
1/37

A fresh look at testing for synchronous

communication

Paul Gastin

LSV

ENS de Cachan & CNRS

Paul.Gastin@lsv.ens-cachan.fr

Joint work with Puneet Bhateja and Madhavan Mukund

LAA, June 28th, 2006

2/37

Outline

1 Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

3/37

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

3/37

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

3/37

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

4/37

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

4/37

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

4/37

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

5/37

Related work

I. Castellani and M Hennessy: Testing Theories for Asynchronous Languages,
Proc. FSTTCS ’98, Springer Lecture Notes in Computer Science 1530 (1998)
90–101.

R. de Nicola and M. Hennessy: Testing equivalences for processes, Theoretical
Computer Science, 34 (1984) 83–133.

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc IFIP TC6/WG6.1 XV International
Conference on Testing of Communicating Systems (TestCom 2003), Sophia
Antipolis, France, (2003) 129–145.

J. Tretmans: Test Generation with Inputs, Outputs and Repetitive
Quiescence, Software—Concepts and Tools, 17(3) (1996) 103–120.

6/37

Outline

Introduction

2 Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

7/37

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is deadlocked if it refuses all output actions: s
Σo

9.

Some further properties

◮ No infinite output only behaviour.

◮ Receptivness: ∀s ∈ S, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

7/37

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is deadlocked if it refuses all output actions: s
Σo

9.

Some further properties

◮ No infinite output only behaviour.

◮ Receptivness: ∀s ∈ S, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

7/37

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is deadlocked if it refuses all output actions: s
Σo

9.

Some further properties

◮ No infinite output only behaviour.

◮ Receptivness: ∀s ∈ S, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

8/37

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a (maximal) run i
w
−→ s in TS with

◮ i ∈ I and s deadlocked

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

8/37

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a (maximal) run i
w
−→ s in TS with

◮ i ∈ I and s deadlocked

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

TS1 a

x

a

x

x

y

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

8/37

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a (maximal) run i
w
−→ s in TS with

◮ i ∈ I and s deadlocked

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

TS1 a

x

a

x

x

y

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

9/37

Asynchronous testing equivalence (1)
IO-equivalence

Two transition systems TS and TS′ are IO-equivalent, denoted TS ∼io TS′ if

IOBeh(TS) = IOBeh(TS′)

Example

TS1 a

x

a

x

x

y

TS2 a

a

x

x

x
x

y

IOBeh(TS1) = IOBeh(TS2):
(ε, ε)
(a, x), (a, xy)
(an, x), (an, xy), (an, x2) if n ≥ 2.

TS1 and TS2 are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

9/37

Asynchronous testing equivalence (1)
IO-equivalence

Two transition systems TS and TS′ are IO-equivalent, denoted TS ∼io TS′ if

IOBeh(TS) = IOBeh(TS′)

Example

TS1 a

x

a

x

x

y

TS2 a

a

x

x

x
x

y

IOBeh(TS1) = IOBeh(TS2):
(ε, ε)
(a, x), (a, xy)
(an, x), (an, xy), (an, x2) if n ≥ 2.

TS1 and TS2 are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

10/37

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

R(A) = {(a, x), (a, xy), (a2, x2)}

10/37

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

R(A) = {(a, x), (a, xy), (a2, x2)}

10/37

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

A

a

x

a

x

x

y

R(A) = {(a, x), (a, xy), (a2, x2)}

11/37

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform deadlocked states into final states

Let D ⊆ S be the set of deadlocked states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/37

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform deadlocked states into final states

Let D ⊆ S be the set of deadlocked states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/37

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform deadlocked states into final states

Let D ⊆ S be the set of deadlocked states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/37

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform deadlocked states into final states

Let D ⊆ S be the set of deadlocked states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

12/37

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If |Σi| = |Σo| = 1 then IO-equivalence is decidable.

12/37

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If |Σi| = |Σo| = 1 then IO-equivalence is decidable.

13/37

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be deadlocked (easy to fix).

◮ Deadlocked states may not be final (harder to fix).

Example

Same rational relation: R(A1) = {(a2, x3)} = R(A2)

But different IO-behaviours:

IOBeh(A1) = {(ε, ε), (a, x2)} ∪ {(an, x3) | n ≥ 2}

IOBeh(A2) = {(ε, ε), (a, x)} ∪ {(an, x3) | n ≥ 2}

13/37

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be deadlocked (easy to fix).

