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Synchronous testing

The tester interacts synchronously with the system.

The tester proposes an action which is either refused or accepted and
executed by the system.

The tester has an immediate feedback.
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Introduction

Verification of software or hardware
» Proof

> Model checking
> Test

Synchronous testing

The tester interacts synchronously with the system.

The tester proposes an action which is either refused or accepted and
executed by the system.

The tester has an immediate feedback.

Asynchronous testing
» The tester communicate asynchronously with the system
» The tester provides inputs and observes outputs.

» The tester does not necessarily know whether its inputs have been used by the
system or not.
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Introduction

Static test generation — Input/Output semantics
» Tests are computed in advance and are sent as a whole stream to the system

» The tester then observes the output streams generated by the system
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Introduction

Static test generation — Input/Output semantics
» Tests are computed in advance and are sent as a whole stream to the system

» The tester then observes the output streams generated by the system

on the fly test generation — |0-Blocks semantics
Inputs are supplied incrementally.

The tester observes the outputs that are triggered by each block of input.
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Introduction

Static test generation — Input/Output semantics
» Tests are computed in advance and are sent as a whole stream to the system

» The tester then observes the output streams generated by the system

on the fly test generation — |0-Blocks semantics
Inputs are supplied incrementally.

The tester observes the outputs that are triggered by each block of input.

Test equivalence
» Equivalence of two systems for a given test semantics.

» We study the expressiveness and the decidability of some test equivalences.
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The model

Labelled transition system
TS =(S,%,1,T) where

» S is the set of states

» I C S is the set of initial states

» ¥ =3, W3, is the set of input/output actions

» T'C S x X xS is the set of transitions
L(TS)={we¥x* | I in TS}
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The model

Labelled transition system
TS =(S,%,1,T) where

» S is the set of states

» I C S is the set of initial states

» ¥ =3, W3, is the set of input/output actions

» T'C S x X xS is the set of transitions
L(TS)={we¥x* | I in TS}

. i . A
s € S is deadlocked if it refuses all output actions: s =5.
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The model

Labelled transition system
TS =(S,%,1,T) where

» S is the set of states

» I C S is the set of initial states

» ¥ =3, W3, is the set of input/output actions

» T'C S x X xS is the set of transitions
L(TS)={we¥x* | I in TS}

. i . A
s € S is deadlocked if it refuses all output actions: s =5.

Some further properties

» No infinite output only behaviour.

~ Receptivness: Vs € S, Va € ¥;, s =
If this is not the case, we may

» discard unexpected inputs

» enter a dead state accepting all inputs and with no possible outputs.

o 5 - =
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Asynchronous 10-Behaviours

Intuition: Provide some test input uw € X7 up front and observe the maximal
outcome v € X%. Corresponds to static test generation.

Definition: |0-Behaviours
Let TS = (S,%,I,T). IOBeh(TS) is the set of pairs (u,v) € XF x X* such that
there is a (maximal) run i = s in 'S with

> ¢ € I and s deadlocked

> mo(w) = v, and

» either ;(w) = u or there exists a € ¥; such that 7;(w)a < u and s .

u}
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Asynchronous 10-Behaviours
Intuition: Provide some test input uw € X7 up front and observe the maximal
outcome v € X%. Corresponds to static test generation.
Definition: 10-Behaviours

Let TS = (S,%,I,T). IOBeh(TS) is the set of pairs (u,v) € XF x X* such that
there is a (maximal) run i = s in 'S with
» 1 € I and s deadlocked

> m,(w) = v, and

» either ;(w) = u or there exists a € ¥; such that 7;(w)a < u and s .

Example
TS5
IOBeh(T S1):
(,€)
(a,z), (a,zy)

(a?,z), (a®,7y), (a®,2?)
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Asynchronous 10-Behaviours

Definition: 10-Behaviours
Let TS = (S,%,I,T). IOBeh(TS) is the set of pairs (u,v) € XF x X* such that
there is a (maximal) run i = s in 'S with

> ¢ € I and s deadlocked

> m,(w) = v, and

» either ;(w) = u or there exists a € ¥; such that 7;(w)a < u and s .

