semantics of DTA’s
Let D = ((Ap)pe Proc, ™) be an DTA with local times 7 = (7,) pe Proc-

Definition: (Infinite) Transition System TS(D, 7)

» Configurations are tuples (s, ¢, v) where

> s = (Sp)peproc Where s, is a state of A, for each p € Proc
» t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define v ¢/ (x) = v() + Tr(2)(t') — Tr(a) (£).

Formal Semantics of DTA’s
Let D = ((Ap)pe Proc, ™) be an DTA with local times 7 = (7,) pe Proc-

Definition: (Infinite) Transition System TS(D, 7)

» Configurations are tuples (s, ¢, v) where
> s = (Sp)peproc Where s, is a state of A, for each p € Proc
» t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define v ¢/ (x) = v() + Tr(2)(t') — Tr(a) (£).

> Transitions : (s,t,v) EALEIN (s',t',0") if

g,a,R
sp ——— s, for some p € Proc and s;, = s4 for all ¢ # p,

Ve, = Ngeproc 1a(sq) for all t < t" <t

U,/ ': g
v' = wv; ¢[R] (clocks in R are reset)

v’ ': /\qEProc I‘I(S;)

Yy Yy VvV VY

Formal Semantics of DTA’s
Let D = ((Ap)pe Proc, ™) be an DTA with local times 7 = (7,) pe Proc-

Definition: (Infinite) Transition System TS(D, 7)

» Configurations are tuples (s, ¢, v) where

> s = (Sp)peproc Where s, is a state of A, for each p € Proc
» t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define v ¢/ (x) = v() + Tr(2)(t') — Tr(a) (£).

> Transitions : (s,t,v) EALEIN (s',t',0") if

g,a,R
sp ——— s, for some p € Proc and s;, = s4 for all ¢ # p,

IR /\qeproc I4(sq) forall t <t <,

Vg, ¢/ |: g
v = v, 4[R] (clocks in R are reset)

v’ ': /\qEProc I‘I(S;)
> w=ay...a, € L(D,7) (with a; € ¥ U {e}) if there is a run in TS(D, 1)

Yy Yy VvV VY

g1,a1,R1 g2,a2,R2 Gn»@n, Ry,

(Sna tn, Un)

(807t07U0) (817t171}1)

with s initial, o = 0, vo(z) = 0 for all € Z and s, final.

Semantics of DTA’s

Example: DTA D with w(z) = p and 7(y)

<1, a,\T
i @ YEbe Loy ol |

y<1
x>1,b 0<xz<1,b

If 7, = 74 then L(D,7) = {aa}.

q

©

©

Semantics of DTA’s

Example: DTA D with w(z) = p and 7(y)

<1, a,\T
i m@)—EEbe oy ol |

y<1
x>1,b 0<xz<1,b
Aqg: =@ >

If 7, = 74 then L(D,7) = {aa}.
If 7, > 74 then £(D,) = {aa, abab, baab}.

q

©)

©)

Semantics of DTA’s

Example: DTA D with n(z) = p and 7(y) = ¢

Ay @ y<1l,a =@ a,{z} =@

<1
10 U 0<z<1b
- o\, 2@

If 7, = 74 then L(D,7) = {aa}.
If 7, > 74 then £(D,) = {aa, abab, baab}.
For all local times 7, we have aa € L(D, 7).

Unregular Behaviours

Consider the following DTA D

with 7m(x) = p and 7(y) = ¢
and the local times on the right.

[

A

Unregular Behaviours

Consider the following DTA D

with 7m(x) = p and 7(y) = ¢
and the local times on the right.

a occurs every local time unit of p.

[

A

Unregular Behaviours

A
Consider the following DTA D

with 7m(x) = p and 7(y) = ¢
and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of g.

b/

AN

Unregular Behaviours

Consider the following DTA D
a b
z=1 y=1
{z} {y}

with 7m(x) = p and 7(y) = ¢
and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of g.