◮ Deadlocked states may not be final (harder to fix).

Example

A1
a x x a x

A2
a x a x x

Same rational relation: R(A1) = {(a2, x3)} = R(A2)

But different IO-behaviours:

IOBeh(A1) = {(ε, ε), (a, x2)} ∪ {(an, x3) | n ≥ 2}

IOBeh(A2) = {(ε, ε), (a, x)} ∪ {(an, x3) | n ≥ 2}

14/37

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be deadlocked (easy to fix).

◮ Deadlocked states may not be final (harder to fix).

◮ Discarded inputs should be taken care of.

Example

Same IO-behaviours: IOBeh(A1) = {(ε, ε)} ∪ {(an, x) | n ≥ 1} = IOBeh(A2)

But different rational relations:

R(A1) = {(a, x)}

R(A2) = {(an, x) | n ≥ 1}

14/37

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be deadlocked (easy to fix).

◮ Deadlocked states may not be final (harder to fix).

◮ Discarded inputs should be taken care of.

Example

A1
a x

A2
a x

a

Same IO-behaviours: IOBeh(A1) = {(ε, ε)} ∪ {(an, x) | n ≥ 1} = IOBeh(A2)

But different rational relations:

R(A1) = {(a, x)}

R(A2) = {(an, x) | n ≥ 1}

15/37

Rat(B∗)-automata

Definition

A Rat(B∗)-automaton over A is a tuple A = (S, A, λ, µ, γ) where

◮ S is the finite set of states

◮ λ : S → Rat(B∗) s
λs

A word in λs is emitted when entering A in state s.

◮ µ : A → (S × S → Rat(B∗)) r s
a / µ(a)r,s

A word in µ(a)r,s is emitted when taking a transition from r to s labelled a.

◮ γ : S → Rat(B∗) s
γs

A word in γs is emitted when exiting A in state s.

Then, (u, v) ∈ R(A) if there is a path P = s0
a1−→ s1 · · · sn−1

an−−→ sn in A with

◮ u = a1 · · · an

◮ v ∈ λs0
µ(a1)s0,s1

· · ·µ(an)sn−1,sn
γsn

.

15/37

Rat(B∗)-automata

Definition

A Rat(B∗)-automaton over A is a tuple A = (S, A, λ, µ, γ) where

◮ S is the finite set of states

◮ λ : S → Rat(B∗) s
λs

A word in λs is emitted when entering A in state s.

◮ µ : A → (S × S → Rat(B∗)) r s
a / µ(a)r,s

A word in µ(a)r,s is emitted when taking a transition from r to s labelled a.

◮ γ : S → Rat(B∗) s
γs

A word in γs is emitted when exiting A in state s.

Then, (u, v) ∈ R(A) if there is a path P = s0
a1−→ s1 · · · sn−1

an−−→ sn in A with

◮ u = a1 · · · an

◮ v ∈ λs0
µ(a1)s0,s1

· · ·µ(an)sn−1,sn
γsn

.

16/37

Rat(B∗)-automata and rational relations

Theorem

A relation R ⊆ A∗ × B∗ is rational iff there exists a Rat(B∗)-automaton A with
R = R(A).

Theorem

If |A| ≥ 2 then equivalence is undecidable for Rat(B∗)-automata over A.
This holds even if

◮ |B| = 1

◮ We use only finite languages: Pfin(B
∗)-automata

◮ There is no output when entering the automaton: λs 6= ∅ implies λs = {ε}

◮ There is no output when exiting the automaton: γs 6= ∅ implies γs = {ε}

◮ All transitions are visible: ε /∈ µ(a)r,s

16/37

Rat(B∗)-automata and rational relations

Theorem

A relation R ⊆ A∗ × B∗ is rational iff there exists a Rat(B∗)-automaton A with
R = R(A).

Theorem

If |A| ≥ 2 then equivalence is undecidable for Rat(B∗)-automata over A.
This holds even if

◮ |B| = 1

◮ We use only finite languages: Pfin(B
∗)-automata

◮ There is no output when entering the automaton: λs 6= ∅ implies λs = {ε}

◮ There is no output when exiting the automaton: γs 6= ∅ implies γs = {ε}

◮ All transitions are visible: ε /∈ µ(a)r,s

17/37

Undecidability of IO-equivalence
Theorem
IO-equivalence is undecidable.