Example
TS5

IOBeh(T Sy):

(¢,€)

(a,2), (a,zy)

EaQ,:z:), (a?, zy), (a?,2?)

a,x), (a, zy), (a®, %) if n > 2.

[m] = = =
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Asynchronous testing equivalence (1)

|O-equivalence

Two transition systems T'S and TS’ are 10-equivalent, denoted T'S ~;, T'S” if

I0Beh(TS) = I0Beh(T'S")

Example
TS5
a

IOBeh(T'S1) = I0Beh(T'S>):
(¢,€)

(a,2), (a,2y)

(@™, z), (a™, xy), (a™, x?) if n > 2.

TSy and T'Sy are |0-equivalent.

PAN &4



Asynchronous testing equivalence (1)

|O-equivalence

Two transition systems T'S and TS’ are 10-equivalent, denoted T'S ~;, T'S” if

I0Beh(TS) = I0Beh(TS')
Example

IOBeh(T'S1) = I0Beh(T'S>):
(¢,€)

(a,2), (a,2y)

y (a"z), (a 2y), (™, 22) ifn > 2.

TSy and T'Sy are |0-equivalent.

|0-equivalence corresponds to the queued quiescent trace equivalence of

[d A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.
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Rational relations
Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A* x B*.
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Rational relations

Definition
Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A* x B*.

Equivalently, R C A* x B* is a rational relation if there exists an automaton
A= (S, AUB,I,F,T) such that

R={(u,v) € A*xB* |3 % fin Awithi € I, f € F,ma(w) = u,mp(w) = v}
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Rational relations
Definition
Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A* x B*.

Equivalently, R C A* x B* is a rational relation if there exists an automaton
A= (S,AUB,I,F,T) such that

R={(u,v) € A*xB* |3 % fin Awithi € I, f € F,ma(w) = u,mp(w) = v}

Example

A

R(A) = {(a,2), (a, zy), (a®,2*)}
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From 10-behaviours to rational relations
From a transition system T'S = (5,3, I, T'), we can construct an automaton A over
¥ =3, WX, such that

I0Beh(TS) = R(A)

A



From 10-behaviours to rational relations
From a transition system T'S = (S, %, I, T'), we can construct an automaton A over
¥ =3, WX, such that

I0Beh(TS) = R(A)
Proof. Intuition: transform deadlocked states into final states
Let D C S be the set of deadlocked states of T'S. Define A = (S',%,I', F',T")
» S’ =SwDw{f} where D is a copy of D.

» I'=IwINDand F'=DW{f}
>

T"=T U {(ra3)|(ra,s) €T and s € D}
U {G,a,f)|acX;and s 5}
U {(fva'7f)|a€2i}
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From 10-behaviours to rational relations

From a transition system T'S = (S, %, I, T'), we can construct an automaton A over
¥ =3, WX, such that

I0Beh(TS) = R(A)

Proof. Intuition: transform deadlocked states into final states

Let D C S be the set of deadlocked states of T'S. Define A = (S',%,I', F',T")
» S’ =SwDw{f} where D is a copy of D.
» I'=IwINDand F'=DW{f}
» T'=T U {(r,a,3) ]| (r,a,s) €T and s € D}
U {G,a,f)|acX;and s 5}
U {(f,af)lacXi}

Let (u,v) € IOBeh(TS) and @ < s in T'S with i € I, s € D, m,(w) = v and
u = m;(w)au’ with s .

Then, i % 5% f v, fin Aand u = m(wav'), w = 7o(wau').

Hence, (u,v) € R(A).
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From 10-behaviours to rational relations

From a transition system T'S = (S, %, I, T'), we can construct an automaton A over
¥ =3, WX, such that

I0Beh(TS) = R(A)
Proof. Intuition: transform deadlocked states into final states

Let D C S be the set of deadlocked states of T'S. Define A = (S',%,I', F',T")
» S’ =SwDw{f} where D is a copy of D.
» I'=IwINDand F'=DW{f}
» T'=T U {(r,a,3) ]| (r,a,s) €T and s € D}
U {G,a,f)|acX;and s 5}
U {(f,a,f)]a€i}
Let (u,v) € IOBeh(TS) and @ < s in T'S with i € I, s € D, m,(w) = v and

u = m;(w)au’ with s .

