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System: Concurrent Processes with Data-Structures

* Processes

e Data structures
 Stacks: recursive programs, multithreaded
e Queues: communication (FIFO)
* Bags: communication (unordered)




Architectures: Special cases

e PDA: Pushdown automata

Recursive programs
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Architectures: Special cases

e PDA: Pushdown automata
Recursive programs

* MPDA: Multi-pushdown automata
Multi-threaded recursive programs

* MPA: Message passing automata
Communicating finite state machines

e PN: Petri Nets
Only bags




Remote on-off via 2 channels




System: Architecture
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Operational semantics

clb cia c’b cla
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* "Iransition system TS
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* States (infinite)

* locations of processes

* contents of data structures
* Transitions
* Induced by the boolean programs

* [inear traces: abstractions of runs of TS



Linear Iraces
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Linear Iraces vs. Graphs
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Obey the Latest Order
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Graphs for Sequential Systems
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Graphs for Sequential Systems
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Semantics of CGPDS on Graphs
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Semantics of GPDS on Graphs
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Semantics of GPDS on Graphs
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Semantics of GPDS on Graphs
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Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

* Specifications

¥ Verification with Graphs and under-approximations
* Split-width and tree interpretation

* Conclusion



Specification over Graphs

MSO: Monadic Second Order Logic
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Specification over Graphs
Obey the latest order
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Specification over Linear lraces
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* Based on the word successor relation, and the word total order
¥ LTL over words, MSO over words

* LTL specification are not always meaningful
LTL \ X, Closure properties, ...

* Natural properties of graphs are difhicult or impossible to express
on linear traces



Specification over Linear 1races
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LTL \ X, Closure properties, ...

* Natural properties of graphs are diflicult or impossible to express
on linear traces



Graphs for Sequential Systems
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Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

* Verification with Graphs and under-approximations
* Split-width and tree interpretation

* Conclusion



Verification problems

* Emptiness or Reachability
* Inclusion or Universality
* Satisfiability ¢

* Model Checking: S = ¢

* Temporal logics G(r A on = Latest, Y, on)

* Propositional dynamic logics
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* Monadic second order logic AV (2 < 2 Ap(@) = @ < y)
Adz (x — y Aon(x)))



Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to automata

.. this is NOt possible in general for graphs




Verification problems

Ci C3
* Emptiness or Reachability E ‘ . i}
* Inclusion or Universality e s

* Satisfiability ¢ ﬂﬁt ‘3,\ rder

* Proposffional dynamic logics
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* Monadic second order logic AV (2 < 2 Ap(@) = @ < y)
Adz (x — y Aon(x)))



Under-approv- ate Verification
.“ ﬁ\y &Ot * Emptiness or Reachability
a

* Inclusion or Uni- \

mporal logics
* Bounded data structures
* Propositional dynamic logics

* Existentially bounded {Genest et al.} ¥ Monadic secondei. H
* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al.}, ...

* Bounded phase {LaTorre et al.l

* Bounded scope {LaTorre et al.}

* Priority ordering {Atig et al., Saivasan et al.1



Under-approximate Verification
Model checking problem: § ¢ (I)

C: class of

behaviors

ecification
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ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Graph Structure and
Monadic Second-Order Logic
A Language-Theoretic Approach
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Decidability of MSO theory

Let C be a class of bounded degree MSO definable graphs.
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3. C has bounded tree-widt
4. C has bounded clique-width
5. C has bounded split-width ¢for CBMs)




Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
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)stract

- propose a generalization of results on the decidability of empti-
s for several restricted classes of sequential and distributed au-
1ata with auxiliary storage (stacks, queues) that have recently
n proved. Our generalization relies on reducing emptiness of
se automata to finite-state graph automata (without storage)
ricted to monadic second-order (MSO) definable graphs of
mmded tree-width where the oranh structure encodes the mech-