Proof

Let A = (S, A, λ, µ, γ) be a Pfin(B
+)-automaton. Define A′ = (S′, Σ, I ′, T ′) by

◮ Σi = A, Σo = B ⊎ {#} and I ′ = {s ∈ I | λs 6= ∅ (i.e., λs = {ε})}

◮ transitions r
a / µ(a)r,s

−−−−−−−→ s of A are replaced in A′ by

r a
µ(a)r,s s

x

y

Note that deadlocked states of A′ are exactly the states of A.

Claim: (u, v) ∈ IOBeh(A′) iff there is a path s0
a1−→ s1 · · · sn−1

an−−→ sn in A with
λs0

= {ε}, v ∈ µ(a1)s0,s1
· · ·µ(an)sn−1,sn

, and
u = a1 · · · an or u = a1 · · · anau′ with µ(a)sn,s = ∅ for all s ∈ S.

17/37

Undecidability of IO-equivalence
Theorem
IO-equivalence is undecidable.

Proof

Let A = (S, A, λ, µ, γ) be a Pfin(B
+)-automaton. Define A′ = (S′, Σ, I ′, T ′) by

◮ Σi = A, Σo = B ⊎ {#} and I ′ = {s ∈ I | λs 6= ∅ (i.e., λs = {ε})}

◮ transitions r
a / µ(a)r,s

−−−−−−−→ s of A are replaced in A′ by

r a
µ(a)r,s s

x

y

Note that deadlocked states of A′ are exactly the states of A.

Claim: (u, v) ∈ IOBeh(A′) iff there is a path s0
a1−→ s1 · · · sn−1

an−−→ sn in A with
λs0

= {ε}, v ∈ µ(a1)s0,s1
· · ·µ(an)sn−1,sn

, and
u = a1 · · · an or u = a1 · · · anau′ with µ(a)sn,s = ∅ for all s ∈ S.

18/37

Undecidability of IO-equivalence

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r
a

µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that deadlocked states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

18/37

Undecidability of IO-equivalence

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r
a

µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that deadlocked states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

18/37

Undecidability of IO-equivalence

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r
a

µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that deadlocked states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

19/37

Outline

Introduction

Input/Output semantics

3 IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

20/37

Asynchronous IO-blocks semantics

Definition

A block observation of TS = (S, Σ, I, T) is a sequence (u0, v0)(u1, v1) · · · (un, vn)
where

◮ u0 ∈ Σ∗
i and uj ∈ Σ+

i for 1 ≤ j ≤ n,

◮ vk ∈ Σ∗
o for 0 ≤ k ≤ n

and there is a maximal run r
w0−−→ s0

w1−−→ · · ·
wn−−→ sn with r ∈ I such that:

◮ The states s0, s1, s2, . . . , sn are the only deadlocked states along this run.

◮ ∀0 ≤ j ≤ n, πo(wj) = vj .

◮ ∀0 ≤ j < n, πi(wj) = uj .

◮ Either πi(wn) = un or there exists a ∈ Σi with πi(wn)a � un and sn
a
9.

Let IOBlocks(TS) denote the set of block observations of TS.

21/37

IO-block equivalence

IO-block equivalence

Two transition systems TS and TS′ are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS′)

This equivalence is denoted TS ∼ioblock TS′.

Remark
IO-block equivalence corresponds to the queued suspenstion trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

21/37

IO-block equivalence

IO-block equivalence

Two transition systems TS and TS′ are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS′)

This equivalence is denoted TS ∼ioblock TS′.

