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Labelling function θ : Σ* → Γ*
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 and Σ = { , − , + } Γ = {𝖮, 𝖫, 𝖬, 𝖧}
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letter-to-letter sequential transducer 𝒯 = (Q, q0, Σ, δ, Γ, μ)
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𝒯1 ∘ 𝒯2 = (Q1 × Q2, δ, (qin
1 , qin

2 ), μ)

Composition - Cascade product
• Composition of labelling functions





• Cascade product of (letter-to-letter) sequential transducers

Σ* θ1 Γ* θ2 Π*

𝒯1

(Q1, δ1, qin
1 , μ1)

𝒯2

(Q2, δ2, qin
2 , μ2)

Σ Γ Π

5

δ((p, q), a) = (δ1(p, a), δ2(q, μ1(p, a)))
μ((p, q), a) = μ2(q, μ1(p, a))
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Krohn-Rhodes
Theorem

Any (letter-to-letter) sequential transducer  can be realised by a cascade 
product of reset or permutation transducers:


𝒯

𝒯 ≡ 𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Reset or Permutation is a property of the underlying input automaton:

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2

8

1 2

a
Permutation 3a

a

b

b

b
c c c
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on | M
off | O
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Permutation

Neither Reset 
nor Permutation
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Krohn-Rhodes
Theorem

• Any regular language can be accepted by a cascade product of reset or 

permutation automata.

• Any aperiodic language can be accepted by a cascade product of reset 

automata.

Reset or Permutation automata:

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2
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1 2

a
Permutation 3a

a

b

b

b
c c c



KR proof for aperiodic
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1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

on | M
off | O

on | H
off | O

on | L
off | O

• If we ignore on and off

State_1 = 


• With  and 


State_1 = 


{ + , − }* − − ( + − )*

A = {𝗈𝗇, 𝗈𝖿𝖿, + , − } B = {𝗈𝗇, 𝗈𝖿𝖿}
A* − B* − B* ( + B* − B*)*

cascade product of


reset tra
nsducers



KR proof for aperiodic
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• If we ignore on and off

State_1 = 
{ + , − }* − − ( + − )*

Theorem (Kamp)

Aperiodic = Past Temporal Logic

− ∧ ((+ → 𝖸 − ) 𝖲 ( − ∧ 𝖸 − ))



KR proof for aperiodic
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Each PastLTL formula  defines a boolean labelling function





Each position is labelled with the truth value of  at this position. 

φ
θφ : Σ* → {0,1}

φ

Theorem (Kamp)

Aperiodic = Past Temporal Logic

Example 

a b b b a a b a b b a

0 1 0 0 0 1 1 0 1 0 0

φ = 𝖸 a Example 

a b b a a c c b a a c

0 1 1 1 1 0 0 1 1 1 0

φ = a 𝖲 b



KR proof for aperiodic
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Theorem (Kamp)

Aperiodic = Past Temporal Logic

Each PastLTL formula  defines a boolean labelling function





Each position is labelled with the truth value of  at this position. 

φ
θφ : Σ* → {0,1}

φ

Given a PastLTL formula , we will implement  with a transducer  constructed 
inductively as a cascade product of reset transducers.


PastLTL: boolean connectives, Yesterday and Since    

φ θφ 𝒯φ



KR proof for aperiodic
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F T

0 | 0
1 | 0

1 | 1

0 | 1

𝒯𝖸

𝒯φΣ 𝒯𝖸

{0,1} {0,1}

𝒯𝖸φ

Reset

Given a PastLTL formula , we will implement  with a transducer  constructed 
inductively as a cascade product of reset transducers.


PastLTL: boolean connectives, Yesterday and Since    

φ θφ 𝒯φ

Example 

a b b a a c c b a a c

0 1 0 0 1 1 0 0 0 1 1

φ = 𝖸 a



KR proof for aperiodic
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F T

(0,0) | 0

(1,0) | 0 (0,1) | 1


(1,1) | 1

(1,1) | 1

(0,1) | 1

(1,0) | 1

(0,0) | 0

𝒯𝖲

𝒯φ

𝒯ψ

Σ 𝒯𝖲

{0,1}

{0,1}

{0,1}

𝒯φ 𝖲 ψ

Reset

Example 

a b b a a c c b a a c

0 1 1 1 1 0 0 1 1 1 0

φ = a 𝖲 b

Given a PastLTL formula , we will implement  with a transducer  constructed 
inductively as a cascade product of reset transducers.


PastLTL: boolean connectives, Yesterday and Since    

φ θφ 𝒯φ



KR proof for aperiodic
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(1,1) | 1

(0,1) | 1

(1,0) | 1

(0,0) | 0

𝒯∨

𝒯φ

𝒯ψ

Σ 𝒯∨

{0,1}

{0,1}

{0,1}

𝒯φ ∨ ψ
0 | 1

1 | 0

𝒯¬

 | 1

| 0

a
Σ∖{a}

𝒯a

One-state tra
nsducers


can be eliminated


from the cascade product

Given a PastLTL formula , we will implement  with a transducer  constructed 
inductively as a cascade product of reset transducers.


