Cascade Decomposition of Asynchronous Zielonka Automata

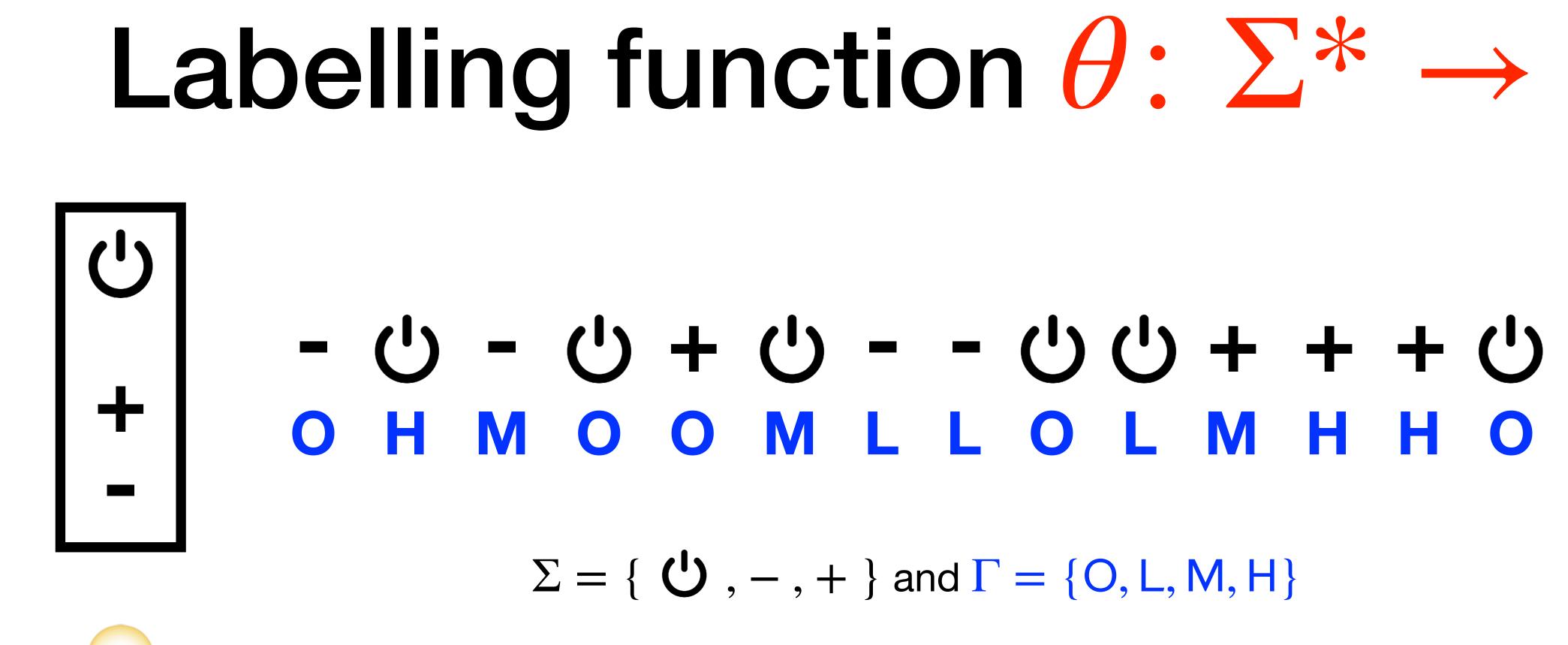
Paul Gastin LMF, ENS Paris-Saclay, IRL ReLaX

Joint Work with Bharat Adsul (IIT Bombay), Shantanu Kulkarni (IIT Bombay), Saptarshi Sarkar (IIT Bombay) and Pascal Weil (LaBRI, ReLaX)

Based on CONCUR'20, LMCS'22, CONCUR'22 and submitted work

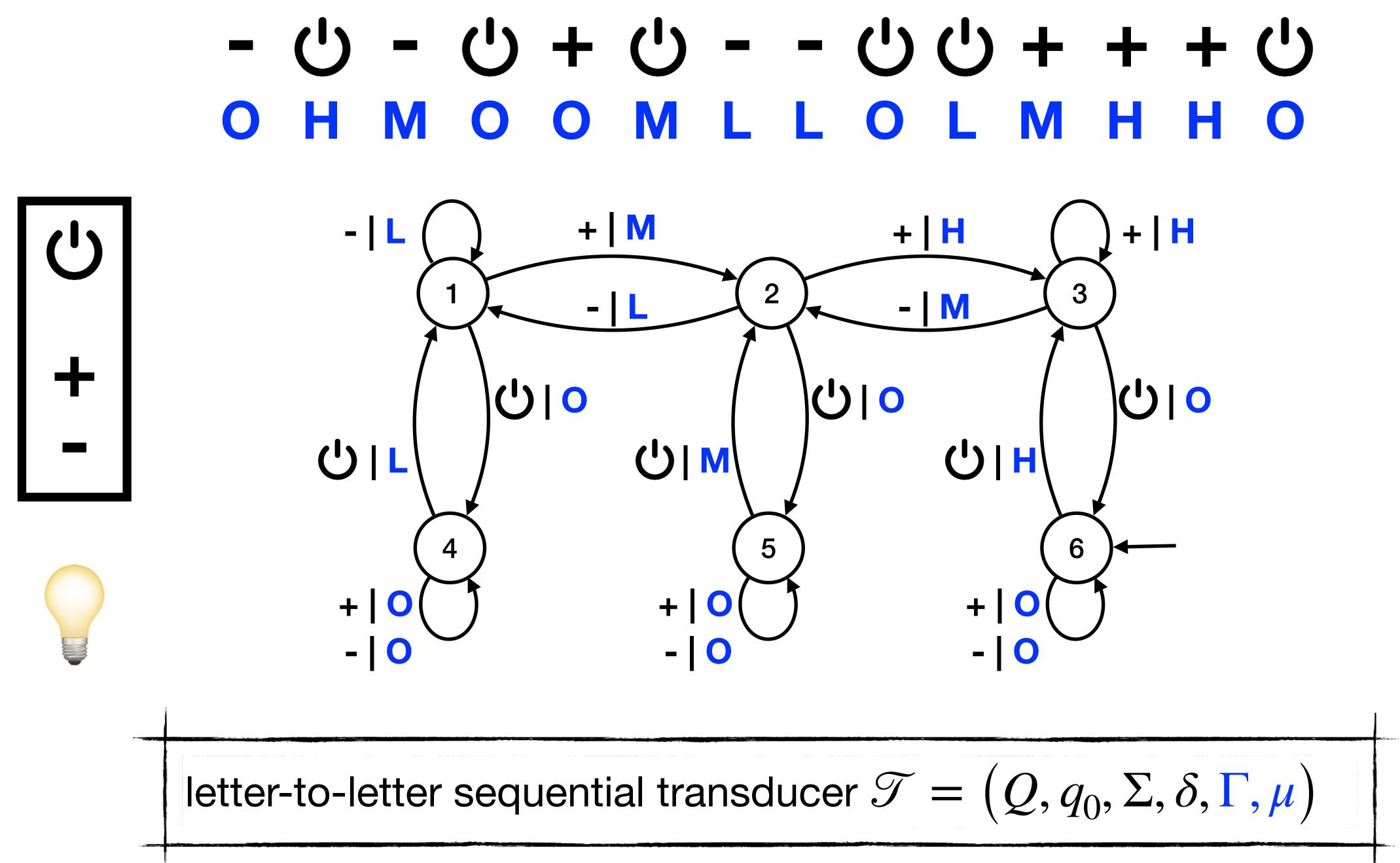
Outline

- Labelling functions, sequential transducers and cascade product
- Krohn-Rhodes theorem for aperiodic/regular word languages
- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata
- Asynchronous labelling functions, transducers and cascade product
- Propositional dynamic logic for traces
- Conclusion



Labelling function $\theta: \Sigma^* \to \Gamma^*$

 $\Sigma = \{ U, -, + \} \text{ and } \Gamma = \{ O, L, M, H \}$



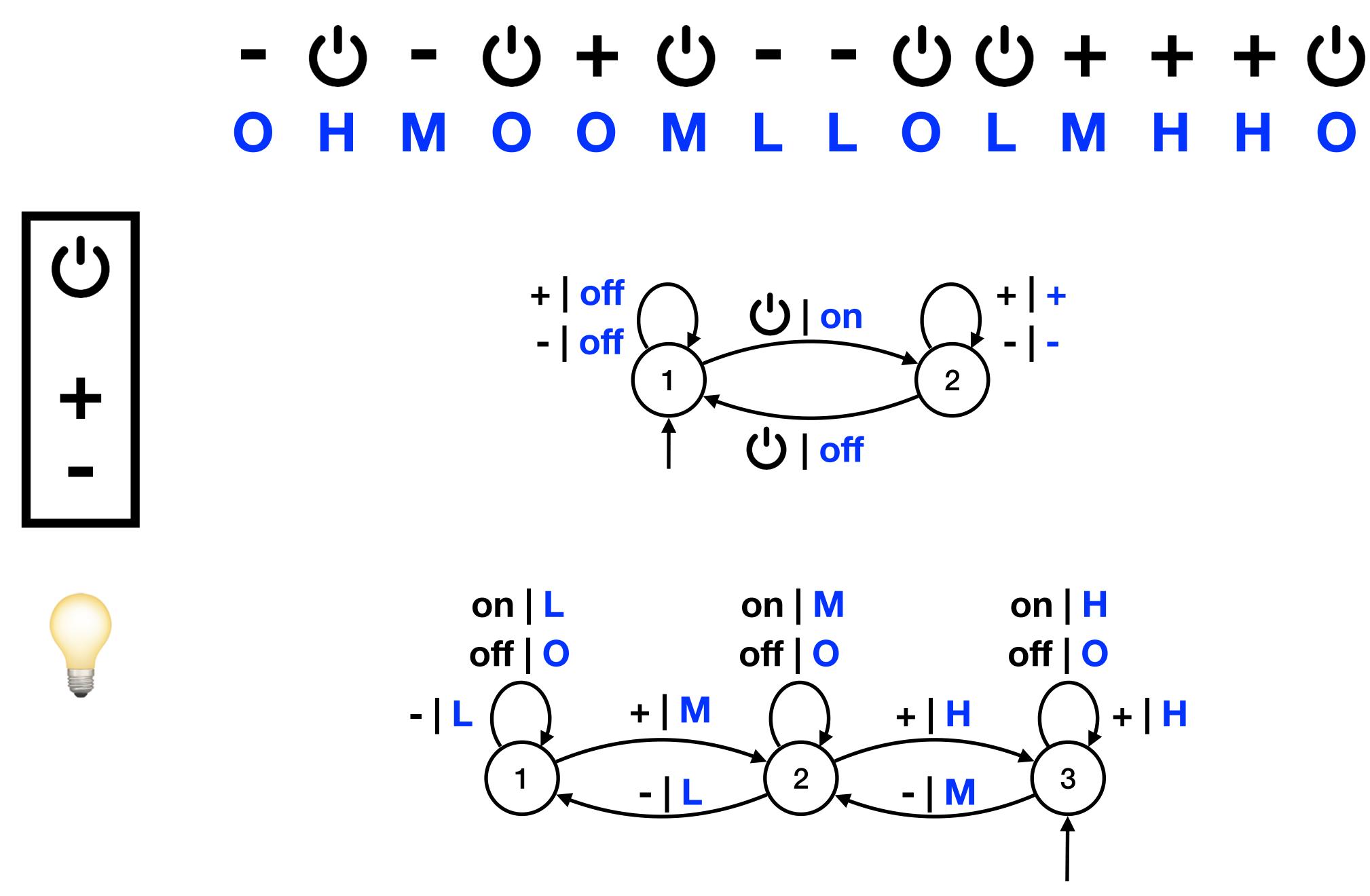
Composition of labelling functions

Cascade product of (letter-to-letter) sequential transducers

Composition - Cascade product

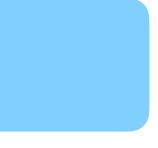
 $\delta((p,q),a) = \left(\delta_1(p,a), \delta_2(q,\mu_1(p,a))\right)$ $\mu((p,q),a) = \mu_2(q,\mu_1(p,a))$

Π $(Q_2, \delta_2, q_2^{in}, \mu_2)$ $\times Q_2, \delta, (q_1^{in}, q_2^{in}), \mu)$



Outline

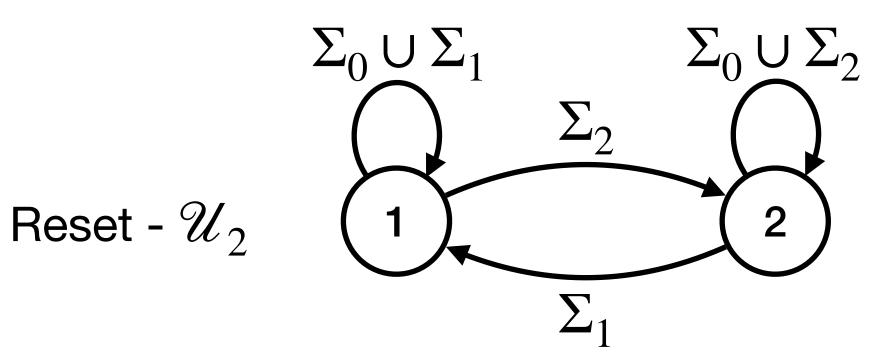
- Krohn-Rhodes theorem for aperiodic/regular word languages \bullet
- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata
- Asynchronous labelling functions, transducers and cascade product
- Propositional dynamic logic for traces
- Conclusion



Theorem

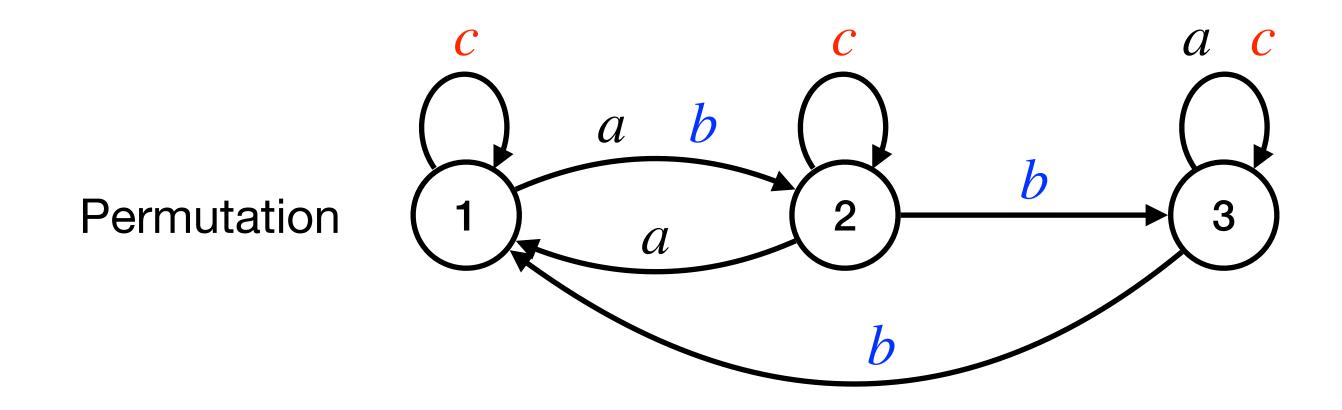
product of reset or permutation transducers:

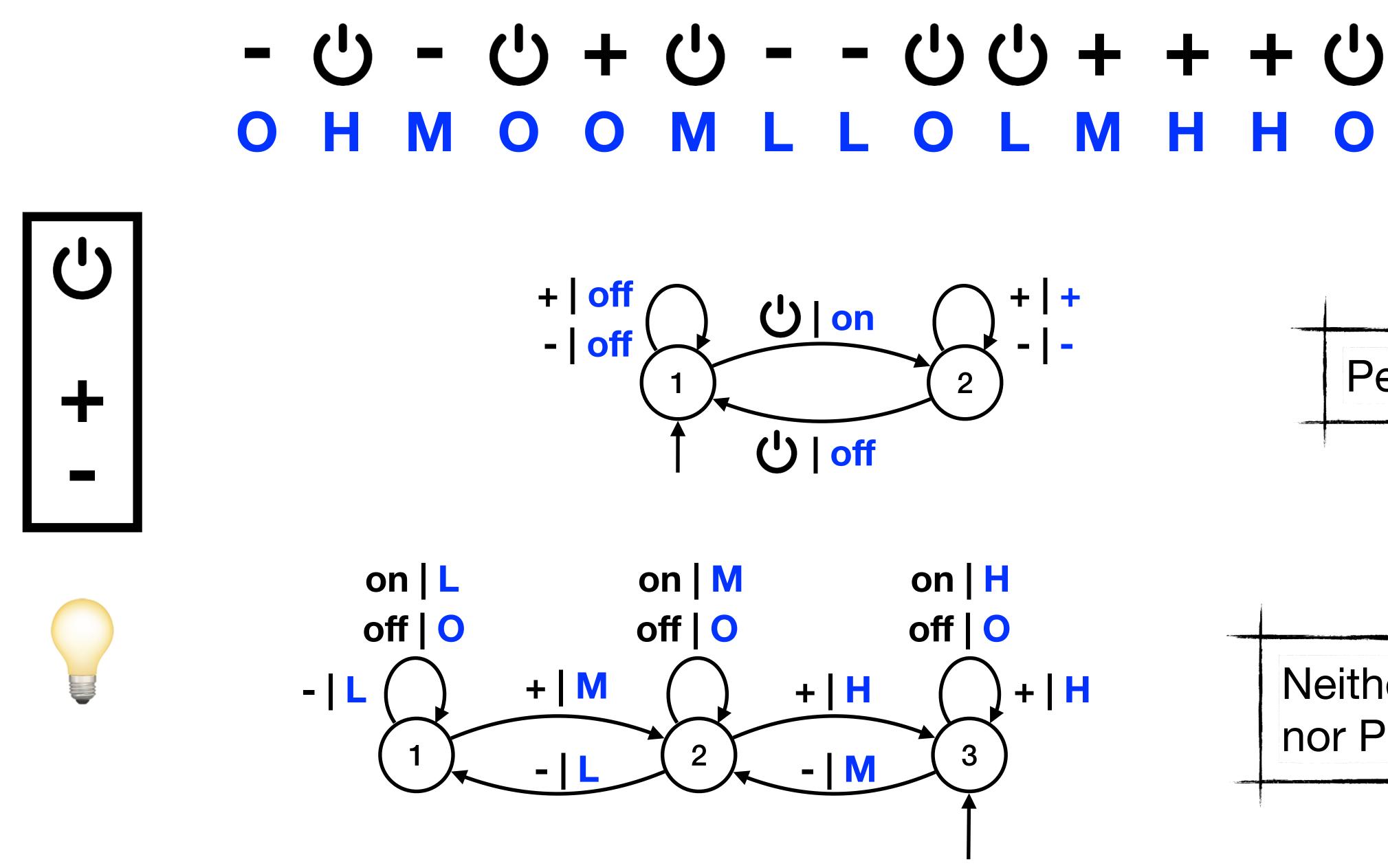
Reset or Permutation is a property of the underlying input automaton:

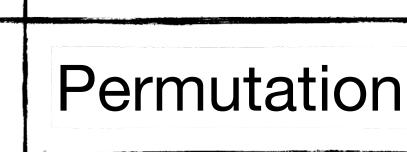


Krohn-Rhodes

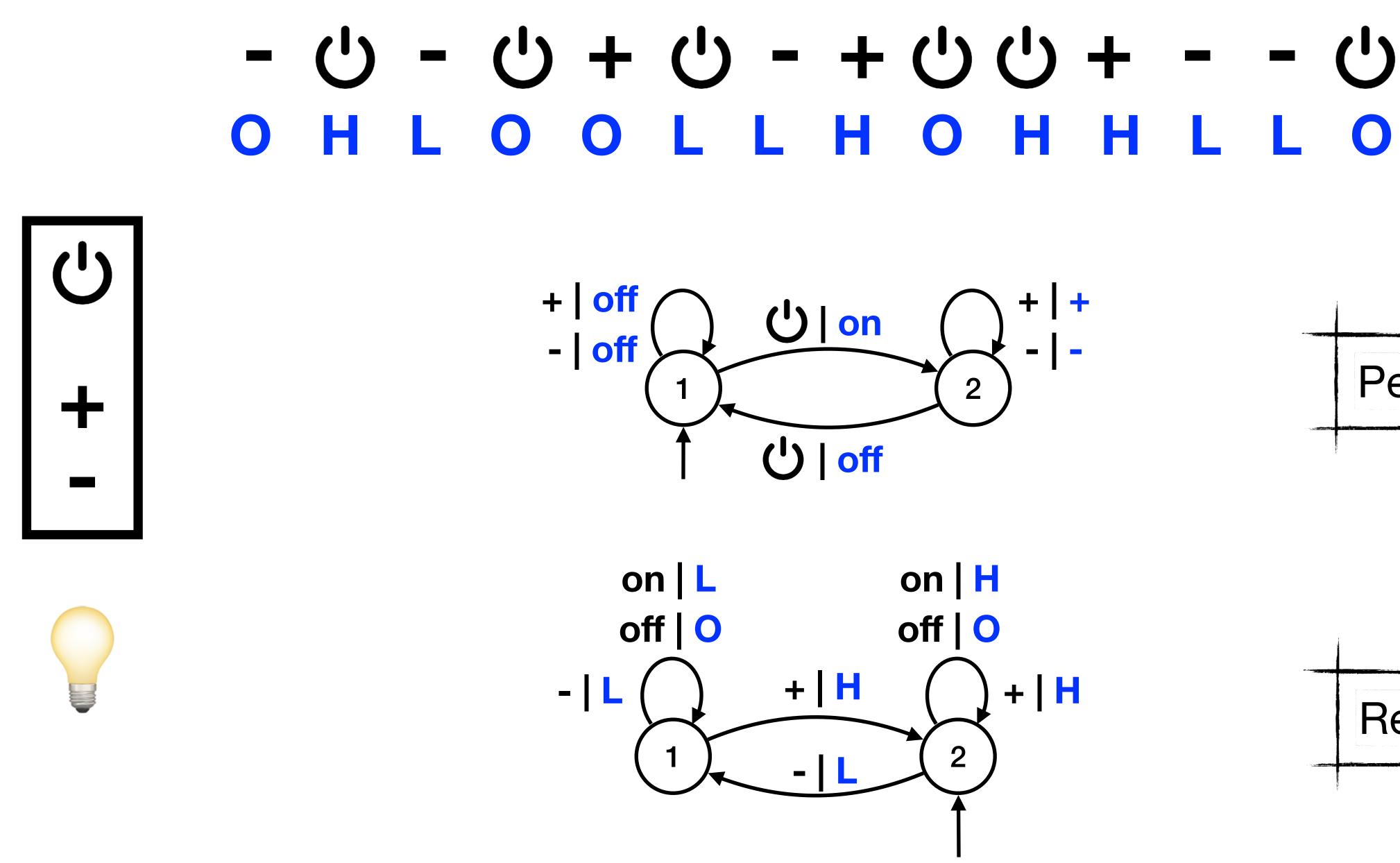
- Any (letter-to-letter) sequential transducer \mathcal{T} can be realised by a cascade
 - $\mathcal{T} \equiv \mathcal{T}_1 \circ \mathcal{T}_2 \circ \cdots \circ \mathcal{T}_n$



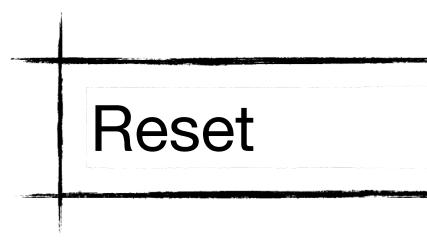




Neither Reset nor Permutation



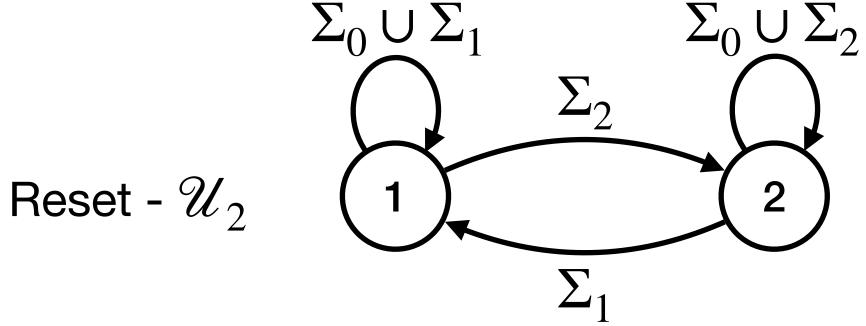
Permutation



Theorem

- permutation automata.
- automata.

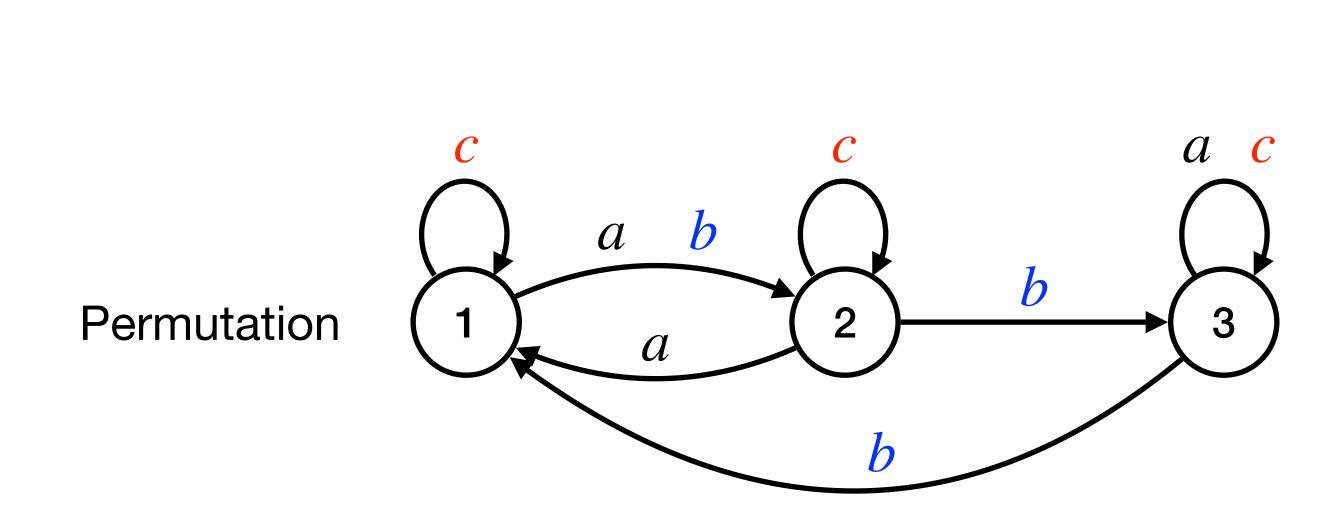
Reset or Permutation automata:



Krohn-Rhodes

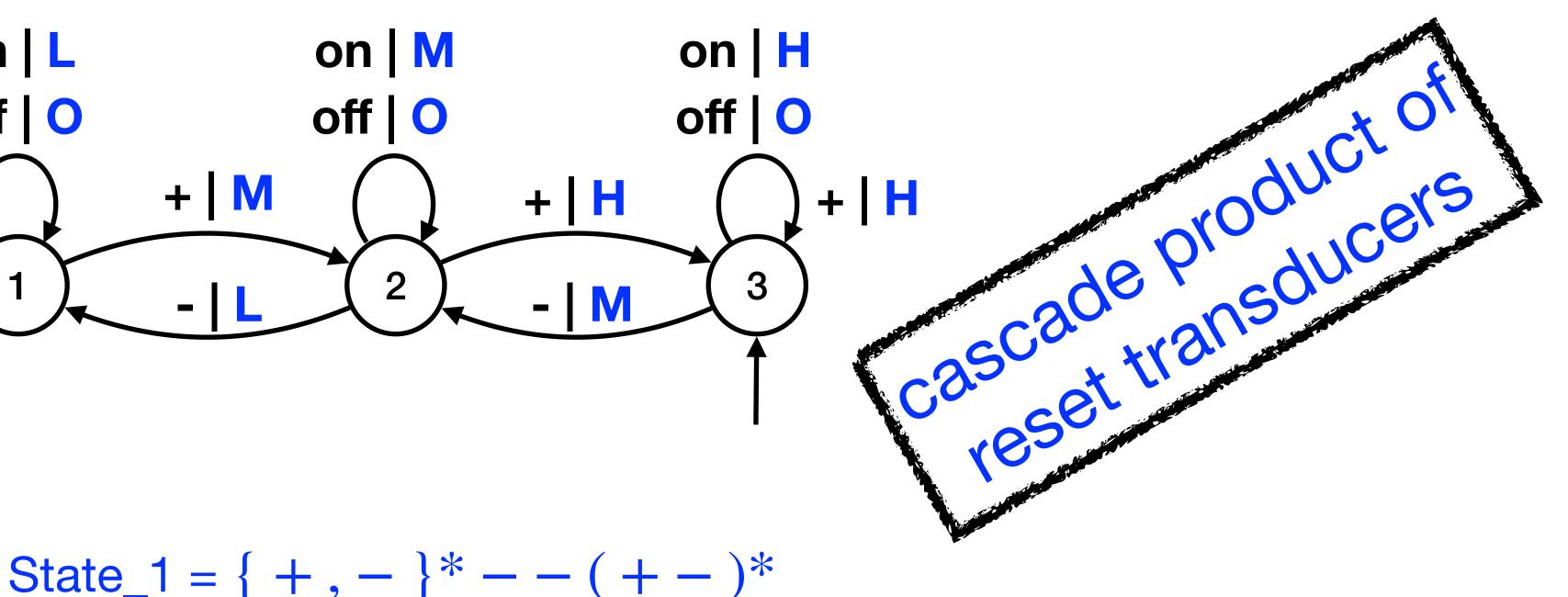
Any regular language can be accepted by a cascade product of reset or