Then, i =55 f Z, fin A and u = m;(wau’), w = m,(wau’).
Hence, (u,v) € R(A).
Other cases are similar.
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Decidability of 10-equivalence

If |[A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

A



Decidability of 10-equivalence

Theorem

If |[A| = |B| = 1 then equivalence of rational relations over A and B is decidable.
Corollary
If |2;] = |Z,| = 1 then |0-equivalence is decidable.

A



Several problems:

From rational relations to 10-behaviours

» Final states may not be deadlocked (easy to fix).
» Deadlocked states may not be final (harder to fix).
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From rational relations to 10-behaviours

Several problems:
» Final states may not be deadlocked (easy to fix).
» Deadlocked states may not be final (harder to fix).
Example

a x x a x
Ay

Ay —>0—>0—>0—>0—>0—>0—>
Same rational relation: R(A;) = {(a?,2%)} = R(A2)
But different 10-behaviours:

IOBeh(A;) = {(g,¢),(a,2*)} U{(a™,23) | n > 2}
IOBeh(Az) = {(e,¢),(a,2)} U{(a™,23) | n > 2}
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From rational relations to 10-behaviours
Several problems:

» Final states may not be deadlocked (easy to fix).

» Deadlocked states may not be final (harder to fix)
» Discarded inputs should be taken care of.
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From rational relations to 10-behaviours
Several problems:

» Final states may not be deadlocked (easy to fix).

» Deadlocked states may not be final (harder to fix).
» Discarded inputs should be taken care of.

Example
Al a X
a
AQ a X ; 2

Same 10-behaviours: IOBeh(A1) = {(g,¢e)} U{(a",z) | n > 1} = IOBeh(Asz)
But different rational relations:

{(a,2)}
{(a",z) |n>1}
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Rat(B*)-automata

Definition
A Rat(B*)-automaton over A is a tuple A = (S, A, \, i1, y) where
» S is the finite set of states

As
> \: S — Rat(B*) —>@

A word in )\, is emitted when entering A in state s.

> u:A—>(S><S_>Rat(B*)) () a/:u(a)r,s :

A word in p(a), s is emitted when taking a transition from 7 to s labelled a.

> v:S5 — Rat(B*) @—’Ys»

A word in 7, is emitted when exiting A in state s.

u}
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Rat(B*)-automata

A Rat(B*)-automaton over A is a tuple A = (S, A, \, i1, y) where
» S is the finite set of states

> \: S — Rat(B*)

=)
A word in )\, is emitted when entering A in state s.

» u:A— (8 xS — Rat(B*))

C a/ p(a)r,s C
A word in p(a), s is emitted when taking a transition from 7 to s labelled a.
> v:S5 — Rat(B*)

C Vs
A word in 7, is emitted when exiting A in state s.

Then, (u,v) € R(A) if there is a path P = sg A s Sl 2 5, in A with
> u=aj---an

>V E )\SOM(a1>SOy51 '.'M(an>5n7175n75n
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Rat(B*)-automata and rational relations

A relation R C A* x B* is rational iff there exists a Rat(B*)-automaton A with
R =TR(A).

A



Rat(B*)-automata and rational relations

Theorem

A relation R C A* x B* is rational iff there exists a Rat(B*)-automaton A with
R=TR(A).

Theorem

If |A] > 2 then equivalence is undecidable for Rat(B*)-automata over A.
This holds even if

> |Bl =1

» We use only finite languages: Ps,(B*)-automata

> There is no output when entering the automaton: A\; # ) implies A\; = {€}
> There is no output when exiting the automaton: s # () implies v, = {¢}
All transitions are visible: € & u(a), s

v
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Theorem

Undecidability of 10-equivalence

|0-equivalence is undecidable.