PastLTL: boolean connectives, Yesterday and Since    

φ θφ 𝒯φ
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1 2 3

+ | H+ | M

- | M- | L

+ | H- | L Neither Reset 
nor Permutation

F T

+ | 0
- | 0

+ | 1

𝒯𝖸 −

- | 1

1v2 2v3

(-,1) | L

(-,1) | L 
(-,0) | L 
(+,1) | M

(+,0) | H

𝗌𝗍𝖺𝗍𝖾𝟣∨𝟤 = ( + → 𝖸 −) 𝖲 ( − ∧ 𝖸 −)
𝗌𝗍𝖺𝗍𝖾𝟤∨𝟥 = ( − → ¬𝖸 −) 𝖲 ( + ∧ ¬𝖸 −)

(+,1) | H 
(+,0) | H 
(-,0) | M
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on | M
off | O

on | H
off | O

on | L
off | O

𝒯(𝗈𝗇 ∨ 𝗈𝖿𝖿) 𝖲𝖲 −

on | 0 
off | 0

on | 1 
off | 1

(On,1) | L 
(On,0) | M 
(Off,*) | O

(On,1) | M 
(On,0) | H 
(Off,*) | O

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

F T

+ | 0
- | 0

+ | 1

𝒯𝖸 −

- | 1

Repalce  with 𝖸 − (𝗈𝗇 ∨ 𝗈𝖿𝖿) 𝖲𝖲 −

1v2 2v3

(-,1) | L

(-,1) | L 
(-,0) | L 
(+,1) | M

(+,0) | H

𝗌𝗍𝖺𝗍𝖾𝟣∨𝟤 = ( + → 𝖸 −) 𝖲 ( − ∧ 𝖸 −)
𝗌𝗍𝖺𝗍𝖾𝟤∨𝟥 = ( − → ¬𝖸 −) 𝖲 ( + ∧ ¬𝖸 −)

(+,1) | H 
(+,0) | H 
(-,0) | M

1 2

+ | off
- | off

+ | +
- | -

| on

| off
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Mazurkiewicz Traces

𝒫 = {1,2,3}
Σ = {a, b, c, d, e}
loc(a) = {1,2}
loc(b) = {2,3}
loc(c) = {1}
loc(d) = {2}
loc(e) = {3}

•  

• Trace Language: 

set of traces denoted Tr(Σ, 𝒫, loc) or simply Tr(Σ)

L ⊆ Tr(Σ)

1

2

3

a

b

c

d

e
b

c

d

22

Architecture



Concatenation, Independence,  
Commutation, Monoid

1

2

3

a

b

c

d

e
b

c

d

•  

•  

•

x I y iff loc(x) ∩ loc(y) = ∅

a I e

a ⋅ e = e ⋅ a

23

•  with trace concatenation is a monoid 

• Free partially commutative monoid 

•  is regular if  
for some morphism  (finite monoid)

Tr(Σ)

L ⊆ Tr(Σ) L = η−1(η(L))
η : Tr(Σ) → M



Concatenation, Independence,  
Commutation, Monoid

1

2

3

a

b

c

d

e
b

c

d

•  

•  

•

x I y iff loc(x) ∩ loc(y) = ∅

a I e

a ⋅ e = e ⋅ a

•  with trace concatenation is a monoid 

• Free partially commutative monoid 

•  is regular if  
for some morphism  (finite monoid)

Tr(Σ)

L ⊆ Tr(Σ) L = η−1(η(L))
η : Tr(Σ) → M

24



Asynchronous automata (Zielonka)

1

2

3

a

b

c

d

e
b

c

d




•  local states for process 


•  transition function for action 


•  global initial state


•  global accepting states

𝒜 = ({Si}i∈𝒫, {δa}a∈Σ, sin, F)
Si i
δa a
sin = (sin

1 , sin
2 , sin

3 )
F

sin
1

sin
2

sin
3













δc : S1 → S1

δb : S2 × S3 → S2 × S3

δd : S2 → S2

δa : S1 × S2 → S1 × S2

δe : S3 → S3

2

3

1

4

1

2

3

4

2

3

2

Theorem (Zielonka, 1987)

Asynchronous Automata = Regular Trace Languages

25
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1

2

3

a

b

c

d

e
b

c

d

θ : Tr(Σ) → Tr(Σ × Γ)

0

0 0

1
1

1

1

1




: In the strict past,

the last event on process 3 is below 
the last event on process 2

Γ = {0,1}

𝖸3 ≤ 𝖸2

Asynchronous Labelling function

27



1

2

3

a

b

c

d

e
b

c

d

θ : Tr(Σ) → Tr(Σ × Γ)