Any aperiodic language can be accepted by a cascade product of reset



KR proof for aperiodic on on | M on | H off | O off | O off | O + | M + | H -|L 2 3

- If we ignore on and off
- With $A = \{ on, off, +, \}$ and $B = \{ on, off \}$



State_1 = $A^* - B^* - B^* (+ B^* - B^*)^*$

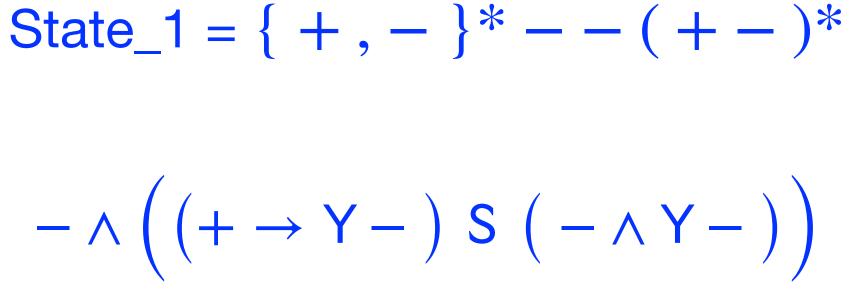
KR proof for aperiodic

Theorem (Kamp)

- If we ignore on and off

$$-\wedge ((+ \rightarrow))$$

Aperiodic = Past Temporal Logic



KR proof for aperiodic

Theorem (Kamp)

Each PastLTL formula φ defines a boolean labelling function

Each position is labelled with the truth value of ϕ at this position.

Example $\varphi = Y a$ abbbaababba 01000110100

Aperiodic = Past Temporal Logic

- $\theta_{\omega}: \Sigma^* \to \{0,1\}$

Example $\varphi = a \ S \ b$ abbaaccbaac 01111001110

KR proof for aperiodic

Theorem (Kamp)

Each PastLTL formula φ defines a boolean labelling function

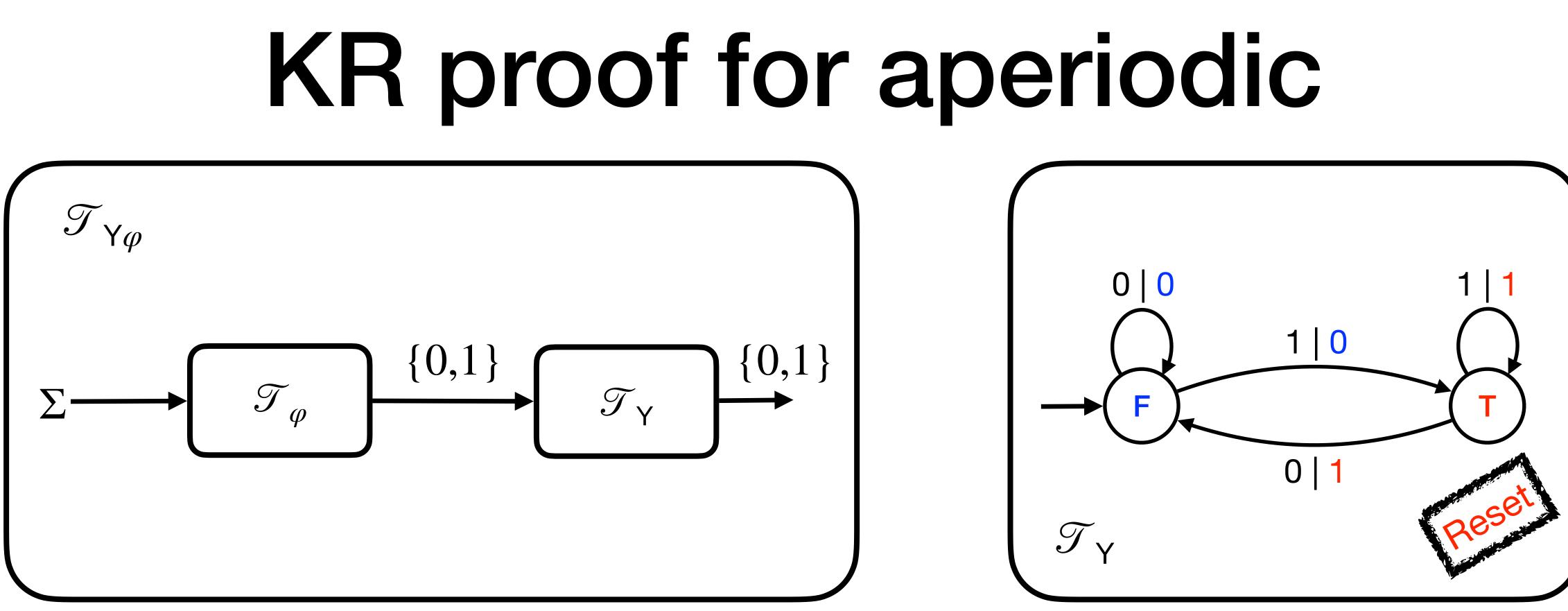
Each position is labelled with the truth value of ϕ at this position.

Given a PastLTL formula φ , we will implement θ_{φ} with a transducer \mathcal{T}_{φ} constructed inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

- Aperiodic = Past Temporal Logic

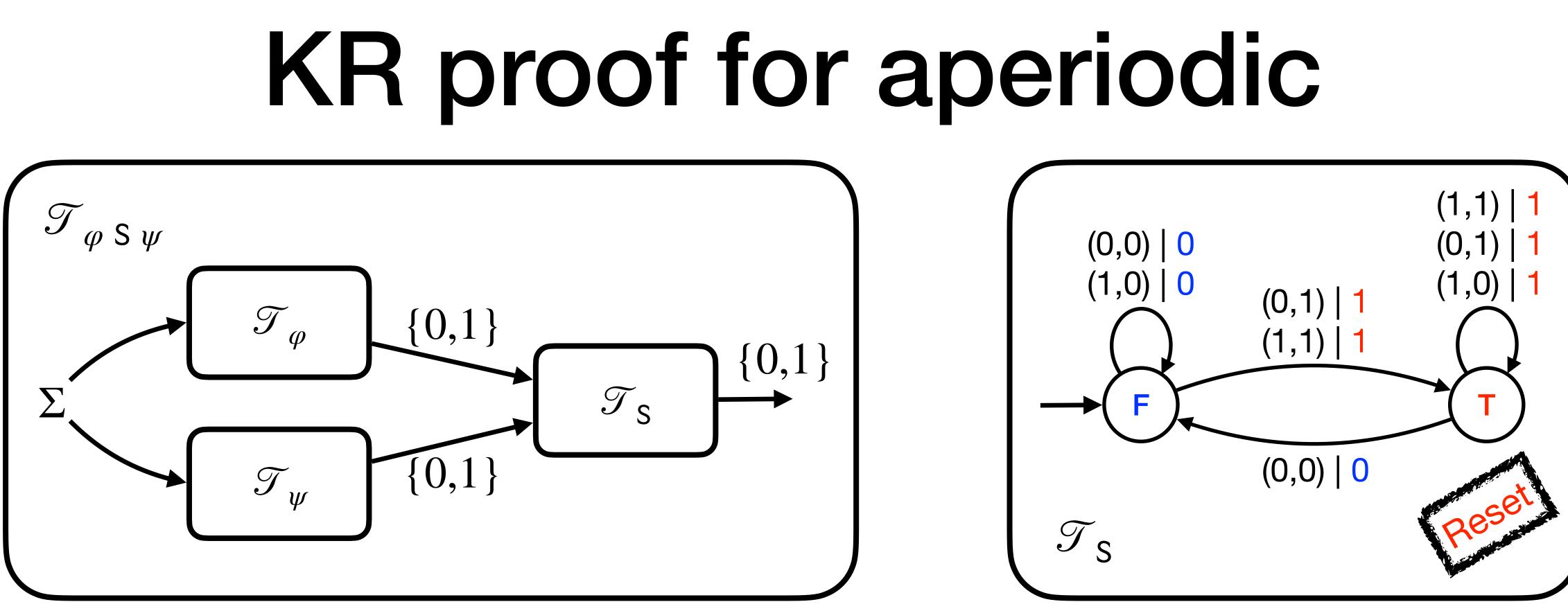
 - $\theta_{\omega} \colon \Sigma^* \to \{0,1\}$



Given a PastLTL formula $\varphi,$ we will implement θ_{φ} with a transducer \mathcal{T}_{φ} constructed inductively as a cascade product of reset transducers. Example $\varphi = Y a$

PastLTL: boolean connectives, Yesterday and Since

abbaaccbaac 01001100011

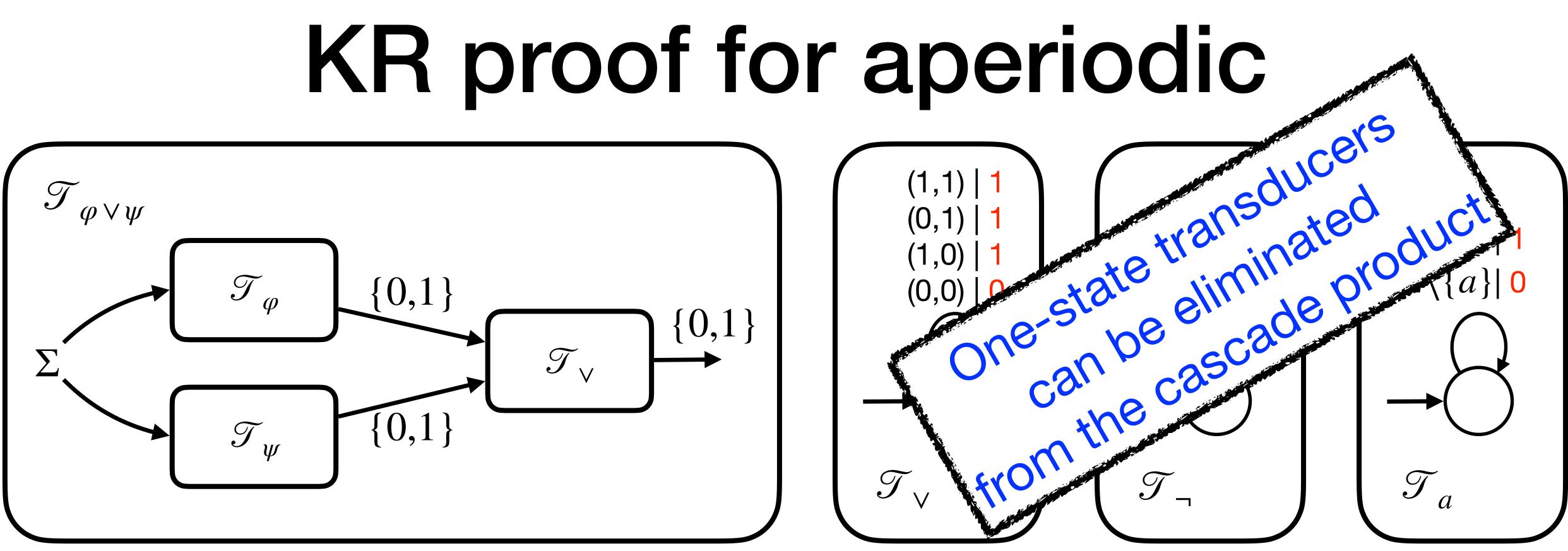


Given a PastLTL formula φ , we will implement θ_{φ} with a transducer \mathcal{T}_{ω} constructed inductively as a cascade product of reset transducers. Example $\varphi = a \ S \ b$