Proof

Let A= (S, A, \, 4,y) be a Pin(BT)-automaton. Define A’

> transitions r

» X =AY, =BW{#}tand I' ={seI| X #0 (i.e., \s = {e})}
a/N(a)r,s

(S/’ 27 I/’ T/) by
s of A are replaced in A’ by

T
p(a)r,s

Y
Note that deadlocked states of A’ are exactly the states of A.
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Undecidability of 10-equivalence
Theorem

|0-equivalence is undecidable.

Proof

Let A= (S, A, \, 4,y) be a Pin(BT)-automaton. Define A’

= (S/? 271/’T/> by
» X =AY, =BW{#}tand I' ={seI| X #0 (i.e., \s = {e})}
o a / N(a)r,s
> transitions r

s of A are replaced in A’ by

T
p(a)r,s

Note that deadlocked states of A’ are exactly the states of A.
Claim: (u,v) € IOBeh(A) iff there is a path sg — 51 - 5,1 — s,
/\So = {5}1 v e p’(al)SO,Sl e N(an)sn—hsnv and

in A with
U=aj--a, oru=a---apaw’ with u(a)s, s =0 forall s € S.

o

=
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Proof continued

Undecidability of 10-equivalence

Define A” = (S”,%,I',T") by adding to A" when 5 = {&}:

Note that deadlocked states of A’ are exactly the states in S'W {f’}.



Undecidability of 10-equivalence

Proof continued

Define A” = (S”,%,I',T") by adding to A" when 5 = {&}:

Note that deadlocked states of A’ are exactly the states in S'W {f’}.

Lemma [OBeh(A”) = IOBeh(A") UR(A) - {(z, # 11y | z € A*}.
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Undecidability of 10-equivalence

Proof continued

Define A” = (S”,%,I',T") by adding to A" when 5 = {&}:

Note that deadlocked states of A’ are exactly the states in S'W {f’}.
Lemma [OBeh(A”) = IOBeh(A") UR(A) - {(z, # 11y | z € A*}.
Lemma

A W B~y AW B if and only if R(A) = R(B)

APAN &4
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Asynchronous 10-blocks semantics

Definition

A block observation of T'S = (S,%,I,T) is a sequence (ug, vo)(u1,v1) - (Un,Vp)
where

» up € B and u; € XF for 1 < j < n,

»upeXifor0<k<n
and there is a maximal run r — sp —% - 22 5,, with 7 € I such that:

» The states sg, s1, S2, ..., S are the only deadlocked states along this run.

> V0 < j <n, mo(w;) = ;.

» V0 < j <n, m(wj) = u;.

» Either m;(wy,) = wu, or there exists a € ¥; with m;(wy)a < uy, and s, —.
Let IOBlocks(T'S) denote the set of block observations of T'S.

u}
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10-block equivalence

|O-block equivalence
Two transition systems T'S and TS’ are |0-block equivalent if

IOBlocks(T'S) = IOBlocks(T'S")
This equivalence is denoted T'S ~;,pi0ck TS
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10-block equivalence

|O-block equivalence
Two transition systems T'S and TS’ are |0-block equivalent if

IOBlocks(T'S) = IOBlocks(T'S")
This equivalence is denoted T'S ~;,pi0ck TS

Remark
10-block equivalence corresponds to the queued suspenstion trace equivalence of

[@ A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with

Input and Output Testers, Proc of TestCom 2003.
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Example

TS5,

10-block equivalence

IOBlocks(T'S1): I0Beh(TSy):
(€,€) (,€)

(a, zy) (a, zy)

(a,zy)(a™, z) forn > 1 (a™, zyz) for n > 2
(a, ) (a, )

(a,z)(a™,w) forn > 1 (a™, zw) for n > 2
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Example
TSy

IOBlocks(TSg)

(e
(a,zy

Ea y)(a™, z) forn > 1
(
(a

)
)(a™,w) forn > 1
x)(a 1/7) forn > 1

QQ
S
/\

(&,
(
(
(a,
(a”