L(D, 1) are the finite prefixes of bab*ab*ab®a - - -

.
74

Existential & Universal Semantics

Definition: Existential & Universal Semantics

Let D be a DTA.
» L3(D UEDT

> Ly(D ﬂEDT

Example: £3(D) = {aa, abab, baab} Ly(D) = {aa}

Ap:@ a, y<1 =@ a, {z} =@

Y
Aq: b, z>1 g b,0<x<l=@

IA
—

)

¢

Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

L3(D) NBad = 0

Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

ﬁa(D) NBad =0

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

Does a DTA D robustly exhibit Good

Good C Ly(D)

Plan
Distributed Timed Automata

© Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

Region abstraction for 3-semantics

Regions when 7(x) = 7(y)

A

Region abstraction for 3-semantics

Regions when 7(x) = 7(y)

//
/

y

Region abstraction for 3-semantics

Regions when 7(x) = 7(y)

//
/

y

Region abstraction for 3-semantics

Regions when 7(x) = 7(y)

A //
A/
y

Region abstraction for 3-semantics

Regions when 7(x) = 7(y)

m
Y 4
4

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

A

i
y

&4

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

A

B
y

&4

y L]

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

A

i
y

&4

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

A

' 4

y L

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

A

' 4

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

&
y

Proposition:

The region equivalence of a DTA is a timed abstract bisimulation for its 3-semantics.

Region abstraction for 3-semantics

Theorem: Region abstraction
Let D be a DTA. Let Rp be its region abstraction.
and

L3(D) = L(Rp)

Rp| <ID|- (2C +2)%1- | 2]!

Region abstraction for 3-semantics

Theorem: Region abstraction
Let D be a DTA. Let Rp be its region abstraction.
and

L3(D) = L(Rp)
[Rp| < |D|- (20 +2)%1-|2]!
Corollary: Negative specifications
Model checking regular negative specifications for DTA's is decidable.
ﬁg(D) NBad =0

DA

Plan
Distributed Timed Automata

Region abstraction and existential semantics

© Universal semantics and undecidability

Reactive (Game) Semantics

A

Let D be a DTA.

Undecidability of the universal semantics
Theorem: Undecidability

emptiness: Ly(D) = 0 is undecidable.

Skip proof.
universality: Ly(D) = £* is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: da > 0, V¢ > 0,
1l—a< ﬂ’—a) <l+4+a«a or

p(t)
AT

ITq(t) — ()| < @

.
49

Tp

Corollary: Positive specifications

[m]

Good C Ly(D)
Model checking regular positive specifications for DTA's is undecidable.

=

Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € A such that f(w) = g(w)?

Proof: Reduction from Post Correspondance Problem

Definition: Words defined by local times

Undecidability of emptiness

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Each pair of local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1,2}*.

[

A

Tq

/

Assume z = y = 0 when entering the 2 X 2 square.

Next letter of dir(7) is 0

guard(0) :=z=2A1<y <2

\/
5

Proof: Reduction from Post Correspondance Problem

Definition: Words defined by local times

Undecidability of emptiness

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Each pair of local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1,2}*.

[

A

Tq

1

/

Assume z = y = 0 when entering the 2 X 2 square.

Next letter of dir(7) is 1

guard(0) ;=2 =2A1<y <2
guard(l) :=1<x <2Ay=2

\/
5

Proof: Reduction from Post Correspondance Problem
Definition: Words defined by local times

Undecidability of emptiness

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Each pair of local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1,2}*.

[

A

Tq

2

Assume z = y = 0 when entering the 2 X 2 square.

Next letter of dir(7) is 2

|,

guard(0) ;=2 =2A1<y <2

L—"19 guard(2)

guard(l) :=1< a2 <2Ay=2
=(z=2A(y<1lVvy=2)V(@<1lAy=2)

Tp

Words defined by local times

Clocks x, y are reset when reaching the 2 x 2 square boundary

/

/

.
49

Words defined by local times

Clocks x, y are reset when reaching the 2 x 2 square boundary

/

/

.
49

\/
S

dir(7) = 0100 - -

Undecidability of emptiness

Recall that we are given two morphisms
fr9: AT —{0,1}7F
We want to construct DTA's Dy and Dy such that for all local times 7 = (7, 74)

L(Dg,7)={wb e ATb | f(w)2 £ dir(r)}
L(Dy,7)={wb € ATb | g(w)2 < dir()}

For simplicity, we use a central controls for our automata,
but they can be distributed to get DTA's.