PastLTL: boolean connectives, Yesterday and Since

abbaaccbaac

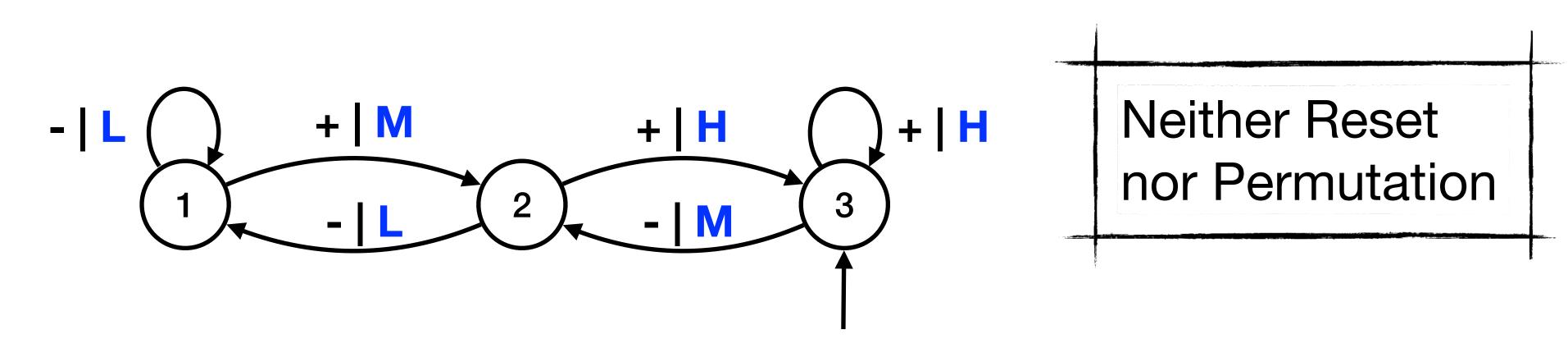
01111001110

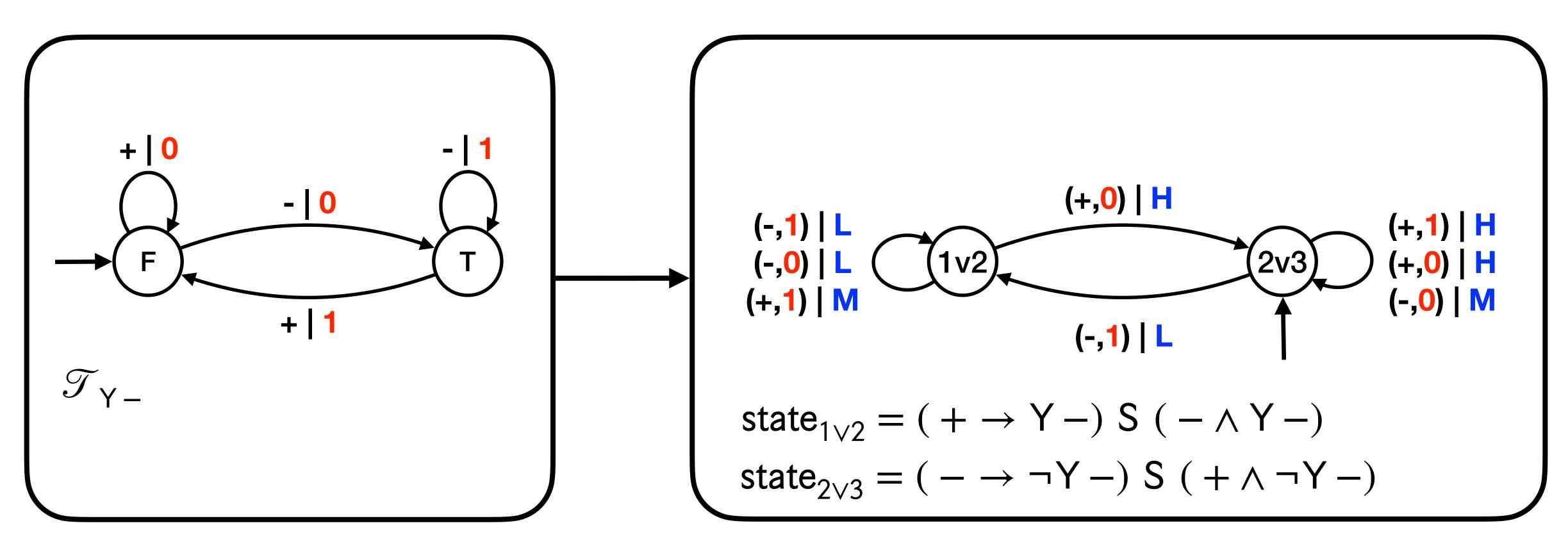


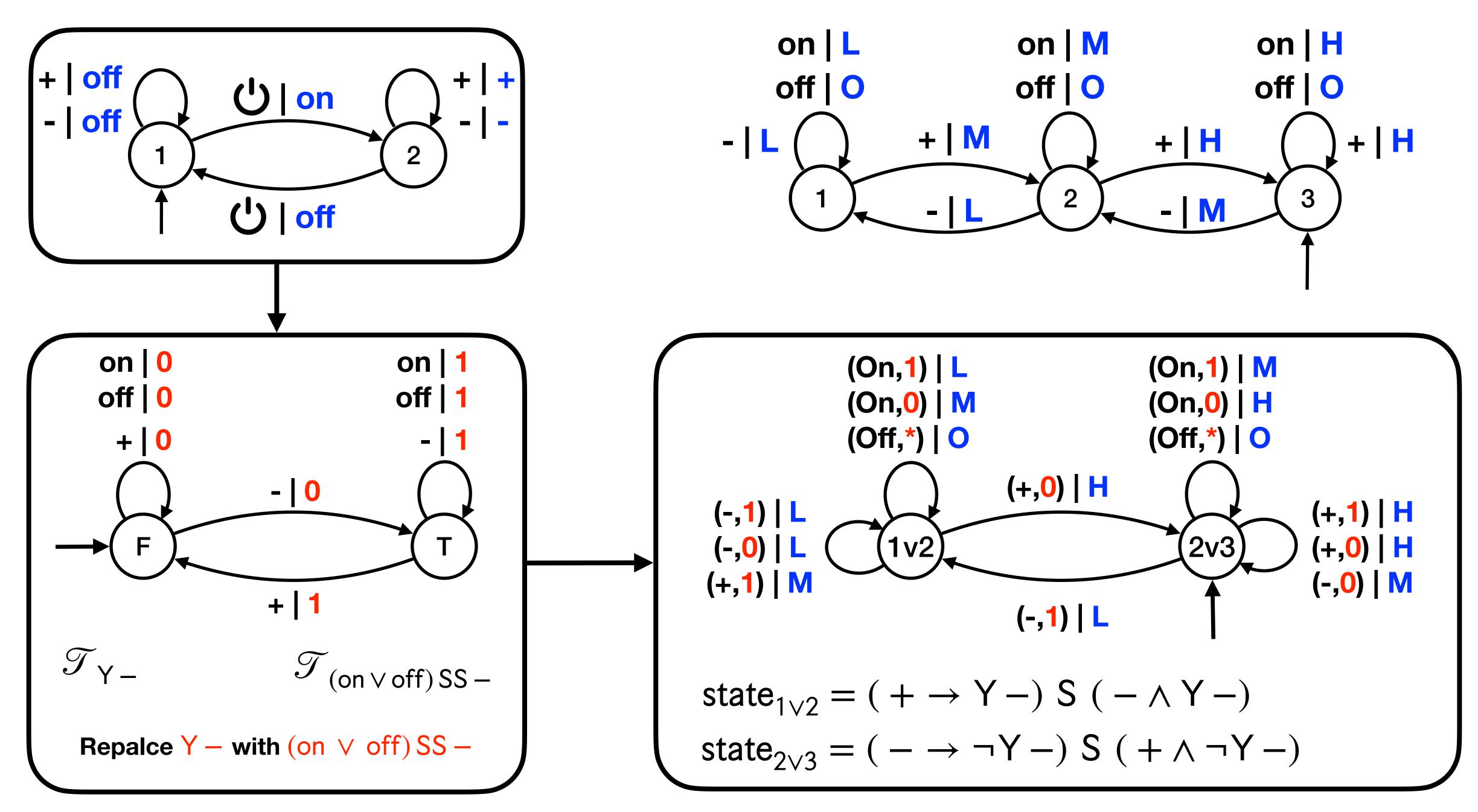
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

- Given a PastLTL formula φ , we will implement θ_{φ} with a transducer \mathcal{T}_{φ} constructed







Outline

- Krohn-Rhodes theorem for aperiodic/regular word languages
- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata \bullet
- Asynchronous labelling functions, transducers and cascade product
- Propositional dynamic logic for traces
- Conclusion

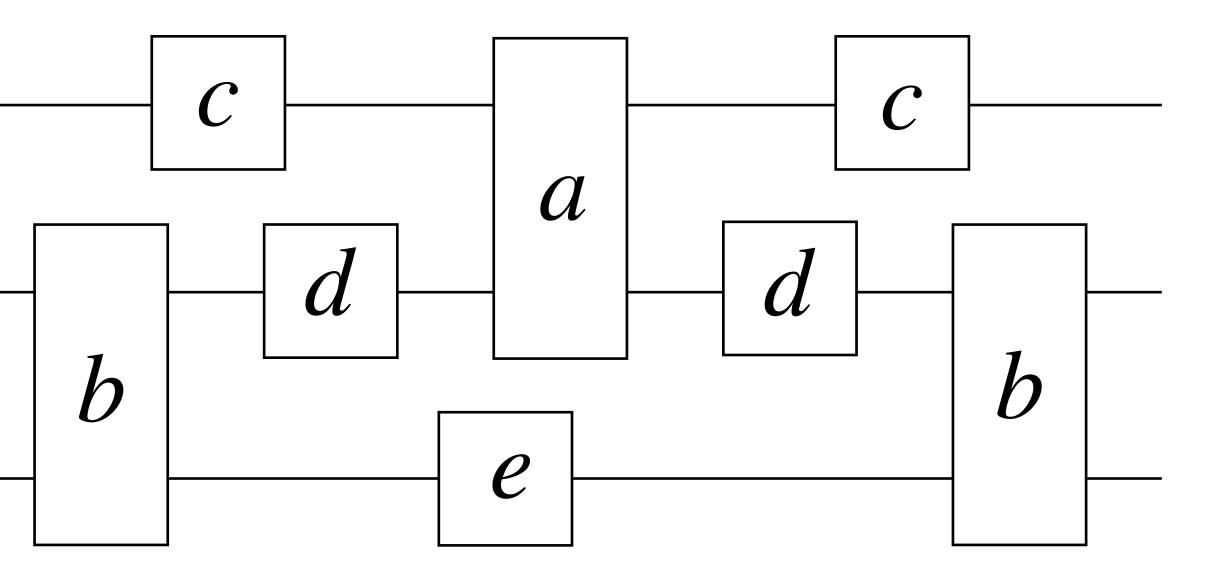
Mazurkiewicz Traces

1

2

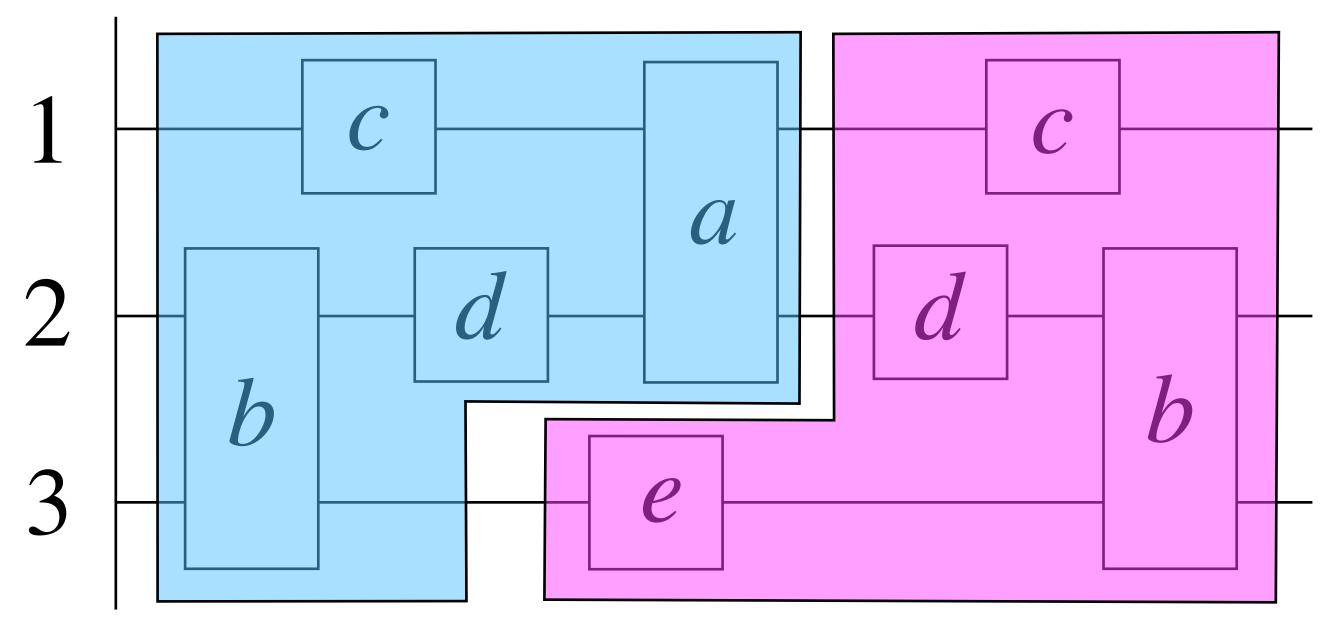
3

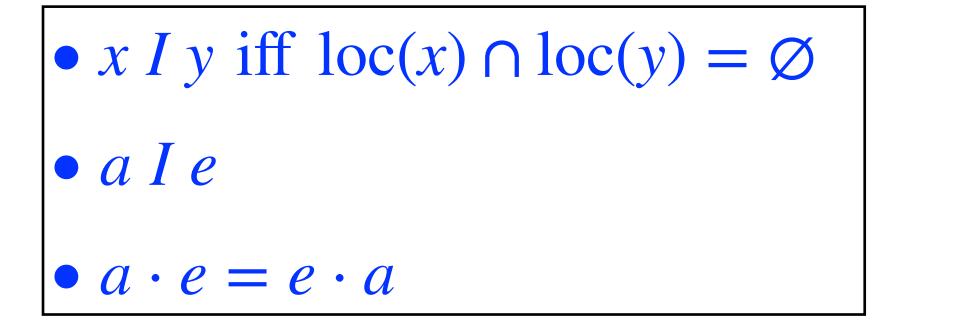
Architecture $\mathcal{P} = \{1, 2, 3\}$ $\Sigma = \{a, b, c, d, e\}$ $loc(a) = \{1,2\}$ $loc(b) = \{2,3\}$ $loc(c) = \{1\}$ $loc(d) = \{2\}$ $loc(e) = \{3\}$ • Trace Language: $L \subseteq Tr(\Sigma)$