10-block equivalence

10Beh (TSQ)

£)

a,T

a” , L
x)
a”,T

Y)
yz) forn > 2

w) for n > 2
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10-block equivalence

IOBlocks(T'S5): IOBeh(T S5):
(,€) (¢,€)

(a, zy) (a, zy)

(a,zy)(a™, 2) forn > 1 (a™, zyz) for n > 2
(a,z) (a, )

(a,z)(a™,w) forn > 1 (a™, zw) for n > 2
(a,z)(a™,yz) forn > 1

If T'S1 ~iobiock T'Sa2, then T'S1 ~;, T'Ss.

10Beh(TS) =

{(uou - . - Up, VoV1 . . . V) | (w0, v0)(u1,v1) ... (Un,vn) € IOBlocks(TS)}
o 5 - =

APAN &4



Decidability of 10-block equivalence

Definition

A transition system is well-structured if every state either refuses %; or refuses 3.

Theorem

For finite well structured transition systems, ~;,pi0ck is decidable.

Proof

Let D = {s € S| s is deadlocked}.
Fora € %;, let D, = {s € S | s is deadlocked and s +%}.
For X C S, let Lx(TS)={wex*| I X}
Claim. TS} ~iopioer T'Ss iff
» Lp(T'S1) = Lp(TSs), and
» Lp,(T'S1) = Lp,(TSs) for each a € X;.

o
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Decidability of 10-block equivalence

Definition

A transition system is well-structured if every state either refuses %; or refuses 3.

Theorem

For finite well structured transition systems, ~;,pi0ck is decidable.

Proof
Let D = {s € S| s is deadlocked}.
Fora € %;, let D, = {s € S | s is deadlocked and s +%}.
For X C S, let Lx(TS)={we¥*|I% X}.
Claim. TSy ~iopiocr T'So iff
» Lp(T'S1) = Lp(TSs), and
» Lp,(T'S1) = Lp,(TSs) for each a € X;.

Indeed, for well structured transition systems, we have
IOBlocks(TS) = {(g,v0)(a1,v1) ... (@n,vpn) | i % 50 22 51 5,1 =" 5, }

U {(e,v0)(a1,v1) . .. (anau,vy) | i = 50 22 81 -+ 8p1 —22" 5,5}

o I = =

APAN &4
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Queue semantics (Tretmans)

Let TS = (S, %, I,T) be a transition system. Define Q(T'S) = (S’,3,I',T") by
» S/ =85 x Xf x ¥%: configurations of T'S.

» I' =1 x {e} x {e}: initial configurations

» Transitions of T'S are broken up into two moves, one visible and one invisible
(labelled 7):
a .
s — s
Input =
(S,O'i,O'o) = (S,O'ia,O'o)
s> 8
Output

(S,QO'i,U()) 5 (sl»ai»ao>
S,O'i,O'o) l) (SI,O'i,O'OI>

» L(Q(TS)) is the set of traces of Q(T'S).

(s,oi,xao) = (S,Ui,UO)

APAN &4



Deadlocked traces (Tretmans)
Deadlocked traces

|

with € I and (s, 04, ¢) deadlocked in Q(T'S).

> A trace w € L(Q(T'S)) is deadlocked if there is a run (r,e,e) — (s, 04,€)

> We denote by dtraces(Q(T'S)) the set of deadlocked traces of Q(T'S).

APAN &4



Deadlocked traces (Tretmans)
Deadlocked traces
» A trace w € L(Q(TS)) is deadlocked if there is a run (r,,€) = (s, 0y, ¢€)
with € I and (s, 04, ¢) deadlocked in Q(T'S).
> We denote by dtraces(Q(T'S)) the set of deadlocked traces of Q(T'S).
Empty and blocked deadlocked traces
» A trace w € L(Q(TS)) is an empty deadlock if there is a run
(r,e,€) = (s,e,€) with r € I and s deadlocked in T'S.