Gennaro Parlato

LIAFA, CNRS and University of Paris Diderot, France.
gennaro@liafa.jussieu.fr

However, the various identified decidable restrictions on the
automata are, for the most part, awkward in their definitions
e.g. emptiness of multi-stack pushdown automata where pust
to any stack is allowed at any time, but popping is restricted
the first non-empty stack is decidable! [8]. Yet, relaxing the
definitions to more natural ones seems to either destroy decidabil
or their power. It is hence natural to ask: why do these autom:
have decidable emptiness problems? Is there a common underlyi



Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

M Verification with Graphs and under-approximations
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Width: split vs tree vs clique

t<2(k + IProcsl) - 1 Split—Width k c =2(k + IProcsl) + 1

[ Tree-Width t j [ Clique-Width ¢ ]

Let C be a class of bounded degree MSO definable graphs. |
TFAE ?
1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)
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Width: split vs tree vs clique
Split-Width k

K=120(t + 1) k<2c-3

[ Tree-Width t j [ Clique-Width C ]

Let C be a class of bounded degree MSO definable graphs. |
TFAE ?
1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)
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SPLIT DECOMPOSITION OF CBMs |
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SPLIT DECOMPOSITION OF CBMs
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SPLIT DECOMPOSITION OF CBMs




| spLIT DECOMPOSITION OF CBMS |




SPLIT DECOMPOSITION OF CBMs
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Tree interpretation In

Abstract Tree Decomposition
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Tree interpretation In

Abstract Tree Decomposition




N
a—a—>h—>=Cc—>

o e
J

\_/‘V

| T T N

a—>Q0=->h—>=Cc—>(

~_ )

Data edges -

L N N
7 =
@ @
® O @
( N N @
o’ 2 o
® O
I / \3 / \j
® a c b d
[ N N
SN
@
e
a ¢ b d

Tree interpretation In
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Tree interpretation In

Abstract Tree Decomposition



Nested Words: split-width < 2




Split-width: under-approximations

* \Words
* Nested Words Constant ]
~ * Acyclic Architectures

* Bounded channel size

* Existentially bounded
Bound + 2 ]

* Bounded context switching

- * Bounded scope

ZBound

* Bounded phase ]

~* Priority ordering



Split-width: parametrized verification

Complexity

Problem bound on split-width | bound on split-width

part of the input (in | fixed

unary)
CPDS emptiness ExPTIME-Complete PTiME-Complete
CPDS inclusion or universality 2EXPTIME ExpPTIME-Complete
LTL / CPDL satisfiability or model checking ExPTIME-Complete
ICPDL satisfiability or model checking 2EXPTIME -Complete
MSO satisfiability or model checking Non-elementary

C. Aiswarya, P.GG, K. Narayan Kumar
¥  MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
*  Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.
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* Conclusion



WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

* Interleaved sequence of events.

Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful
* Combinatorial explosion

single distributed behavior results
in a huge number of linear traces

* Visual description of behavior
* Interactions are visible

* no combinatorial explosion




WYSIWYG

Expressiveness of Specifications

Linear Traces Graphs (CBMs)

* Too weak for many natural * Powerful specifications
specifications

e | . . |* Interactions are built-in
equires syntactical or semantical e
. . 5 [
restrictions to be meaningful Meaningtu




WYSIWYG
Efficiency of Algorithms

Linear Traces Graphs (CBMs)
* Undecidable in general
+ Undecidable in general * Decidable under more lenient

Decidable under restrictions
Reductions to word automata
Good space complexity
Many tools available

restrictions

 Reductions to tree automata
via tree-interpretations

* Good time complexity

* Tools to be developed




Conclusion

* Use graphs to reason about behaviors of systems
distributed or sequential

* Exploit graph theory

Logics, decompositions, tree interpretations

* Split-width: convenient decomposition technique
as powerful as tree-width or clique-width for CBMs
yields optimal algorithms



Perspectives

* Extensions
* Timed systems
* Dynamic creation of processes
* Read from many

* Infinite behaviors
* o000

* Tools