• set of traces denoted $Tr(\Sigma, \mathscr{P}, loc)$ or simply $Tr(\Sigma)$

Concatenation, Independence, Commutation, Monoid

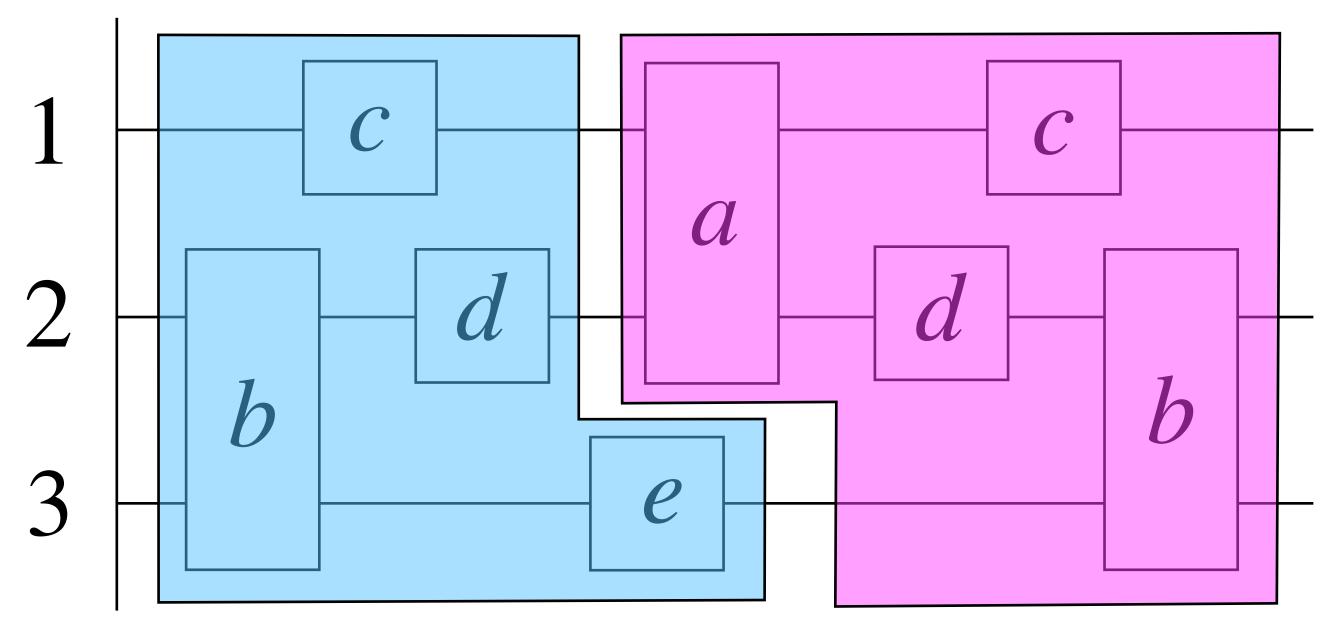


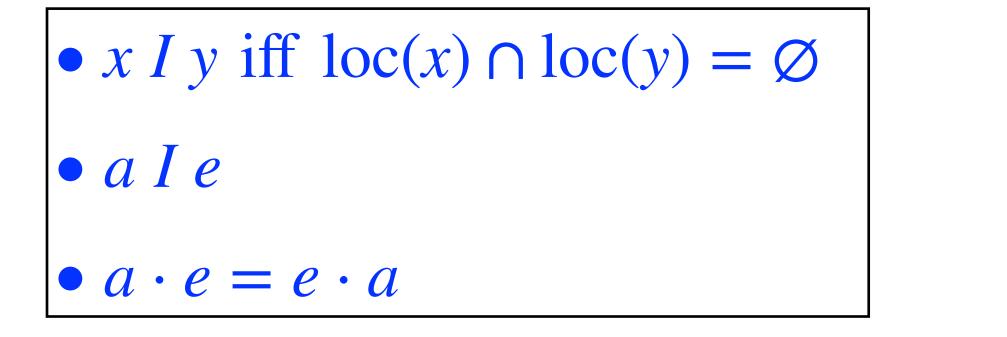


• $Tr(\Sigma)$ with trace concatenation is a monoid

• Free partially commutative monoid

Concatenation, Independence, Commutation, Monoid





• $Tr(\Sigma)$ with trace concatenation is a monoid

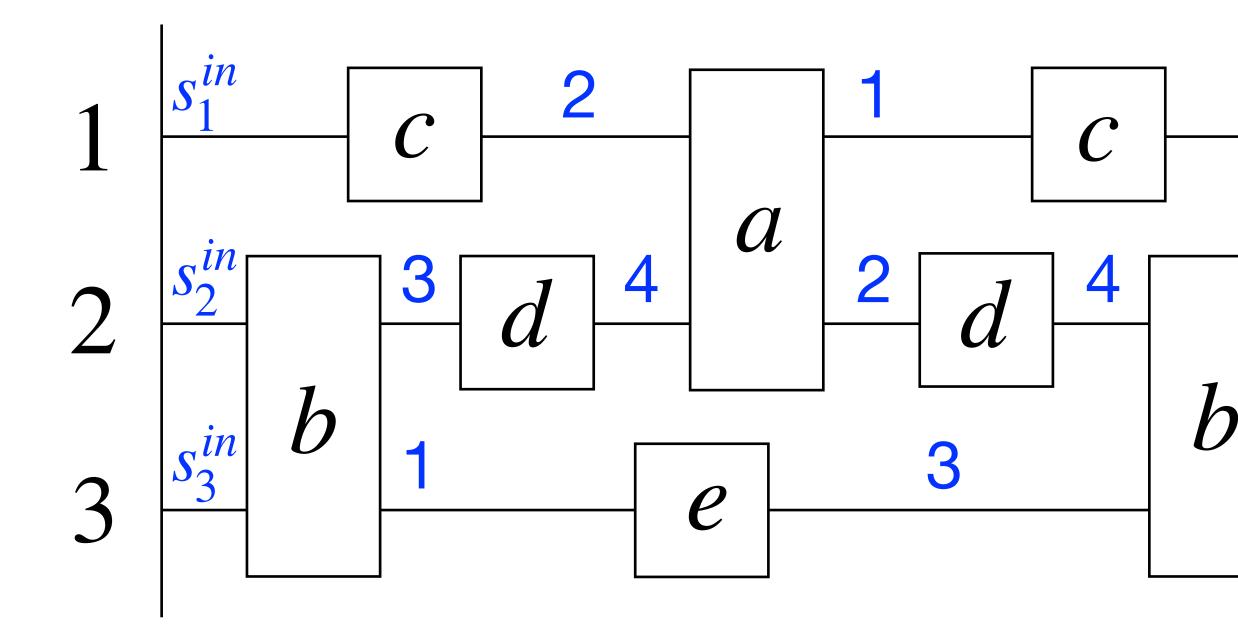
• Free partially commutative monoid

Asynchronous automata (Zielonka)

3

2

2



Theorem (Zielonka, 1987) Asynchronous Automata = Regular Trace Languages

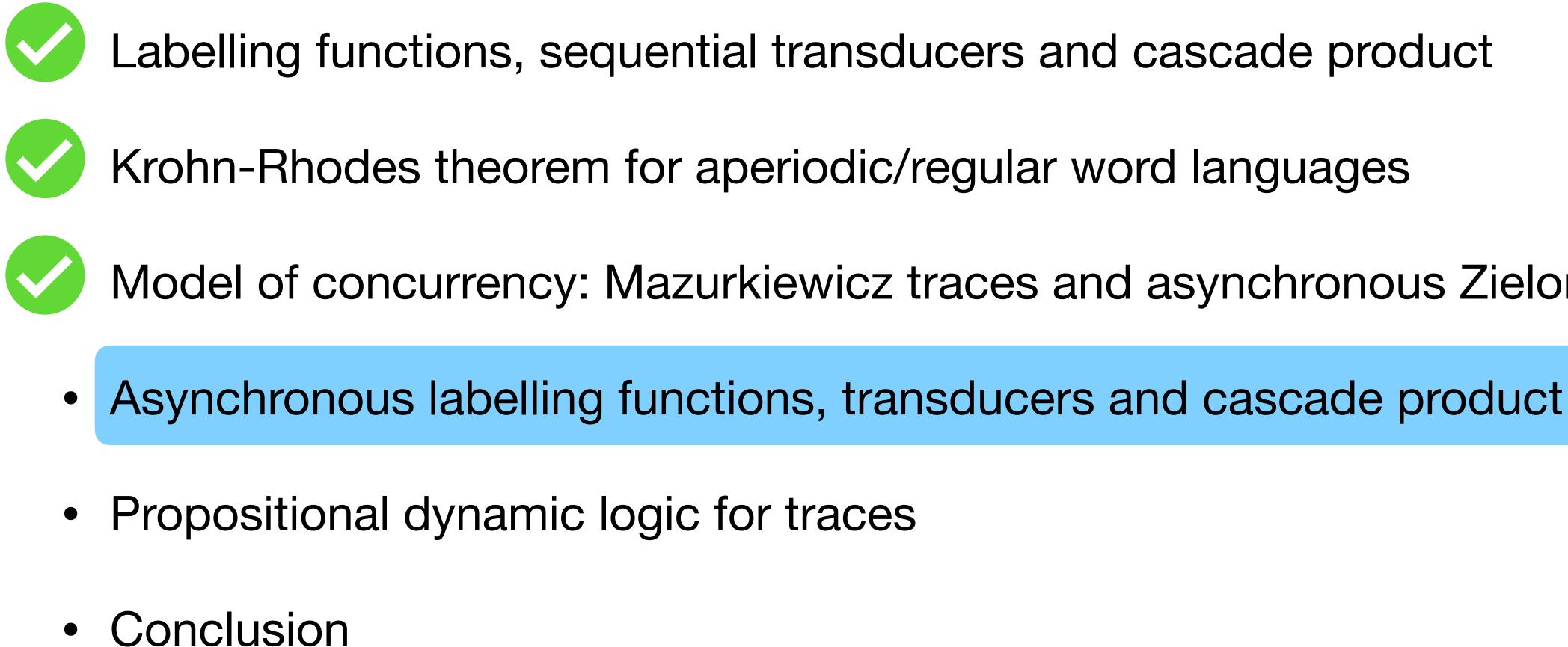
 $\mathscr{A} = \left(\{S_i\}_{i \in \mathscr{P}}, \{\delta_a\}_{a \in \Sigma}, s^{in}, F \right)$

- S_i local states for process i
- δ_a transition function for action a
- $s^{in} = (s_1^{in}, s_2^{in}, s_3^{in})$ global initial state

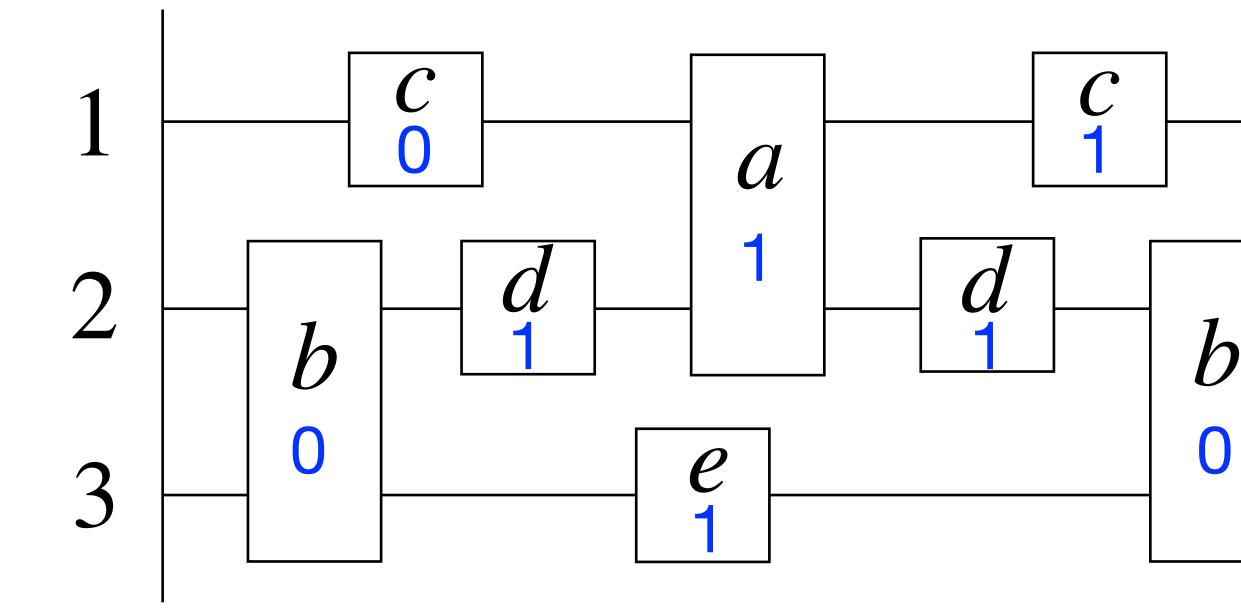
• *F* global accepting states

 $\delta_c \colon S_1 \to S_1$ $\delta_b \colon S_2 \times S_3 \to S_2 \times S_3$ $\delta_d \colon S_2 \to S_2$ $\delta_a \colon S_1 \times S_2 \to S_1 \times S_2$ $\delta_{\rho} \colon S_3 \to S_3$

Outline



- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

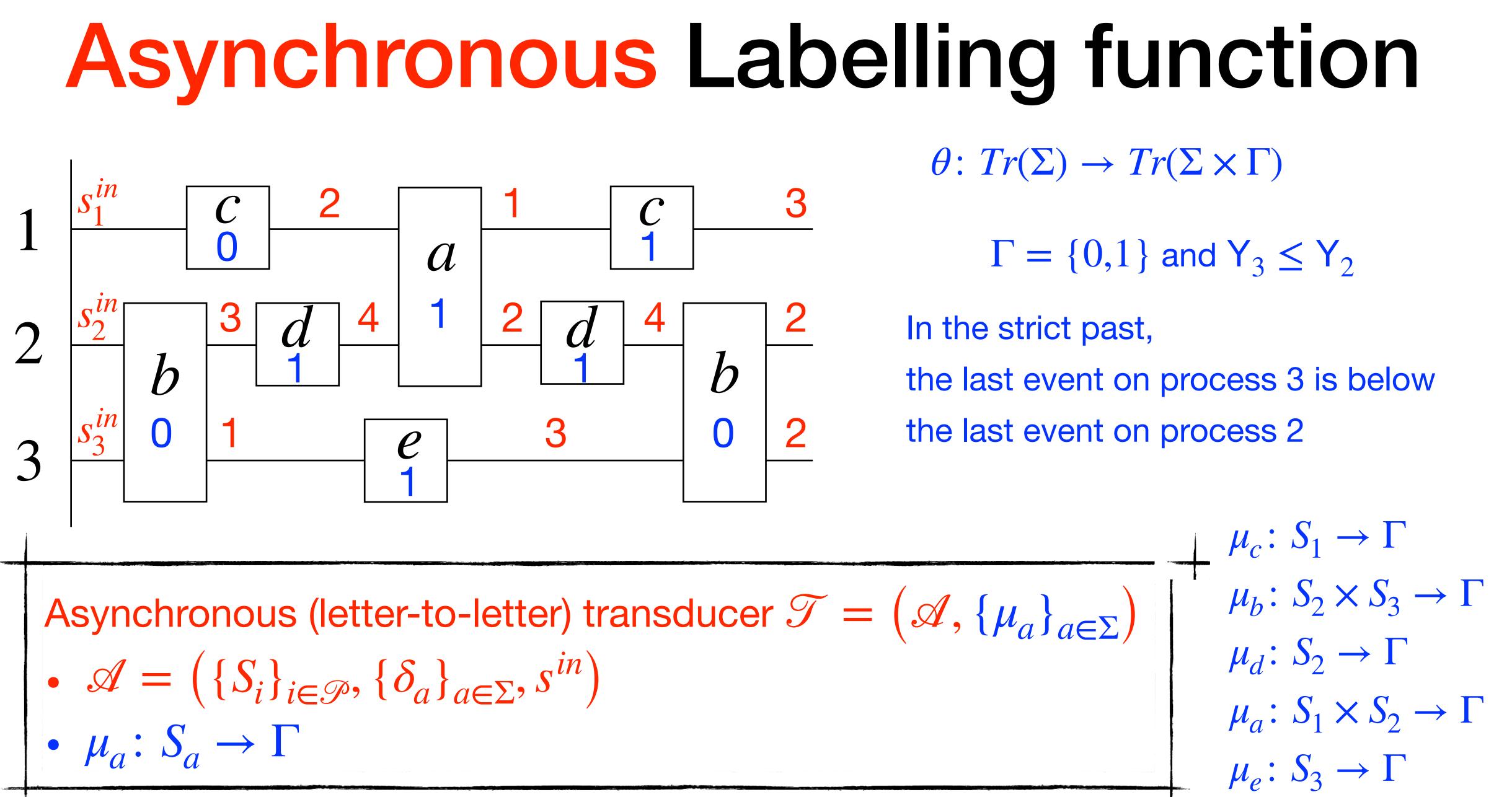


Labelling function

 $\theta \colon Tr(\Sigma) \to Tr(\Sigma \times \Gamma)$

 $\Gamma = \{0, 1\}$

 $Y_3 \leq Y_2$: In the strict past, the last event on process 3 is below the last event on process 2





