
Gossip
Maintaining Latest Information

Beyond Channel Bounds

C. Aiswarya, Paul Gastin, K. Narayan Kumar

ALFA, June 16th, 2015

INFORMEL
Indo-French Formal Methods Lab

Distributed Systems
C

D
B

A

Finite set of processes

Communicating via reliable
FIFO message passing

multiple channels between
processes

Remote control light

onoff
c1!ac1!b

c2!ac2!b

c1?ac1?b

c3!ac3!b

p

q2

r

q1

c1 c3

c2 c4

Message Sequence Charts

ITU Standard
Obey the latest order

Gossip

• Cooperate so that every process maintains latest
information about every other process

• When receiving a message, a process needs to
identify which is more recent:
• the information it has,
• the information transmitted by the sender

Process 2 Process 3

Network

Process 1

From To

Gossip 1 Gossip 2 Gossip 3

Process 2 Process 3

Network

Process 1

From
To

Gossip 1 Gossip 2 Gossip 3

Process 2 Process 3

Network

Process 1

From To

From To

Hea
vy

Fra
gile

From To

Hea
vy

Fra
gile

From To

Process 2 Process 3Process 1

Network

Gossip 1 Gossip 2 Gossip 3

! " # $ % &! " #

How to maintain the latest information?

! "#

$ % &! " #

How to maintain the latest information?

How to maintain the latest information
using only finite set of messages?

Why

Finite
communication

complexity Distributed
Synthesis

Formal Methods
Model checking

Local testing
Bounded

implementations of
replicated data-types

Global Snapshots
Causal Ordering

♠ ♣♥ ♦

need to reuse tags

? &

No natural ordering between

the tags

How to maintain the latest information
using only finite set of messages?

♠ ♣♥ ♦

No natural ordering between

the tags

 ♠
♠
♥

♠
♥

 ♠

We use some secondary

knowledge

♣ ♥

How to maintain the latest information
using only finite set of messages?

Is it even possible? At least in some
cases?

Synchronous
communication

[Zielonka87] Bounded
channels

[Mukund et al.03]

Beyond
Bounded
channels?

How to maintain the latest information
using only finite set of messages?

When is a color not needed any more?
Lets analyse for

k-Bounded channels

Challenges

I can reuse a color when I know that
the tagged message has been received

requires k colors

necessary, but not sufficient

and I know that everyone knows that
the tagged message has been received

Secondary knowledge

requires k2 colors

colors are not freed in the order they were used showing a bound, and using
a round-robin does not work

k-Bounded channels permit finite time-stamping

How to maintain the latest information
using only finite set of messages?

k-Bounded

channels

k-Bounded channels permit finite time-stamping

p

q

r

Equivalent writes

Important writes

Are existential channel
bounds necessary?

Not simply stuttering

Are channel bounds necessary for finite time-stamping?

How to maintain the latest information
using only finite set of messages?

Important

writes

Are existential channel bounds necessary?

Equivalent writes

Important writes

How to maintain the latest information
using only finite set of messages?

We need some bound:
Primary information

Pending writes

Primary writes

Equivalent writes

We need some bound:
Primary information

Latest received writes

Primary writes

Pending writes

We solve the gossip problem for primary bounded

Equivalent writes

How do we maintain the primary?

??
Need secondary knowledge

What is secondary
knowledge?

Keeping primary alone is not
enough

Secondary = Primary of Primary

Secondary = Primary of Primary

When can I reuse a color?

When it is not in the
secondary

 ~ k2 colors
~ size of secondary

Can we maintain secondary?

YES, WE CAN!

$ %&!# ?"

Gossip: more precisely
• Message passing automaton (MPA or CFM)

Gossip = (Locs, (Transp)p∈Procs)

Run: ρ : Events → Locs

e g

f

l

l’

l’’

l’

onoff
c1!ac1!b

c2!ac2!b

Known and Latest

Known(l’’) = {p2,p3,…,p6}

g

d’

e
l

l’f

l’’
p6

p1

p3

p4

p2

p5

Latest(l,l’) = {p3,p5,p6}

Known: Locs → 2Procs

Latest: Locs2 → 2Procs

Colors and time-stamps

g
ddd

$& ! ?"

d

h(g) = (d,χ(g))

χ(g) = min(N \ χ(Sec(⇓g) ∩ Send(d)))

K1(g) = {h(e) | e ∈ Prim(↓g)}

d’d’’

d d d

Locations of Gossip

g
ddd

d’d’’ $& ! "

d

K2(g) = (pid(g), d, c,K1(g), (K1(e))e∈Prim(g))

ℓ = (p, d, c, P, (Sγ)γ∈P)

p
d d d

Locations of Gossip

g
dd

d’d’’ $& !

d

K2(g) = (pid(g), d, c,K1(g), (K1(e))e∈K1(g))

ℓ = (p, d, c, P, (Sγ)γ∈P)

⊥,⊥

p
d d d

Known
g

ddd

ℓ = (p, d, c, P, (Sγ)γ∈P)

pid(↓g) = {pid(g)} ∪ pid(Prim(↓g))

Known(ℓ) = {p} ∪ pid(P)

p

q

Maintaining K2

g
d d

write event

case 1

e
l l’ = l

Equivalent writes : no changes

#
p

Maintaining K2

g
d

d’

write event

case 2

e
l l’

