Formal Methods for the Verification of Distributed Algorithms

Paul Gastin

Laboratoire Spécification et Vérification
ENS Cachan, CNRS & Inria

Joint work with C. Aiswarya & Benedikt Bollig
CONCUR’15

DRV, Bertinoro, May 18, 2016

Formal methods & verification

"
e 7

distributed system specification

Formal methods & verification

set of admissible
................ traces

set of possible
traces e

Behavior

L(A)

model checking

L(A) € L(p)?

System model Specification

[[
" W

R,

0
—F

Formal methods & verification

LA) N L(A) ;@ Behavior L(p)

S—

model checking ©

L(A) € L(p)?

Finite automata

i N/ i

Formal methods & verification

- Validity

L(A) Behavior lp ; o L(p)

[scitey :

model checking

A @ P

L(A) C L(p)?
Finite automata LTL specification l'l/

l‘l/

1'1
i N/ i
P ~

v
i Sl i | 1%

—F

Models of Distributed Systems

Distributed Algorithms

¥

System model | Specification

Several sources of infinity / undecidability

Distributed Algorithms

System model | Specification

Several sources of infinity / undecidability

D iStI’i bUted algorith ms Leader election [Franklin ’82]

arbitrary number of <
identical processes

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

arbitrary distribution
of process identifiers

5<19<23<...

elect process
with maximum id

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

round

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted a|gO|’ith ms Leader election [Franklin ’82]

Behavior

leader

Distributed algorithm

D iStI’i bUted a|gO|’ith ms Leader election [Franklin ’82]

Behavior

leader

Distributed algorithm

Distributed algorithms

left

A

- |dentical finite-state

processes

- Number of processes is

unknown and unbounded

- Processes have unique

pids (integers —
unbounded data)

A formal model for distributed algorithms
An automata-like way of writing DA

Every process '~ ' can be described by:

e Set of states e Set of transitions

e |nitial state e send pids to neighbours

e receive pids from neighbours,
» Set of registers and store in registers

. stores pid e compare registers

e uUpdate registers

eader Election Algorithms
Dolev-Klawe-Rhodeh82

states: activeg, activey
passive, found
initial state: activeg

registers: id,r,r’,r"”

t1 = (activeg: right!r ; left?r’ ,goto activey)

activer: right!r’; left?r” ;r"” <r';r <r';r :=7r"; goto activey)

activer: ;7' < r;goto passive)

1" < r"; goto passive)

activey: v =1’ ;goto found)

S
N
|
TN N N N N /.
)
)
. 8
~
-
Q!
—

passive: fwd ; left?r ; goto passive)

two unbounded
dimensions

Behaviors

Cylinders
Arbitrary length and width

Labelled with data
from an infinite domain

\ —

Distributed algorithm

leader —»

Specification language

DiStribUted a|gOI’itth Leader election [Franklin ’82]

Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

(=" ((=) A {go-to-)
A [1¥] (id < (go-to- |)id))

leader —»

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

DiStribUted a|gOI’itth Leader election [Franklin ’82]

Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

(=" ((=) A (go-to-)
A [1] (id < (go-to- |)id))

leader —»

goto- = (=)"

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

DiStribUted a|gOI’itth Leader election [Franklin ’82]

Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

(=" ((=) A (go-to-)
A [1¥] (id < (go-to- |)id))

leader —»

goto- = (=)"

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

DiStribUted a|gOI’itth Leader election [Franklin ’82]

Behavior

«At the end, the 'is a leader, and
the leader is the proce: with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" ((=) <(go-to-)
= A [¥] (id < {go-to-|)id))

leader —»

goto- = (=)

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

compare
values

Specifications

el
c
()]
| .
(]
[Tt
o
©
el
(4]

move in
the cylinder

Data PDL

Path it = rational expression over directions

Bojanczyk et al. '09; Figueira-Segoufin “11]

[

Inspired by

Specifications

compare
move in values
D ata P D L at different

all accepting runs, and all starting process (m)

g, i=m | s | mp | oAY | o=@ | [T | (m)rpa{n)r

/

o i={o}? |d | n+7 | 7m-7" | 7

se S, r,r" € Reg, <x € {=,#,<,<},and d € {¢,+,—, 1,1}

Path it = rational expression over directions

Inspired by |

Bojanczyk et al. '09; Figueira-Segoufin “11]

Model Checking 1

Model Checking Distributed algorithms

UNDECIDABLE
/‘\/\/\\

- Behaviors: Cylinders of arbitrary width and length
Data from an infinite domain

- System: Register automata with data comparisons
- Specification: Data PDL with data comparisons

Model Checking Distributed algorithms

UNDECIDABLE
/‘\/\/\\

- Behaviors: Cylinders of arbitrary width and length
from an infinite domain

- System: Register automata with comparisons
- Specification: Data PDL with comparisons

Reduction to automata?