Composition of labelling functions

 $Tr(\Sigma) \xrightarrow{\theta_1} Tr(\Sigma \times \Gamma) \xrightarrow{\theta_2} Tr(\Sigma \times \Pi)$

Cascade product of asynchronous (letter-to-letter) transducers

$$\begin{array}{c} Tr(\Sigma) & \mathcal{T}_{1} & Tr(\Sigma \times \Gamma) \\ & \left(\{S_{i}\}, \{\delta_{a}\}, s^{in}, \{\mu_{a}\}\right) & \end{array} \\ & \mathcal{T}_{1} \circ \mathcal{T}_{2} = \left(\{S_{i} \times Q_{i}\}, \{\delta_{a}^{\prime}\}, \{\delta_{a}^{$$

Composition - Cascade product

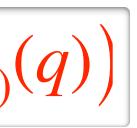
 $\left|\delta_a''(s,q) = \left(\delta_a(s), \delta_{(a,\mu_a(s))}'(q)\right)\right|$

 $\mu_{a}''(s,q) = \mu_{(a,\mu_{a}(s))}'(q)$

 \mathcal{F}_{2} $\left(\{Q_{i}\},\{\delta'_{(a,\gamma)}\},q^{in},\{\mu'_{(a,\gamma)}\}\right)$

 $Tr(\Sigma \times \Pi)$

 Q_i , $\{\delta''_a\}, (s^{in}, q^{in}), \{\mu''_a\}$



Cascade Decomposition

Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of local asynchronous transducers:

Corollary: Zielonka's theorem

 $\mathcal{T} = (\{S_i\}_{i \in \mathcal{P}}, \{\delta_a\}, s^{in}, \{\mu_a\})$ is k-local if only k is non-trivial $(i = k \lor |S_i| = 1)$

Asynchronous Automata = Regular Trace Languages

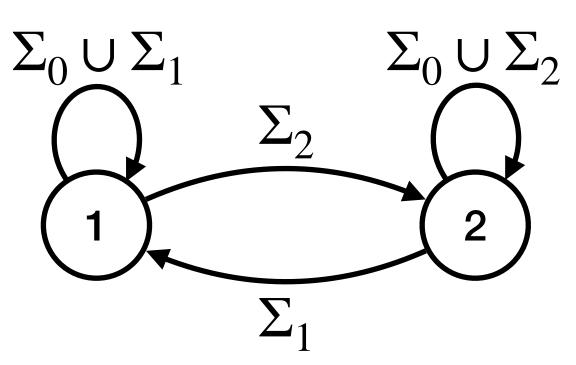
Cascade Decomposition

Main Theorem 1

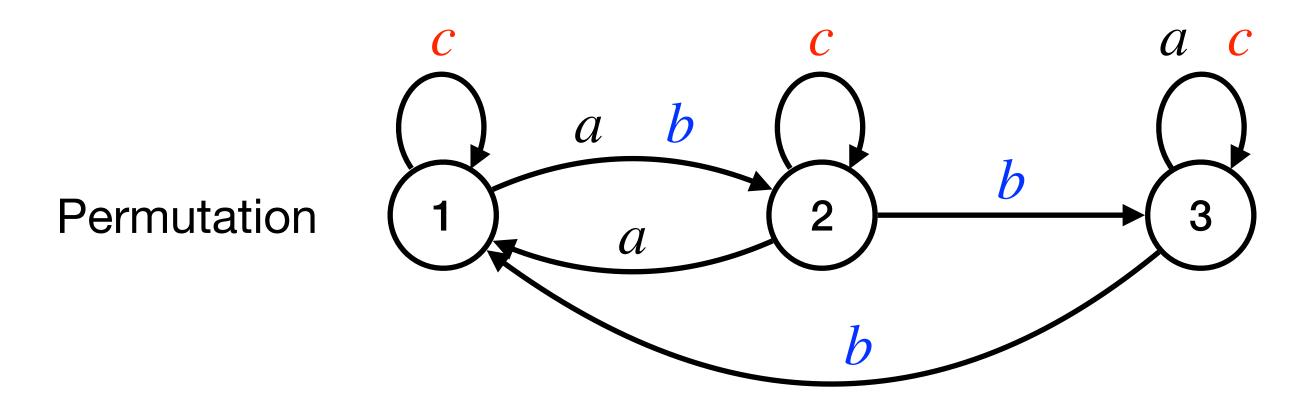
Any asynchronous labelling function can be realised by a cascade product of local asynchronous transducers:

Bonus: Using Krohn-Rhodes theorem Each local asynchronous transducer \mathcal{T} can be chosen to be (on its non-trivial component)

Reset - \mathcal{U}_2



 $\mathcal{T}_1 \circ \mathcal{T}_2 \circ \cdots \circ \mathcal{T}_n$



Cascade Decomposition

Main Theorem 1

Any asynchronous labelling function local asynchronous transducers:

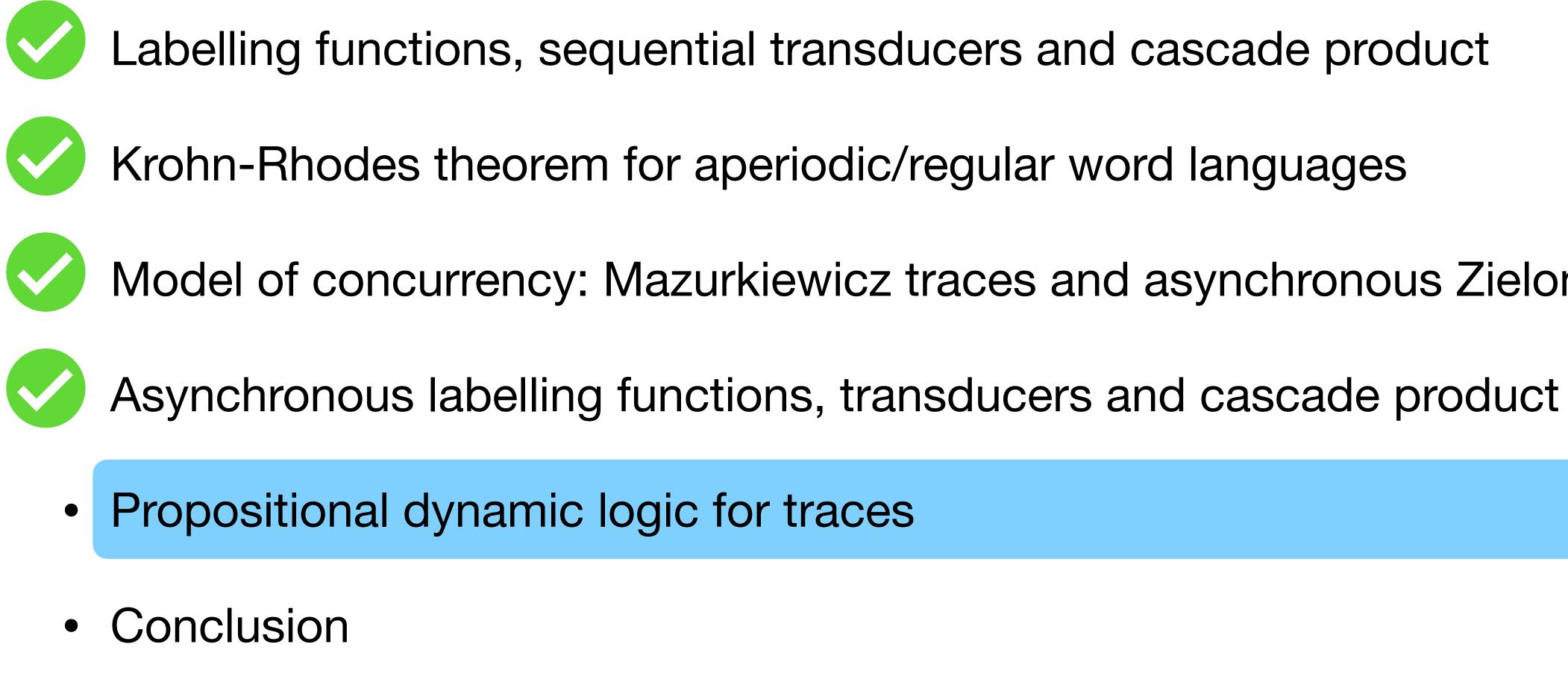
Proof sketch:

- Design a local and past propositional dynamic logic (locPastPDL)
 - State/Event formulas $\varphi ::= a | \varphi \lor \varphi | \neg \varphi | \langle \pi \rangle \varphi$
 - Program/Path expressions $\pi ::= \varphi? | \leftarrow_i | \pi + \pi | \pi \cdot \pi | \pi^*$
- Prove that event formulas are expressively complete wrt regular past predicates (difficult)
- For each event formula φ , construct by structural induction a cascade product of local asynchronous transducers computing its labelling function θ_{φ} (easier)

Any asynchronous labelling function can be realised by a cascade product of

$$\mathcal{T}_1 \circ \mathcal{T}_2 \circ \cdots \circ \mathcal{T}_n$$

Outline



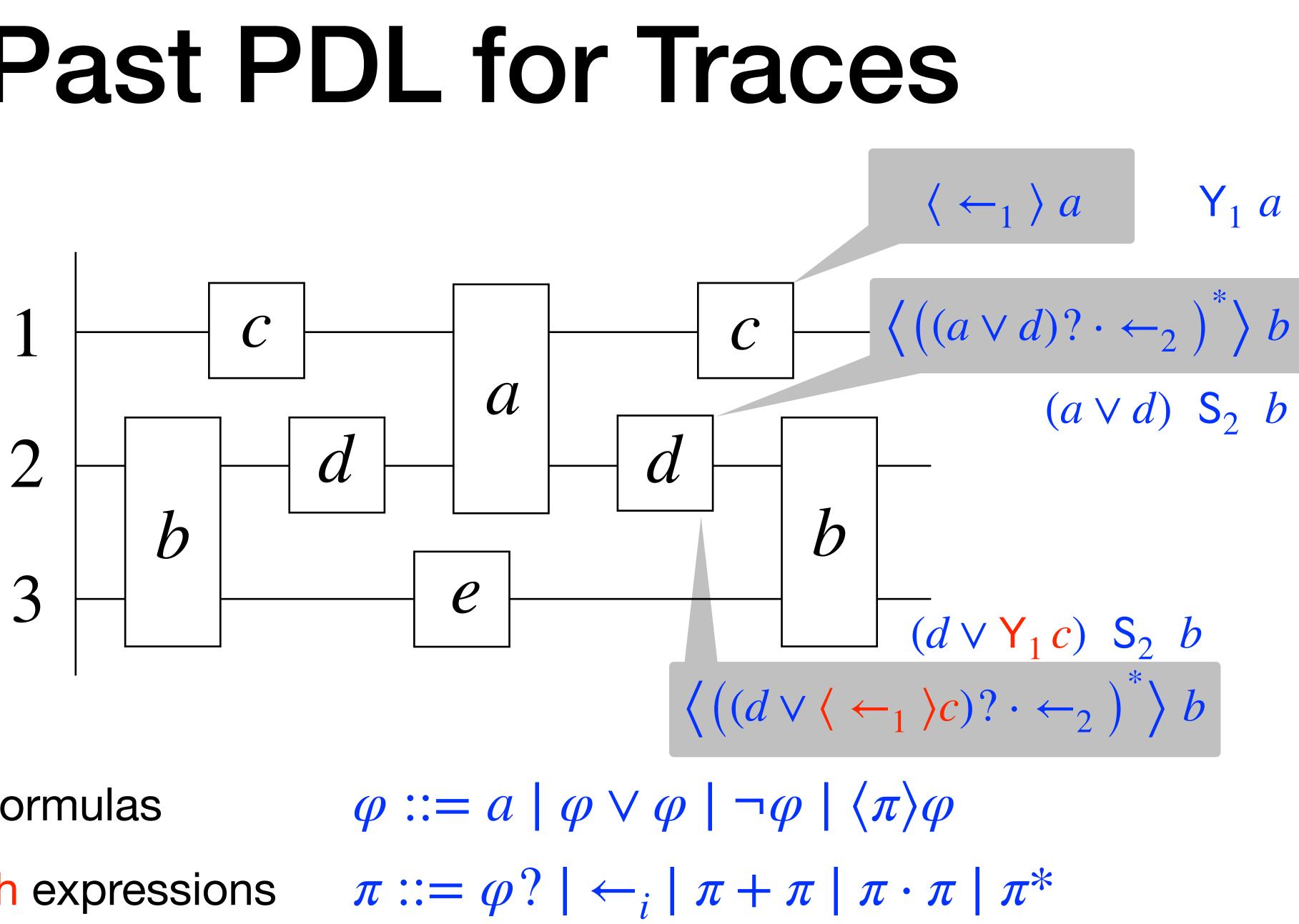
- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