Remark
IO-block equivalence corresponds to the queued suspenstion trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

22/37

IO-block equivalence

Example

TS1
a

x

y

a

z

a

x

a

w

IOBlocks(TS1):
(ε, ε)
(a, xy)
(a, xy)(an, z) for n ≥ 1
(a, x)
(a, x)(an, w) for n ≥ 1

IOBeh(TS1):
(ε, ε)
(a, xy)
(an, xyz) for n ≥ 2
(a, x)
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) =
{(u0u1 . . . un, v0v1 . . . vn) | (u0, v0)(u1, v1) . . . (un, vn) ∈ IOBlocks(TS)}

22/37

IO-block equivalence

Example

TS2
a

x

y

a

z

a

x

a

w
y

z

IOBlocks(TS2):
(ε, ε)
(a, xy)
(a, xy)(an, z) for n ≥ 1
(a, x)
(a, x)(an, w) for n ≥ 1
(a, x)(an, yz) for n ≥ 1

IOBeh(TS2):
(ε, ε)
(a, xy)
(an, xyz) for n ≥ 2
(a, x)
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) =
{(u0u1 . . . un, v0v1 . . . vn) | (u0, v0)(u1, v1) . . . (un, vn) ∈ IOBlocks(TS)}

22/37

IO-block equivalence

Example

TS2
a

x

y

a

z

a

x

a

w
y

z

IOBlocks(TS2):
(ε, ε)
(a, xy)
(a, xy)(an, z) for n ≥ 1
(a, x)
(a, x)(an, w) for n ≥ 1
(a, x)(an, yz) for n ≥ 1

IOBeh(TS2):
(ε, ε)
(a, xy)
(an, xyz) for n ≥ 2
(a, x)
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) =
{(u0u1 . . . un, v0v1 . . . vn) | (u0, v0)(u1, v1) . . . (un, vn) ∈ IOBlocks(TS)}

23/37

Decidability of IO-block equivalence
Definition
A transition system is well-structured if every state either refuses Σi or refuses Σo.

Theorem
For finite well structured transition systems, ∼ioblock is decidable.

Proof

Let D = {s ∈ S | s is deadlocked}.

For a ∈ Σi, let Da = {s ∈ S | s is deadlocked and s
a
9}.

For X ⊆ S, let LX(TS) = {w ∈ Σ∗ | I
w
−→ X}.

Claim. TS1 ∼ioblock TS2 iff

◮ LD(TS1) = LD(TS2), and

◮ LDa
(TS1) = LDa

(TS2) for each a ∈ Σi.

Indeed, for well structured transition systems, we have
IOBlocks(TS) = {(ε, v0)(a1, v1) . . . (an, vn) | i

v0−→ s0
a1v1−−−→ s1 · · · sn−1

anvn−−−→ sn}

∪ {(ε, v0)(a1, v1) . . . (anau, vn) | i
v0−→ s0

a1v1−−−→ s1 · · · sn−1
anvn−−−→ sn

a
9}

23/37

Decidability of IO-block equivalence
Definition
A transition system is well-structured if every state either refuses Σi or refuses Σo.

Theorem
For finite well structured transition systems, ∼ioblock is decidable.

Proof

Let D = {s ∈ S | s is deadlocked}.

For a ∈ Σi, let Da = {s ∈ S | s is deadlocked and s
a
9}.

For X ⊆ S, let LX(TS) = {w ∈ Σ∗ | I
w
−→ X}.

Claim. TS1 ∼ioblock TS2 iff

◮ LD(TS1) = LD(TS2), and

◮ LDa
(TS1) = LDa

(TS2) for each a ∈ Σi.

Indeed, for well structured transition systems, we have
IOBlocks(TS) = {(ε, v0)(a1, v1) . . . (an, vn) | i

v0−→ s0
a1v1−−−→ s1 · · · sn−1

anvn−−−→ sn}

∪ {(ε, v0)(a1, v1) . . . (anau, vn) | i
v0−→ s0

a1v1−−−→ s1 · · · sn−1
anvn−−−→ sn

a
9}

24/37

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

4 Queue semantics (Tretman)

Conclusion

25/37

Queue semantics (Tretmans)

Definition

Let TS = (S, Σ, I, T) be a transition system. Define Q(TS) = (S′, Σ, I ′, T ′) by

◮ S′ = S × Σ∗
i × Σ∗

o: configurations of TS.

◮ I ′ = I × {ε} × {ε}: initial configurations

◮ Transitions of TS are broken up into two moves, one visible and one invisible
(labelled τ):

Input
(s, σi, σo)

a
−→ (s, σia, σo)

s
a
−→ s′

(s, aσi, σo)
τ
−→ (s′, σi, σo)

Output
s

x
−→ s′

(s, σi, σo)
τ
−→ (s′, σi, σox) (s, σi, xσo)

x
−→ (s, σi, σo)

◮ L(Q(TS)) is the set of traces of Q(TS).