> We denote by dempty (Q(T'S)) the empty deadlocked traces of Q(T'S).
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Deadlocked traces (Tretmans)

Deadlocked traces

» A trace w € L(Q(TS)) is deadlocked if there is a run (r,,€) = (s, 0y, ¢€)
with € I and (s, 04, ¢) deadlocked in Q(T'S).

> We denote by dtraces(Q(T'S)) the set of deadlocked traces of Q(T'S).

Empty and blocked deadlocked traces

» A trace w € L(Q(TS)) is an empty deadlock if there is a run
(r,e,€) = (s,e,€) with r € I and s deadlocked in T'S.

> We denote by dempty (Q(T'S)) the empty deadlocked traces of Q(T'S).

> A trace w € L(Q(TS)) is an blocked deadlock if there is a run
(r,e,€) = (s,a0i,€) with 7 € T and in T'S, s deadlocked and s .

> We denote by dpiock(Q(T'S)) the blocked deadlocked traces of Q(7'S).

Proposition: traces(Q(T'S)) = Sempty (Q(T'S)) U dpiock (Q(T'S))

s & - = =
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Example

Deadlocked traces (Tretmans)

TS5,

6empty (TSl) o

€

ax
axy
axrayz
axryaz
aazryz
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Example

Deadlocked traces (Tretmans)

TS5,

5empty (TSl) o

€

ax
axy
axrayz
axryaz
aazryz

Oblock (T'S1):

axyaza™ forn > 1
axayza™ forn > 1
aazxyza™ forn > 1
axa™yaz forn > 1

o)
1
u
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APAN &4



Queue equivalence (Tretmans)

TS~ TS &

Q(TS) ~eyn Q(TS).

Intuitively, synchronous testing equivalence ~,,, corresponds to failure semantics.
Proposition (Tretmans)

TS ~o TS iff L(Q(TS)) = L(Q(TS")) and Siraces(Q(T'S)) = Straces(Q(T'S"))
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Ape relation (Tretmans)

Ape relation for the queue semantics

» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have

wizawy € L(Q(T'S)) implies wiazwy € L(Q(T'S)).
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Ape relation (Tretmans)

Ape relation for the queue semantics

» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have

wyzaws € L(Q(TS)) implies wiazwy € L(Q(T'S))
» Input actions may always be added:
For a € 3J;, we have

w € L(Q(TS)) implies wa € L(Q(TS)).
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Ape relation (Tretmans)

Ape relation for the queue semantics
» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have

wyzaws € L(Q(TS)) implies wiazwy € L(Q(T'S)).
» Input actions may always be added:
For a € 3;, we have

w € L(Q(TS)) implies wa € L(Q(TS)).
» We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

» Tracks(7'S) is the set of @-minimal words in L(Q(TS)).
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Ape relation (Tretmans)

Ape relation for the queue semantics

» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have

v

wyzaws € L(Q(TS)) implies wiazwy € L(Q(T'S)).
Input actions may always be added:
For a € 3;, we have

v

w € L(Q(TS)) implies wa € L(Q(TS)).

We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

Tracks(7'S) is the set of @-minimal words in L(Q(T'S)).
L(Q(TS)) is @-upward closure of Tracks(T'S).
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Ape relation (Tretmans)

Ape relation for the queue semantics

» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have
wyzaws € L(Q(TS)) implies wiazwy € L(Q(T'S)).

» Input actions may always be added:
For a € 3;, we have
w € L(Q(TS)) implies wa € L(Q(TS)).

» We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

» Tracks(7'S) is the set of @-minimal words in L(Q(TS)).
» L(Q(TS)) is @-upward closure of Tracks(7'S).
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Ape relation (Tretmans)

Ape relation for the queue semantics

» Output actions may always be postponed:
For x € ¥, and a € ¥;, we have
wyzaws € L(Q(TS)) implies wiazwy € L(Q(T'S)).

» Input actions may always be added:
For a € 3;, we have
w € L(Q(TS)) implies wa € L(Q(TS)).