New channel: requires an available color

%#

ℓ = (p, d, c, P, (Sγ)γ∈P)

ℓ′ = (p, d′, c′, P ′ = P ∪ {(d′, c′)}, (S′
γ)γ∈P ′)

p

Maintaining K2

g

d’

read event

case 1

el

l’ f

(d′, c′) ∈ P ∧ ∃(d′′, c′′) ∈ P \ P ′ (d′′ ̸= d′ ∧W(d′′) = W(d′))
f < e iff

ℓ = (p, d, c, P, (Sγ)γ∈P)

c’

p

p’

ℓ′ = (p′, d′, c′, P ′, (S′
γ)γ∈P ′)

Maintaining K2

g

d’

read event

case 1

el

l’ f

(d′, c′) ∈ P ∧ ∃(d′′, c′′) ∈ P \ P ′ (d′′ ̸= d′ ∧W(d′′) = W(d′))
f < e iff

ℓ = (p, d, c, P, (Sγ)γ∈P)

f’’
d’’c’’c’

p

p’

ℓ′ = (p′, d′, c′, P ′, (S′
γ)γ∈P ′)

Maintaining K2

g

d’

read event

case 1

el

l’ f

(d′, c′) ∈ P ∧ ∃(d′′, c′′) ∈ P \ P ′ (d′′ ̸= d′ ∧W(d′′) = W(d′))
f < e iff

ℓ = (p, d, c, P, (Sγ)γ∈P)

f’’
d’’c’’c’

Latest(l,l’) = Known(l) l’’

ℓ′′ = (p,⊥,⊥, P ′′, (S′′
γ)γ∈P ′′)

p

p’

ℓ′ = (p′, d′, c′, P ′, (S′
γ)γ∈P ′) P ′′ = (P \ (P ′ ∩ d′)) ∪ {(d′, c′)}

Maintaining K2

g

d’

read event

case 2

el

l’ f

d

c

c’

ℓ = (p, d, c, P, (Sγ)γ∈P)

ℓ′ = (p, d′, c′, P ′, (S′
γ)γ∈P ′)

p

p’

e < f implies (d,c) ∈ P’

Maintaining K2

g

d’

read event

case 2

el

l’ f

c

c’

ℓ = (p, d, c, P, (Sγ)γ∈P)

ℓ′ = (p, d′, c′, P ′, (S′
γ)γ∈P ′)

dd d

cc
p

p’

e < f implies (d,c) ∈ P’
not iff

Maintaining K2

g

d’

read event

case 2

el

l’ f

c

c’

not case 1 and (d,c) ∈ P’ implies …

ℓ = (p, d, c, P, (Sγ)γ∈P)

ℓ′ = (p, d′, c′, P ′, (S′
γ)γ∈P ′)

dd d

cc
p

p’

e < f implies (d,c) ∈ P’

ℓ′′ = (p,⊥,⊥, P ′′, (S′′
γ)γ∈P ′′)

l’’Latest(l,l’) = {p}

not iff

P ′′ = (P ′ \ (P ′ ∩ d′)) ∪ {(d′, c′)}

Maintaining K2

g

d’

read event

case 3

el

l’ f

not (case 1 or case 2) implies e || f

c

c’

l’’

Prim(⇓g) = (Prim(↓e) ∩ Prim(↓f)) ∪ (Prim(↓e) \ ↓f) ∪ (Prim(↓f) \ ↓e)

Prim(↓e) \
⋃

e′∈Prim(↓e)∩Prim(↓f) Prim(↓e′)

p

p’

Maintaining K2

g

d’

read event

case 3

el

l’ f

not (case 1 or case 2) implies e || f

c

c’

l’’

Prim(⇓g) = (Prim(↓e) ∩ Prim(↓f)) ∪ (Prim(↓e) \ ↓f) ∪ (Prim(↓f) \ ↓e)

h injective on Sec(↓e ∪↓f)

Prim(↓e) \
⋃

e′∈Prim(↓e)∩Prim(↓f) Prim(↓e′)

P ′′′ = (P ∩ P ′) ∪
(

P \
⋃

γ∈P∩P ′ Sγ

)

∪
(

P ′ \
⋃

γ∈P∩P ′ S′
γ

)

p

p’

Maintaining K2

g

d’

read event

case 3

el

l’ f

not (case 1 or case 2) implies e || f

c

c’

l’’
h injective on Sec(↓e ∪↓f)

P ′′′ = (P ∩ P ′) ∪
(

P \
⋃

γ∈P∩P ′ Sγ

)

∪
(

P ′ \
⋃

γ∈P∩P ′ S′
γ

)

ℓ = (p, d, c, P, (Sγ)γ∈P)

ℓ′ = (p, d′, c′, P ′, (S′
γ)γ∈P ′)

ℓ′′ = (p,⊥,⊥, P ′′, (S′′
γ)γ∈P ′′)

p

p’

Latest(l,l’) can be computed

P ′′ = (P ′′′ \ (P ′ ∩ d′)) ∪ {(d′, c′)}

Is it even possible? At least in some
cases?

Synchronous
communication

[Zielonka87] Bounded
channels

[Mukund et al.03]

Primary
bounded

How to maintain the latest information
using only finite set of messages?