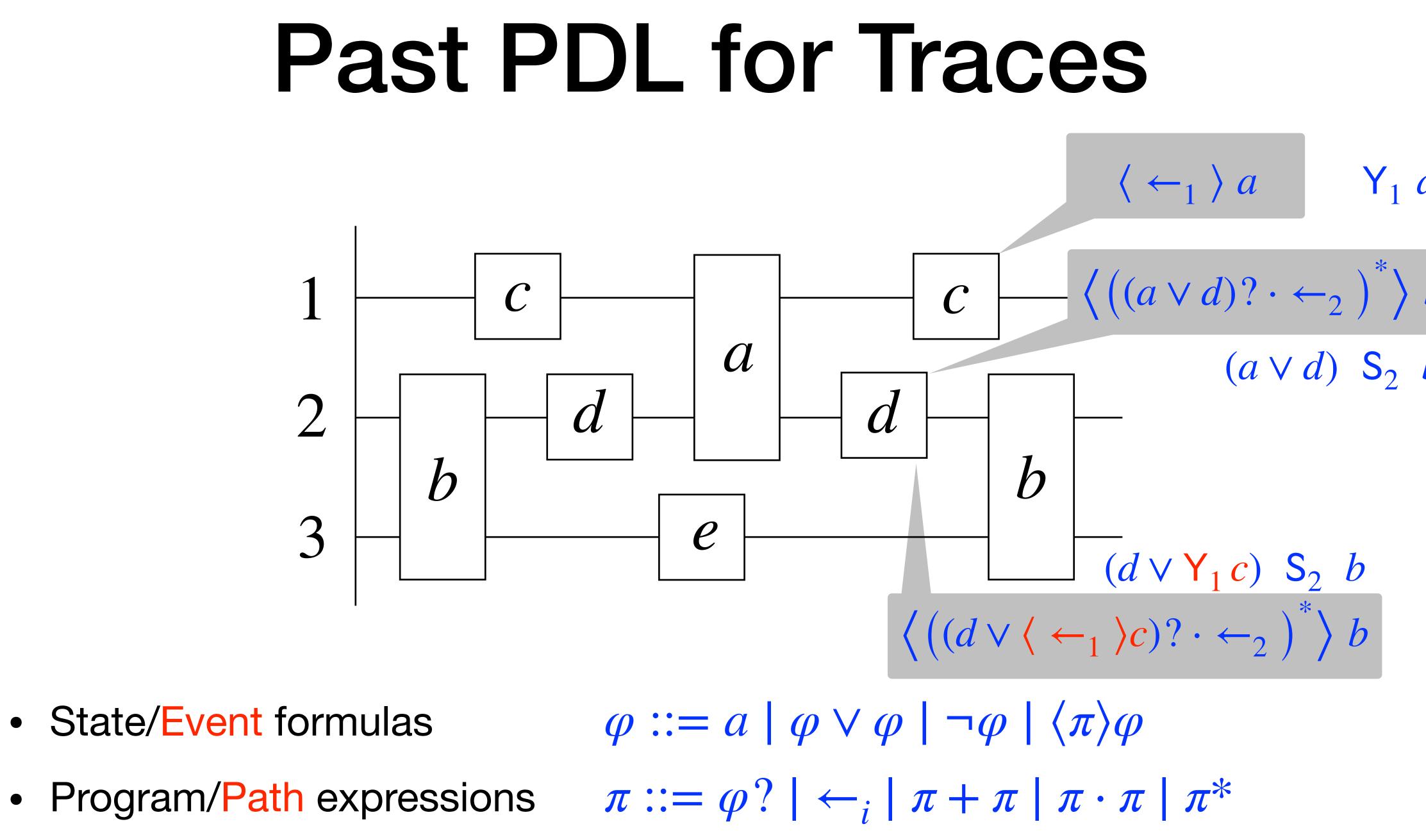
- First introduced to reason about programs (Fischer, Ladner 1979) $\varphi ::= p \quad \varphi \lor \varphi \quad \neg \varphi \quad \langle \pi \rangle \varphi$ • State formulas $\pi ::= \varphi ? \mid x := e \mid \pi + \pi \mid \pi \cdot \pi \mid \pi^*$ Program expressions

 - - If φ then π_1 else π_2 $(\varphi? \cdot \pi_1) + (\neg \varphi? \cdot \pi_2)$
 - While φ do π_1 od; π_2 $(\varphi? \cdot \pi_1)^* \cdot \neg \varphi? \cdot \pi_2$

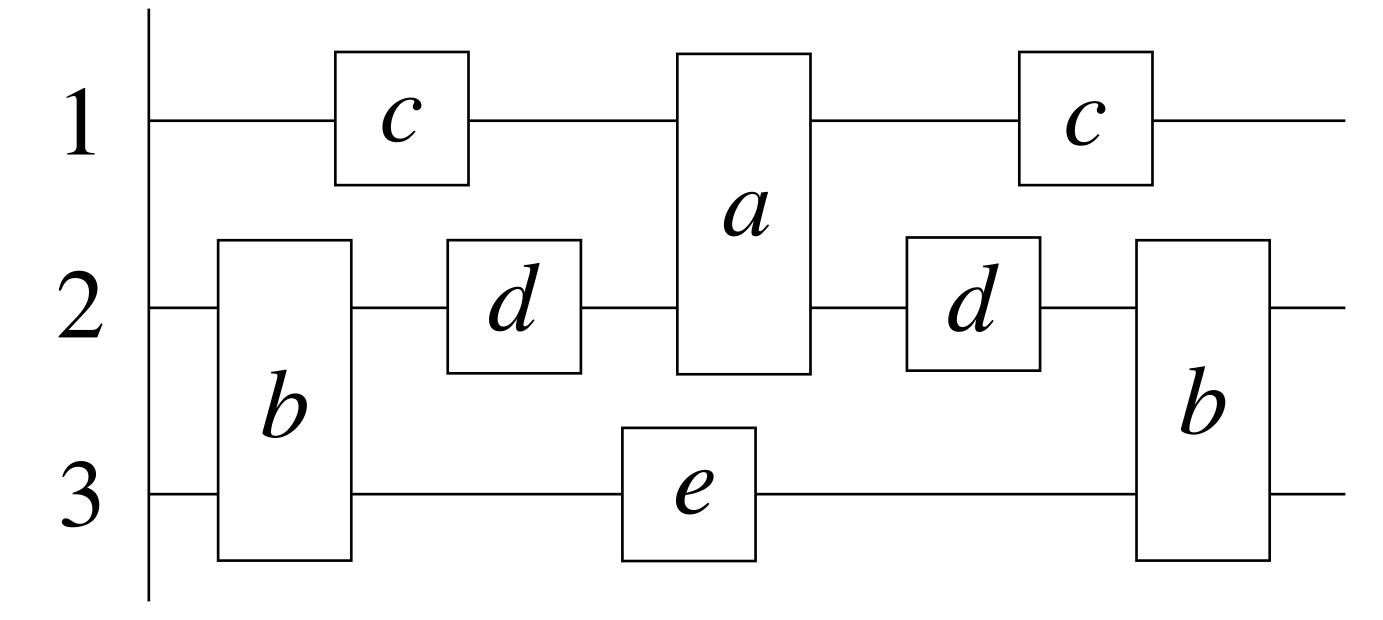
Propositional Dynamic Logic

 Interpretation over words: Linear Dynamic Logic (Giacomo, Vardi 2013) Regular word languages = MSO definable = LDL definable





Past PDL for Traces $T \models \mathsf{EM}_1 c \land \mathsf{EM}_3 \left(b \land \left\langle \leftarrow_2 \cdot \left((a \lor d)? \cdot \leftarrow_2 \right)^* \right\rangle b \right)$



- Sentences / Trace formulas $\Phi ::= \mathsf{EM}_i \varphi | \Phi \lor \Phi | \neg \Phi$
- State/Event formulas
- Program/Path expressions π

 $\Phi ::= \mathsf{EM}_{i} \varphi \mid \Phi \lor \Phi \mid \neg \Phi$ $\varphi ::= a \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$ $\pi ::= \varphi? \mid \leftarrow_{i} \mid \pi + \pi \mid \pi \cdot \pi \mid \pi^{*}$

Main Theorem 2

Sentences

- Event formulas

PastPDL I∩ easy MSO known Morphisms I∩ difficult

locPastPDL

- Let $\eta: Tr(\Sigma) \to M$ be a morphism to a finite monoid
- For each $m \in M$, we construct a locPastPDL event formula $\varphi^{(m)}$ such that,

Induction on the number of processes

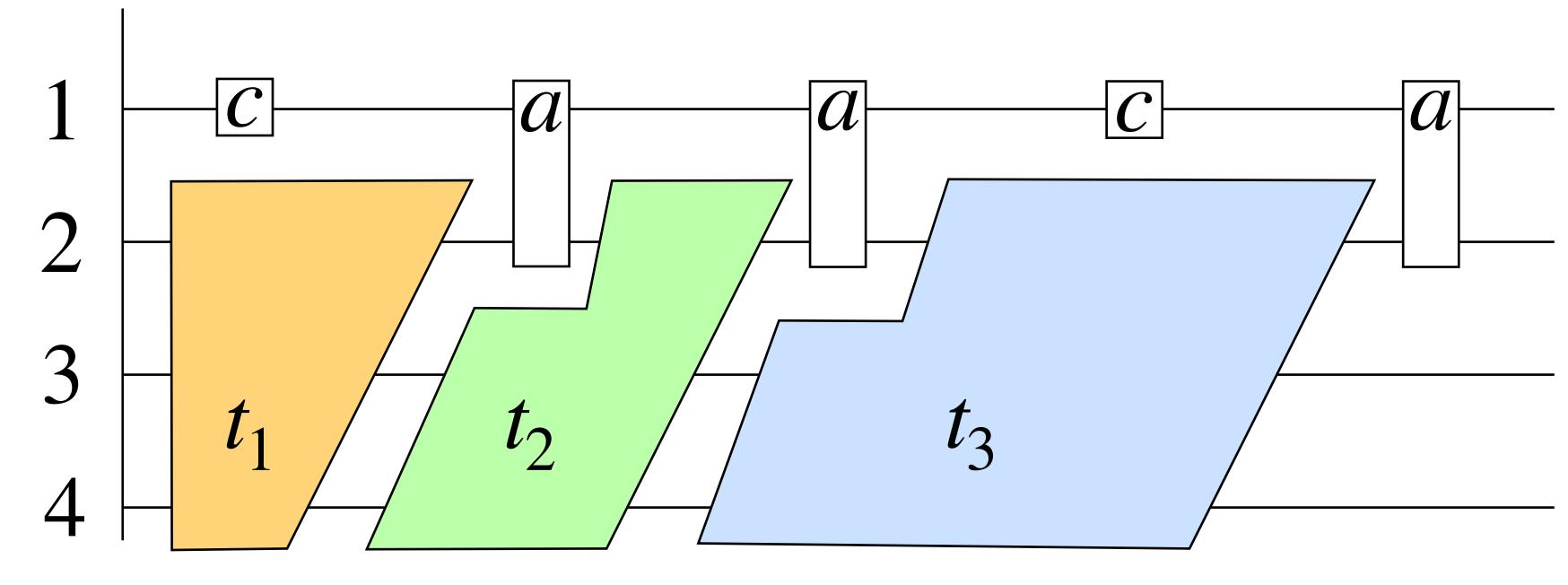
- if T is a prime trace (i.e., having a single maximal event),
 - $\eta(T) = m$ if and only if $T, \max(T) \models \varphi^{(m)}$

Main Theorem 2

Sentences

- Event formulas

PastPDL easy MSO known Morphisms I∩ difficult **locPastPDL**



Main Theorem 2

- Sentences
- Event formulas

PastPDL I∩ easy MSO known

Morphisms

difficult

locPastPDL

- Let $\eta: Tr(\Sigma) \to M$ be a morphism to a finite monoid
- For each $m \in M$, we construct a locPastPDL event formula $\varphi^{(m)}$ such that,

Induction on the number of processes

For each $m \in M$, we construct a sentence $\Phi^{(m)}$ which defines $\eta^{-1}(m)$ decompose an arbitrary (non prime) trace into a product of prime traces.

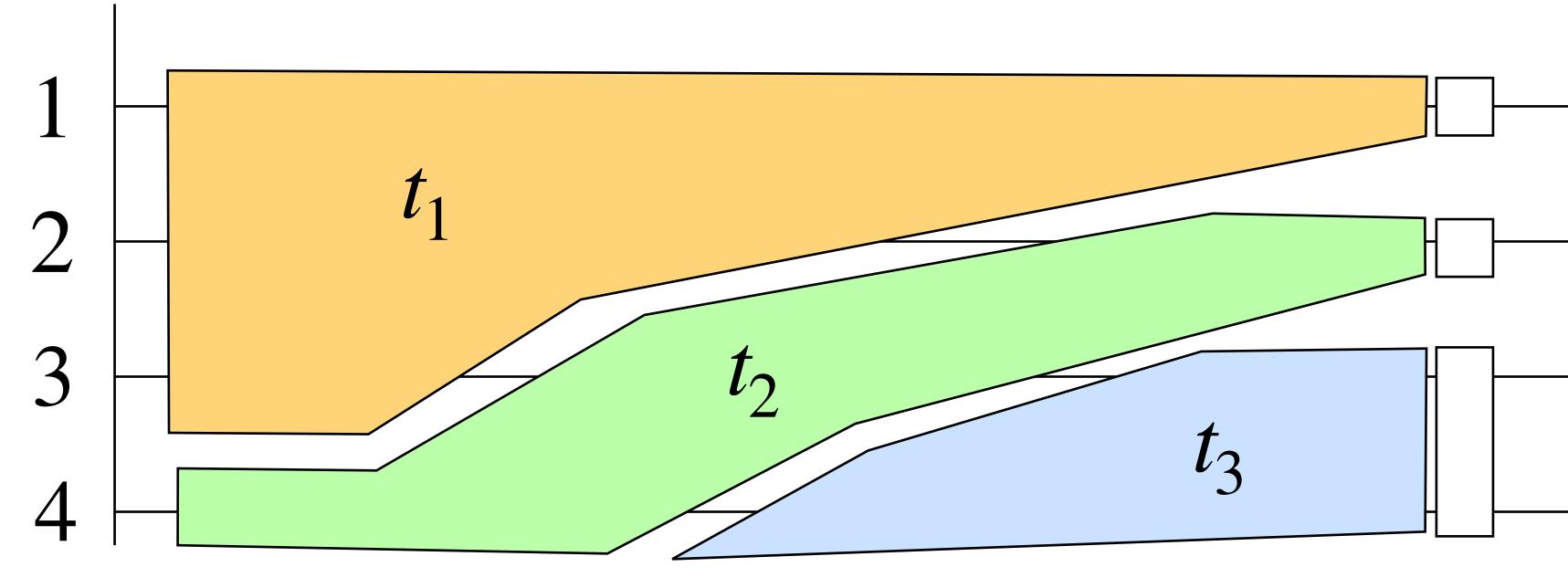
- if T is a prime trace (i.e., having a single maximal event),
 - $\eta(T) = m$ if and only if $T, \max(T) \models \varphi^{(m)}$