» We denote @ the reflexive and transitive closure of the relations postponing
an output action or adding an input action.

» Tracks(7'S) is the set of @-minimal words in L(Q(TS)).
» L(Q(TS)) is @-upward closure of Tracks(7'S).
» Tracks(7'S) C L(T'S).

> Sbiock(Q(T'S)) = {fw e =% |3+ L s in T'S with r € I, s deadlocked, and
Ja € ¥; such that s % and w'a @ w}.

[m] = = =
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Strict ape relation (Tretmans)

Strict ape relation for the queue semantics
» We denote |@| the reflexive and transitive closure of the relation postponing
an output action.
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Strict ape relation (Tretmans)

Strict ape relation for the queue semantics
» We denote |@| the reflexive and transitive closure of the relation postponing
an output action.

> Sempty (Q(TS)) = {w € 9% [T 7 25 s in TS with r € I,

s deadlocked and w’ |@| w}.
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Example

Deadlocked traces (Tretmans)

TS5,

Sampty (TS1):
|@|-upper closure of
5

ax

azxy

aryaz

aryaz |Q| arayz
aryaz |Q| aaxyz
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Example

Deadlocked traces (Tretmans)

TS5,

Sampty (TS1):
|@|-upper closure of
5

ax

azxy

aryaz

aryaz |Q| arayz
aryaz |Q| aaxyz

Iblock (T'S1):

@-upper closure of

aryaza
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Proposition

Comparing the equivalences

If TS, ~Q TS5, then T'S1 ~;, T'S5.

The converse does not hold
TS,

€

axr
axrxr
ararxr

Tracks(7'S;):

[0Beh(T'S)):
(¢,€)

(a™,z) forn > 1
(a™,2%) forn > 1
(a™,23) for n > 2
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Comparing the equivalences

Proposition
If TS, ~Q TS5, then T'S1 ~;, T'S5.

The converse does not hold

TS,
Tracks(7'S2): IOBeh (T S5):
€ (e,¢)
azx (a™,z) forn > 1
azx (a™,2%) forn > 1
arxax (a™,23) for n > 2

arxraxr Q axaxxw
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Undecidability of Qtest

~ @ is undecidable

Proof

Reduction from the PCP problem.

A PCP instance consists in two morphisms f,g : AT — BT where A, B are finite
alphabets.

The PCP instance f, g has a solution if there exists u € AT such that f(u) = g(u).

We construct two systems M; and My such that the PCP instance (f,g) has no
solution iff My ~¢ M.

o
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Reduction from the PCP problem

Let f,g: AT — BT be a PCP instance. We define

o F = = E DA



Reduction from the PCP problem

We want to compare the following two systems:
> M]_ = S() + Sf + Sg
> M2 = Sf + Sg

Lemma

5b|ock(M1) = 6b|0ck(M2) = @

Lemma

Lemma

Tracks(M;) = Tracks(Mz) = Tracks(Sy) = B*.

> Jempty(S0) is the |@|-upper closure of AT BT$.

» Let u € AT and v € BT. Then, uv$ € dempty(Sy) if and only if v # f(u).
Theorem

| :

My ~¢g M, iff the PCP instance (f, g) has no solution.

=}
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Conclusion

Summary

» We have investigated 3 asynchronous testing equivalences.

> We have shown that ~;, is strictly weaker than ~¢g and ~jspi0ck, but ~¢
and ~;,piock are incomparable.

> ~ioblock IS decidable, while ~;, and ~¢ are undecidable.

APAN &4



Conclusion

Summary

» We have investigated 3 asynchronous testing equivalences.

> We have shown that ~;, is strictly weaker than ~¢g and ~jspi0ck, but ~¢
and ~;,piock are incomparable.

> ~ioblock IS decidable, while ~;, and ~¢ are undecidable.

Open problems

» Construct test suites based on the 10-Blocks semantics.
» Investigate distributed testing.

See e.g. C. Jard: Synthesis of distributed testers from true-concurrency
models of reactive systems, Information & Software Technology, 2003.
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