26/37

Deadlocked traces (Tretmans)

Deadlocked traces

◮ A trace w ∈ L(Q(TS)) is deadlocked if there is a run (r, ε, ε)
w
−→ (s, σi, ε)

with r ∈ I and (s, σi, ε) deadlocked in Q(TS).

◮ We denote by δtraces(Q(TS)) the set of deadlocked traces of Q(TS).

Empty and blocked deadlocked traces

◮ A trace w ∈ L(Q(TS)) is an empty deadlock if there is a run

(r, ε, ε)
w
−→ (s, ε, ε) with r ∈ I and s deadlocked in TS.

◮ We denote by δempty(Q(TS)) the empty deadlocked traces of Q(TS).

◮ A trace w ∈ L(Q(TS)) is an blocked deadlock if there is a run

(r, ε, ε)
w
−→ (s, aσi, ε) with r ∈ I and in TS, s deadlocked and s

a
9.

◮ We denote by δblock(Q(TS)) the blocked deadlocked traces of Q(TS).

Proposition: δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS))

26/37

Deadlocked traces (Tretmans)

Deadlocked traces

◮ A trace w ∈ L(Q(TS)) is deadlocked if there is a run (r, ε, ε)
w
−→ (s, σi, ε)

with r ∈ I and (s, σi, ε) deadlocked in Q(TS).

◮ We denote by δtraces(Q(TS)) the set of deadlocked traces of Q(TS).

Empty and blocked deadlocked traces

◮ A trace w ∈ L(Q(TS)) is an empty deadlock if there is a run

(r, ε, ε)
w
−→ (s, ε, ε) with r ∈ I and s deadlocked in TS.

◮ We denote by δempty(Q(TS)) the empty deadlocked traces of Q(TS).

◮ A trace w ∈ L(Q(TS)) is an blocked deadlock if there is a run

(r, ε, ε)
w
−→ (s, aσi, ε) with r ∈ I and in TS, s deadlocked and s

a
9.

◮ We denote by δblock(Q(TS)) the blocked deadlocked traces of Q(TS).

Proposition: δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS))

26/37

Deadlocked traces (Tretmans)

Deadlocked traces

◮ A trace w ∈ L(Q(TS)) is deadlocked if there is a run (r, ε, ε)
w
−→ (s, σi, ε)

with r ∈ I and (s, σi, ε) deadlocked in Q(TS).

◮ We denote by δtraces(Q(TS)) the set of deadlocked traces of Q(TS).

Empty and blocked deadlocked traces

◮ A trace w ∈ L(Q(TS)) is an empty deadlock if there is a run

(r, ε, ε)
w
−→ (s, ε, ε) with r ∈ I and s deadlocked in TS.

◮ We denote by δempty(Q(TS)) the empty deadlocked traces of Q(TS).

◮ A trace w ∈ L(Q(TS)) is an blocked deadlock if there is a run

(r, ε, ε)
w
−→ (s, aσi, ε) with r ∈ I and in TS, s deadlocked and s

a
9.

◮ We denote by δblock(Q(TS)) the blocked deadlocked traces of Q(TS).

Proposition: δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS))

27/37

Deadlocked traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

δempty(TS1):
ε
ax
axy
axayz
axyaz
aaxyz

δblock(TS1):
axyazan for n ≥ 1
axayzan for n ≥ 1
aaxyzan for n ≥ 1
axanyaz for n ≥ 1
. . .

27/37

Deadlocked traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

δempty(TS1):
ε
ax
axy
axayz
axyaz
aaxyz

δblock(TS1):
axyazan for n ≥ 1
axayzan for n ≥ 1
aaxyzan for n ≥ 1
axanyaz for n ≥ 1
. . .

28/37

Queue equivalence (Tretmans)

Definition

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

Intuitively, synchronous testing equivalence ∼syn corresponds to failure semantics.

Proposition (Tretmans)

TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and δtraces(Q(TS)) = δtraces(Q(TS′))

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

29/37

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed:

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added:

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

◮ L(Q(TS)) is @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ δblock(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I, s deadlocked, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

30/37

Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

◮ We denote |@| the reflexive and transitive closure of the relation postponing
an output action.