Main Theorem 2

Sentences

- Event formulas

PastPDL easy MSO known Morphisms I∩ difficult **locPastPDL**



Main Theorem 2

- Sentences
- Event formulas

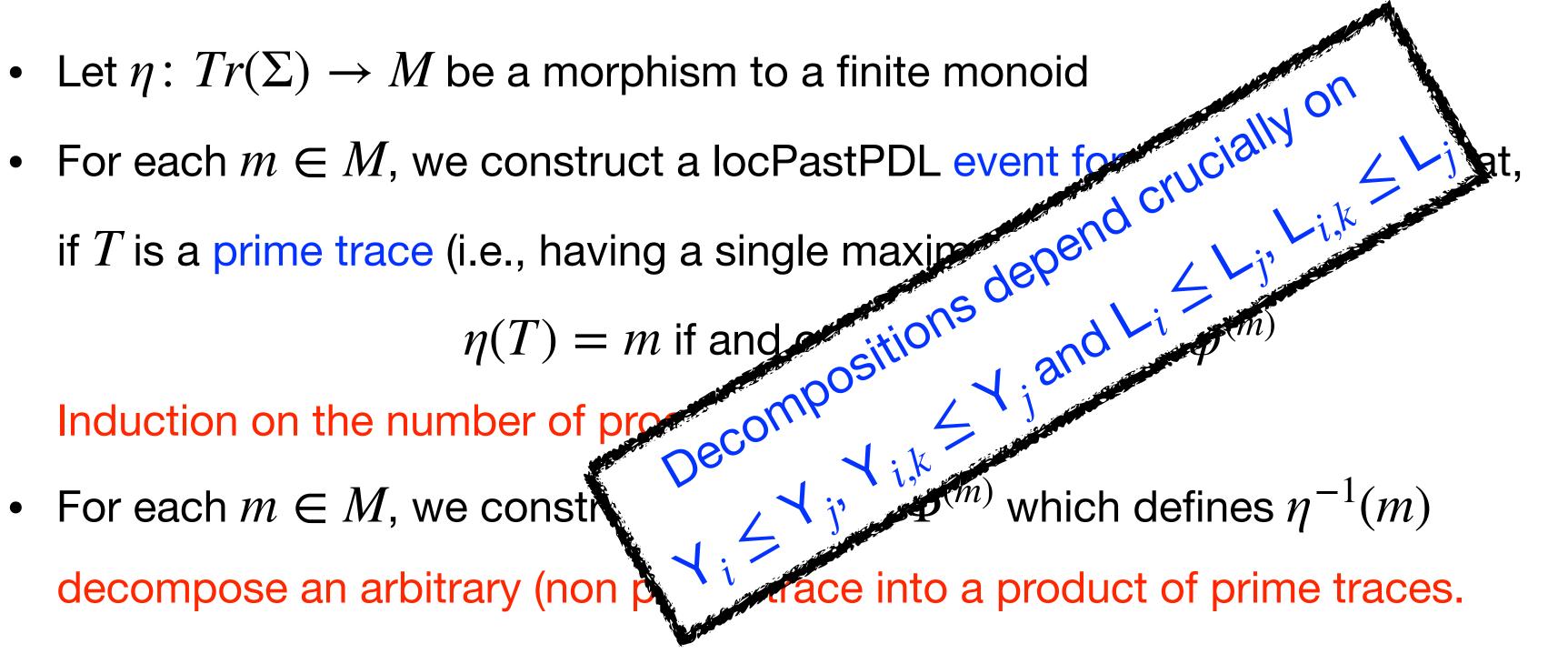
PastPDL easy MSO known Morphisms difficult

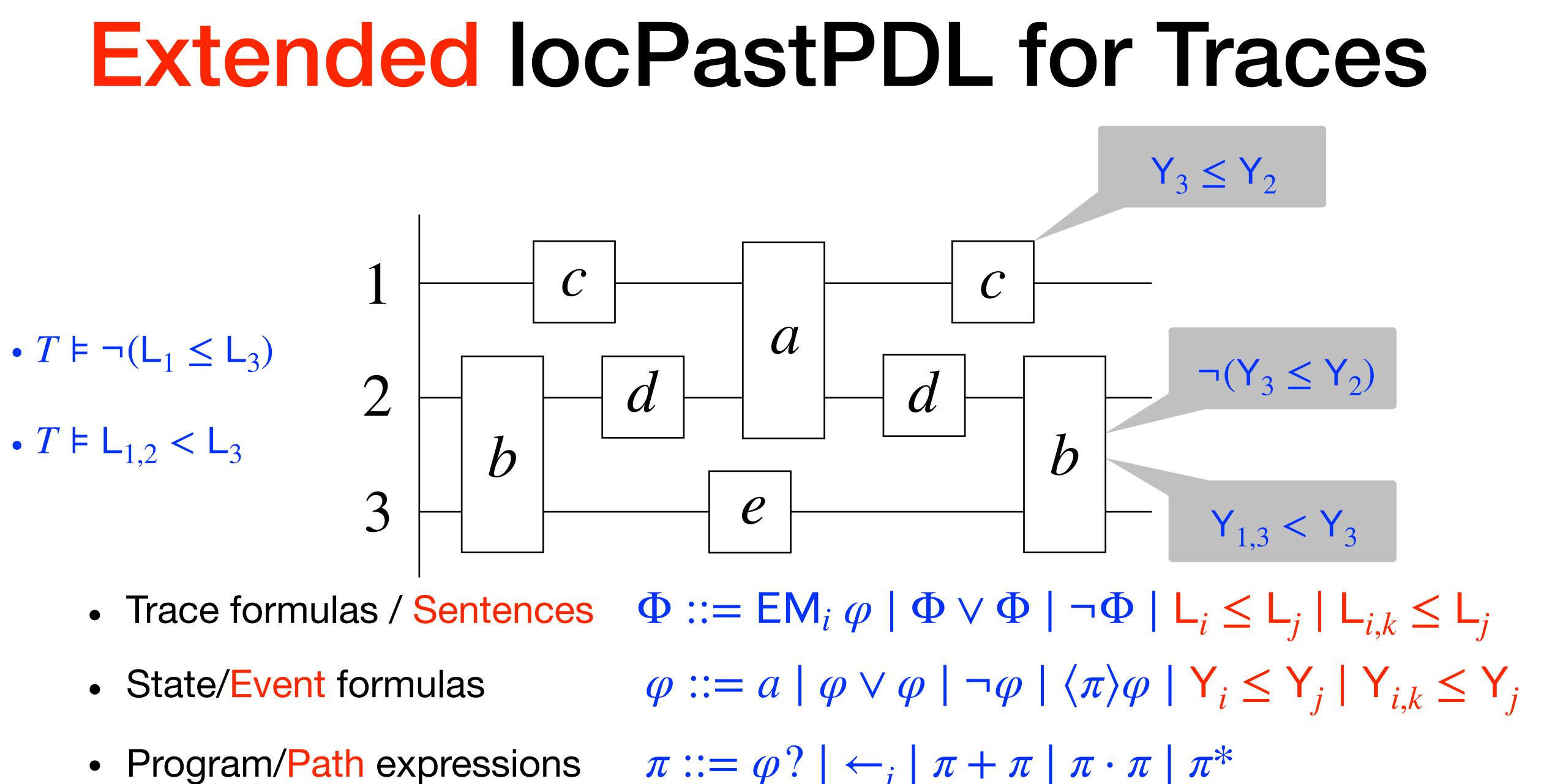
locPastPDL

Induction on the number of pro-

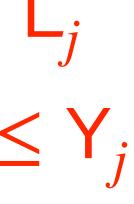
For each $m \in M$, we construct

decompose an arbitrary (non





- Program/Path expressions



Extended locPastPDL for Traces

Theorem (Adsul, Gastin, Sarkar, Weil – CONCUR'22)

- transducer followed by a sequence of local asynchronous transducers:
- Extended locPastPDL is expressively complete for regular trace languages Any regular trace language is accepted by a cascade product of the gossip

 $\mathcal{G} \circ \mathcal{T}_1$

Theorem (Mukund-Sohoni 1997) There is an asynchronous letter-to-letter transducer \mathcal{G} which computes the truth values of the constants from $\mathscr{Y} = \{\mathsf{Y}_i \leq \mathsf{Y}_j, \mathsf{Y}\}$

$$\circ \mathcal{T}_2 \circ \cdots \circ \mathcal{T}_n$$

$$_{i,k} \leq \mathbf{Y}_{j} \mid i,j,k \in \mathcal{P}$$
.

Extended locPastPDL for Traces

Theorem (Adsul, Kulkarni, Gastin, Weil – SUBMITTED'24)

- locPastPDL = Extended locPastPDL
- locPastPDL is expressively complete for regular trace languages
- Any regular trace language is accepted by a cascade product of local asynchronous transducers:

 $\mathcal{T}_1 \circ \mathcal{T}_1$

The gossip problem can be solved asynchronous transducers.

Weil – SUBMITTED'24) tPDL

$$\mathcal{T}_2 \circ \cdots \circ \mathcal{T}_n$$

The gossip problem can be solved with a cascade product of local

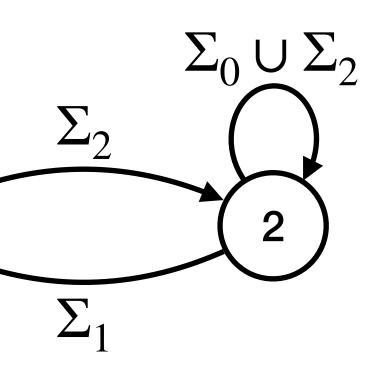
Theorem [Adsul, Gastin, Sarkar, Weil – Concur'20, LMCS'22] gossip transducer followed by a sequence of local reset transducers:

Direct proof (Not using Krohn-Rhodes theorem)

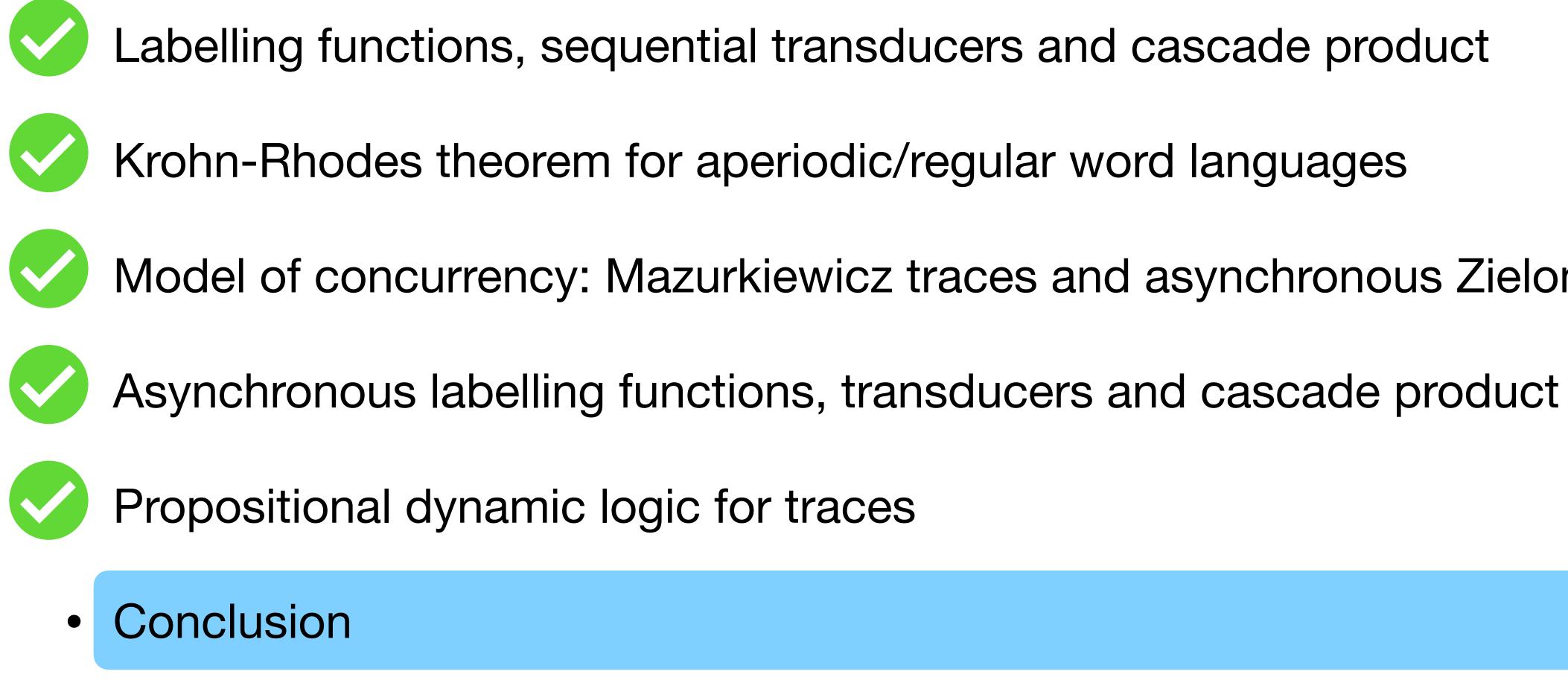
Reset -
$$\mathscr{U}_2$$
 $\Sigma_0 \cup \Sigma_1$

Aperiodic = FO-definable

- Any aperiodic (FO) trace language is accepted by a cascade product of the
 - $\mathcal{G} \circ \mathcal{U}_2 \circ \mathcal{U}_2 \circ \cdots \circ \mathcal{U}_2$
- based on a past temporal logic $LTL(Y_i \leq Y_i, S_i)$ proved expressively complete for FO



Outline



- Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

Conclusion

Main results

Specification language: natural, easy, expressive, good complexity

- Cascade decomposition using simple & local asynchronous automata/transducers Allows inductive reasoning on automata
- $\mathscr{U}_2 \circ \cdots \circ \mathscr{U}_2 = \text{locTL}(SS_i) \subseteq \text{Aperiodic} = FO = \text{locTL}(SS_i, Y_i \leq Y_i) = \mathscr{G} \circ \mathscr{U}_2 \circ \cdots \circ \mathscr{U}_2$

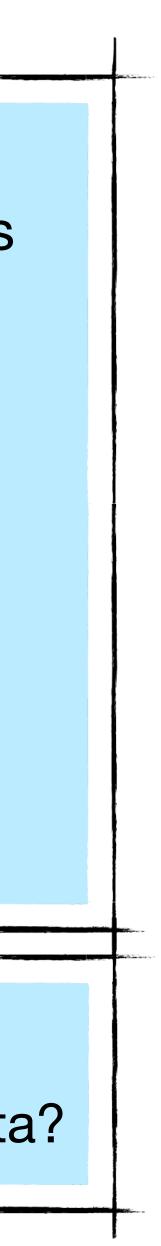
Equality for acyclic architectures (communication graph). with an aperiodic asynchronous transducer, hence also with a cascade of \mathcal{U}_{2} .

Future work

- (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

- Inclusion strict in general: gossip is (past) first-order definable, but cannot be computed

Generalisation to other structures, eg, Message sequence charts & Message passing automata?



Thank you for your attention!