J

¥ We do not know
_ how to translate Data PDL
to automata

e z,‘\//\/\\/‘ ,

[
>
»
»
[
»
[
»
[
»

B—

R

-t

No reduction to reachability
—

Distributed algorithm | Data PDL

Reduction to Satisfiability of LCPDL: Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Data abstraction: symbolic runs + tracking data

leader

Distributed algorithm

Data abstraction: symbolic runs + tracking data

leader

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

* Register updates

leftlid

- left?r2 »EEEEE T

right?r1 Vq cnpul |

left!r2

fv:d

right?rl =

right!ri

(r1,id)-path

—m-

Distributed algorithm

———— —

can be expressed in CPDL

PDL with converse

Data abstraction: symbolic runs + tracking data

Tu:(r1,id)-path
TR:(r2,id)-path

* Register updates

* Register equality check o = I+ (ff Ioop T T 1

can be expressed in LCPDL
Distributed algorithm | CPDL Wlth |OOp

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

If there is a <-loop, no pids assignments can turn
the symbolic cylinder into a valid run.

If no such loops, then there are pids that allow a
valid realization of the abstract grid

Data abstraction: symbolic runs + tracking data

~| rightlid
~ 1 leftlid

No loop of the form

rio<ti1; (ri1,ri2)-path; rie<riz; (ris,ria)-path; ... ; rin<fio
STTETEETITTE ——

e Register equality check

* Register comparison

can be expressed in LCPDL

CPDL with loop

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Distributed algorithms

Behavior

«There is a leader, and the leader is the
process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" (—{¢—=>) A {(go-to-)
A 1] gid < <go—to—®>id2)
{3 Ef)

goto- = (= A

leader

{o

Distributed algorithm Data PDL

Distributed algorithms

Behavior

«There is a leader, and the leader is the
process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" (—{¢—=>) A {(go-to-)
A 1] gid < <go—to—®>id2)
{3 Ef)

goto- = (= A

leader

{o

Distributed algorithm Data PDL

Distributed algorithms

Behavior

«There is a leader, and the leader is the
process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" (—{¢—=>) A {(go-to-)
A 1] gid < <go—to—®>id2)
{3 Ef)

goto- = (= A

leader

{o

Distributed algorithm Data PDL

Distributed algorithms

Behavior

«There is a leader, and the leader is the
process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" (—{¢—=>) A {(go-to-)
A 1] gid < <go—to—®>id2)
{3 E[S

goto- = (= A

leader

{o

Distributed algorithm Data PDL

Distributed algorithms

Behavior

«There is a leader, and the leader is the
process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" (—{¢—=>) A {(go-to-)
A 1] gid < <go—to—®>id2)
{3 E[S

goto- = (= A

leader

{o

Distributed algorithm Data PDL

Distributed algorithms

] id < ?right

o
Y,

-,

Behavior

leftlid right!id «There is a leader, and the leader is the

process with the maximum id.»
id > ?left

{1
A id > ?right For all n, pid distributions, accepting runs, and processes:
_— (=" ((=) A {goto-)
‘ left!id right!id oader . : _
! id = ?left A [l] (ld < <go—to—D>ld))
fwd 3 ©

a<7en goto- | = (= W)

id < ?left
2 id<ight \’“

Distributed algorithm Data PDL

Distributed algorithms
—

4 N
no loop "'
there are pids ' : '
making (o false there is loop 1
o J : _ _
< path < gO-tO-D

=
Lo o holds here

no evidence of
L~ = =
id < ?righ E

Behavior
4y leftlid rightlid roess with the maxmam i
/ / For all n, pid distributions, accepting runs, and processes:
< ()
<7T>7° >\)T (=" (—{¢—=>) A {(go-to-)
Loop (1. (r,r)-<-path . (iT)") A [1] (id < (go-to-{ Did))
! ¥

o <o — D goto | = (< D)

Distributed algorithm Data PDL

Distributed algorithms
—

4 N
no loop "'
there are pids ' : '
making (o false there is loop 1
o J : _ _
4 < path < gO-tO-D

=
L% o holds here

no evidence of
L~ = =
id < ?righ E

Behavior
left!id right!id «There is a quder, and th_e Iead_er is the
,_L —— | P I process with the maximum id.»
< > < < / > 7/' / For all n, pid distributions, accepting runs, and processes:
*
)T > 71 (—* (=(=) A {go-to-)

Loop (1. (r,r)-<-path . (1)) deterministic [{"] Sid < <90'tO'D>id2)

eftlid _ rnghtTi \ 1
id < ?left
2 id<ight \’“

go-to- = (=)"

Distributed algorithm Data PDL

Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

two unbounded
dimensions

Data abstraction

UNDECIDABLE

< < <

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Model Checking 2

Under approximate verification

o O

Behavior

— A=y
undecidable

* restrict to bounded
number of rounds

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

l exponentially smaller than # of processes .

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Bounded

e
)
O
cC
35
®)
Q
c
D)

PDL with loop over bounded grids

Bounded

I

Unbounded

left/right moves up/down moves

_H___Q__

§ounaea

PDL with loop over bounded grids
=

PDL with loop over words

Bounded

O

D

| I
-

D)

@)

=

= <+

left/right moves up/down moves

_H___Q__

§ounaea

PDL with loop over bounded grids
=

PDL with loop over words
=

Alternating 2-way Automata
=

PSPACE

[Goller-Lohrey-Lutz '08] [Serre '08]

Summary & Conclusion

Summary

l exponentially smaller than # of processes .

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).

Round-bounded model checking distributed algorithms™* against Data PDL is PSPACE-

complete™”.
N J

* with registers, register guards, and register updates
** unary encoding of # of rounds

Conclusion

Conclusion

Future work ...

Thank you!