◮ δempty(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I,

s deadlocked and w′ |@| w}.

30/37

Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

◮ We denote |@| the reflexive and transitive closure of the relation postponing
an output action.

◮ δempty(Q(TS)) = {w ∈ Σ∗ | ∃ r
w′

−→ s in TS with r ∈ I,

s deadlocked and w′ |@| w}.

31/37

Deadlocked traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

δempty(TS1):
|@|-upper closure of
ε
ax
axy
axyaz

axyaz |@| axayz
axyaz |@| aaxyz

δblock(TS1):
@-upper closure of
axyaza

31/37

Deadlocked traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

δempty(TS1):
|@|-upper closure of
ε
ax
axy
axyaz

axyaz |@| axayz
axyaz |@| aaxyz

δblock(TS1):
@-upper closure of
axyaza

32/37

Comparing the equivalences

Proposition

If TS1 ∼Q TS2, then TS1 ∼io TS2.

The converse does not hold

TS1

a

x

a

x

x

a

x

a

x

x

Tracks(TS1):
ε
ax
axx
axaxx

IOBeh(TS1):
(ε, ε)
(an, x) for n ≥ 1
(an, x2) for n ≥ 1
(an, x3) for n ≥ 2

32/37

Comparing the equivalences

Proposition

If TS1 ∼Q TS2, then TS1 ∼io TS2.

The converse does not hold

TS2

a

x

a

x

x

a

x

x

a

x

Tracks(TS2):
ε
ax
axx
axxax

axxax @ axaxx

IOBeh(TS2):
(ε, ε)
(an, x) for n ≥ 1
(an, x2) for n ≥ 1
(an, x3) for n ≥ 2

33/37

Undecidability of Qtest

Theorem
∼Q is undecidable

Proof

Reduction from the PCP problem.

A PCP instance consists in two morphisms f, g : A+ → B+ where A, B are finite
alphabets.

The PCP instance f, g has a solution if there exists u ∈ A+ such that f(u) = g(u).

We construct two systems M1 and M2 such that the PCP instance (f, g) has no
solution iff M1 ∼Q M2.

34/37

Reduction from the PCP problem
Let f, g : A+ → B+ be a PCP instance. We define

S0

I

∆0

A

A

B

B

$

A, $

B

B

Sf

I · · ·

X Y

Z ′

Z

∆f

F

a b1 b2 bk−1

bk

A
b1 b2

bk−1¬b1 ¬b2 ¬bk−1 ¬bk bk

B

A

A, B

B$ $ $

A, $

B

B

35/37

Reduction from the PCP problem

We want to compare the following two systems:

◮ M1 = S0 + Sf + Sg

◮ M2 = Sf + Sg

Lemma

δblock(M1) = δblock(M2) = ∅.

Lemma

Tracks(M1) = Tracks(M2) = Tracks(Sf) = B∗.

Lemma
◮ δempty(S0) is the |@|-upper closure of A+B+$.

◮ Let u ∈ A+ and v ∈ B+. Then, uv$ ∈ δempty(Sf) if and only if v 6= f(u).

Theorem

M1 ∼Q M2 iff the PCP instance (f, g) has no solution.

36/37

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

5 Conclusion

37/37

Conclusion

Summary
◮ We have investigated 3 asynchronous testing equivalences.

◮ We have shown that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q

and ∼ioblock are incomparable.

◮ ∼ioblock is decidable, while ∼io and ∼Q are undecidable.

Open problems
◮ Construct test suites based on the IO-Blocks semantics.

◮ Investigate distributed testing.
See e.g. C. Jard: Synthesis of distributed testers from true-concurrency
models of reactive systems, Information & Software Technology, 2003.

37/37

Conclusion

Summary
◮ We have investigated 3 asynchronous testing equivalences.

◮ We have shown that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q

and ∼ioblock are incomparable.

◮ ∼ioblock is decidable, while ∼io and ∼Q are undecidable.

Open problems
◮ Construct test suites based on the IO-Blocks semantics.

◮ Investigate distributed testing.
See e.g. C. Jard: Synthesis of distributed testers from true-concurrency
models of reactive systems, Information & Software Technology, 2003.

	Introduction
	Input/Output semantics
	IO-Blocks semantics
	Queue semantics (Tretman)
	Conclusion