Undecidability of emptiness

Definition: Macro transition
Fora € A and 0 = dydy ...d, € {0,1,2}" we define

From u with x = y = 0, reading input letter a we reach
» s with z =y = 0 if local times 7 = (7, 7,) evolve according to o

» 1 otherwise

Undecidability of emptiness

Definition: Macro transition
Fora € A and 0 = dydy ...d, € {0,1,2}" we define

From u with x = y = 0, reading input letter a we reach
» s with z =y = 0 if local times 7 = (7, 7,) evolve according to o

» 1 otherwise

€, guard(ds)

a, guard(dy) €, guard(ds) €, guard(d,,)

a, guard(d)
{z,y}

€, guard(ds) €, guard(d,,)
{wy} {z,y}

Undecidability of emptiness

> 50 — s iff g(w) < dir(7)
> 50— 1y iff g(w) £ dir(7)

Undecidability of emptiness

> 5o 5 sy iff f(w) < dir(7)
> 50—y iff f(w) £ dir(7)

Undecidability of emptiness

(ai, f(ai)) /}0\ (aiag(ai))

Proposition: Ly(D) = {wb € ATb | f(w) = g(w)}

> 50— sy iff f(w) < dir(7)
> 50—y iff f(w) £ dir(7)
> So i) So iff g(w) S diI‘(T)

Plan
Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

© Reactive (Game) Semantics

A

Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

Good C Ly(D) does not imply that the system can be controlled in order to exhibit
all Good behaviours, whatever local times are.

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

\/
8

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

» System observes current region and controls discrete transitions

» T

» Not turn-based: system may execute several discrete transitions

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

» System observes current region and controls discrete transitions

» T

» Not turn-based: system may execute several discrete transitions

Lyeact(D) = {w € ¥* | System has a winning strategy}

Decidability of the reactive semantics

Theorem: Regularity
Let D be a DTA. Licact (D) is regular.

Proof: construct an alternating automaton with e-transitions accepting L,eact(D).

Decidability of the reactive semantics

Theorem: Regularity
Let D be a DTA. Licact (D) is regular.

Proof: construct an alternating automaton with e-transitions accepting L,eact(D).

Corollary: Positive specifications

Model checking regular positive specifications is decidable for the reactive semantics.

Good C Lyeact(D)

DA

Decidability of the reactive semantics

Theorem: Regularity

Let D be a DTA. Licact (D) is regular.

Proof: construct an alternating automaton with e-transitions accepting L,eact(D).

Corollary: Positive specifications

Model checking regular positive specifications is decidable for the reactive semantics.

Good C Lyeact(D)

Proposition: Reactive vs. Universal

> Lrcact(D) € Ly(D) for all DTA's D.
> In general, Lycact(D) € Ly(D).
Even for DTA's over 2 processes having 1 clock each.

DA

Conclusion

» Distributed systems which synchronize using clocks with local times.

v

Regular existential semantics suited for negative specifications

v

Regular reactive semantics suited for positive specification
Undecidable universal semantics

v

Conclusion

Summary
» Distributed systems which synchronize using clocks with local times.
> Regular existential semantics suited for negative specifications
» Regular reactive semantics suited for positive specification
» Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact (D) = Spec = L3(D)

Conclusion

Summary
» Distributed systems which synchronize using clocks with local times.
> Regular existential semantics suited for negative specifications
» Regular reactive semantics suited for positive specification

» Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact (D) = Spec = L3(D)

If we are given two sets Good and Bad, find a DTA D such that

Good C Lreact(D) € L3(D) C Bad

	Distributed Timed Automata
	Region abstraction and existential semantics
	Universal semantics and undecidability
	Reactive (Game) Semantics