μc : S1 → Γ
μb : S2 × S3 → Γ
μd : S2 → Γ
μa : S1 × S2 → Γ
μe : S3 → Γ

Asynchronous (letter-to-letter) transducer 


• 


•

𝒯 = (𝒜, {μa}a∈Σ)
𝒜 = ({Si}i∈𝒫, {δa}a∈Σ, sin)
μa : Sa → Γ

0 0

0 1
1

11

1

 and 


In the strict past,

the last event on process 3 is below 
the last event on process 2

Γ = {0,1} 𝖸3 ≤ 𝖸2

Asynchronous Labelling function

28

sin
1

sin
2

sin
3

2

3

1

4

1

2

3

4

2

3

2



𝒯1 ∘ 𝒯2 = ({Si × Qi}, {δ′ ′ a}, (sin, qin), {μ′ ′ a})

Composition - Cascade product
• Composition of labelling functions





• Cascade product of asynchronous (letter-to-letter) transducers

Tr(Σ) θ1 Tr(Σ × Γ) θ2 Tr(Σ × Π)

𝒯1

({Si}, {δa}, sin, {μa})
𝒯2

({Qi}, {δ′ (a,γ)}, qin, {μ′ (a,γ)})
Tr(Σ) Tr(Σ × Γ) Tr(Σ × Π)

29

δ′ ′ a(s, q) = (δa(s), δ′ (a,μa(s))(q))
μ′ ′ a(s, q) = μ′ (a,μa(s))(q)



Cascade Decomposition

 is -local if only  is non-trivial 𝒯 = ({Si}i∈𝒫, {δa}, sin, {μa}) k k (i = k ∨ |Si | = 1)

Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of 
local asynchronous transducers:


𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

30

Corollary: Zielonka’s theorem

Asynchronous Automata = Regular Trace Languages



Cascade Decomposition
Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of 
local asynchronous transducers:


𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

31

Bonus: Using Krohn-Rhodes theorem

Each local asynchronous transducer  can be chosen to be (on its non-trivial component)𝒯

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2
1 2

a
Permutation 3a

a

b

b

b
c c c



Cascade Decomposition
Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of 
local asynchronous transducers:


𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

32

Proof sketch: 

• Design a local and past propositional dynamic logic (locPastPDL)


• State/Event formulas               


• Program/Path expressions      


• Prove that event formulas are expressively complete wrt regular past predicates (difficult)


• For each event formula , construct by structural induction a cascade product of local 
asynchronous transducers computing its labelling function  (easier)

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

φ
θφ
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Propositional Dynamic Logic
• First introduced to reason about programs (Fischer, Ladner 1979)


• State formulas                  


• Program expressions        


• If  then  else            


• While  do  od;         


• Interpretation over words: Linear Dynamic Logic (Giacomo, Vardi 2013)


Regular word languages = MSO definable = LDL definable

φ ::= p ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ x := e ∣ π + π ∣ π ⋅ π ∣ π*

φ π1 π2 (φ? ⋅ π1) + (¬φ? ⋅ π2)
φ π1 π2 (φ? ⋅ π1)* ⋅ ¬φ? ⋅ π2

34



Past PDL for Traces

• State/Event formulas               


• Program/Path expressions      

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

⟨ ←1 ⟩ a

⟨((a ∨ d)? ⋅ ←2 )*⟩ b

⟨((d ∨ ⟨ ←1 ⟩c)? ⋅ ←2 )*⟩ b

(a ∨ d) 𝖲2 b

35

𝖸1 a

(d ∨ 𝖸1 c) 𝖲2 b



T ⊧ 𝖤𝖬1 c ∧ 𝖤𝖬3 (b ∧ ⟨←2 ⋅ ((a ∨ d)? ⋅ ←2 )*⟩b)
Past PDL for Traces

• State/Event formulas               


• Program/Path expressions      

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

• Sentences / Trace formulas    Φ ::= 𝖤𝖬i φ ∣ Φ ∨ Φ ∣ ¬Φ

T ⊧ 𝖤𝖬1 c

36



(Local) Past-PDL for Traces
Main Theorem 2


• Sentences            locPastPDL = PastPDL = Regular Trace Languages


• Event formulas     locPastPDL = PastPDL = Regular Past Predicates

• Let  be a morphism to a finite monoid


• For each , we construct a locPastPDL event formula  such that, 


if  is a prime trace (i.e., having a single maximal event),


 if and only if 


Induction on the number of processes


• For each , we construct a sentence  which defines 


decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

difficult
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(Local) Past-PDL for Traces
Main Theorem 2


• Sentences            locPastPDL = PastPDL = Regular Trace Languages


• Event formulas     locPastPDL = PastPDL = Regular Past Predicates

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

38

1
2
3
4

c ca a a

t1 t2 t3difficult



(Local) Past-PDL for Traces
Main Theorem 2


• Sentences            locPastPDL = PastPDL = Regular Trace Languages


• Event formulas     locPastPDL = PastPDL = Regular Past Predicates

• Let  be a morphism to a finite monoid


• For each , we construct a locPastPDL event formula  such that, 


if  is a prime trace (i.e., having a single maximal event),


 if and only if 


Induction on the number of processes


• For each , we construct a sentence  which defines 


decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

39

difficult



(Local) Past-PDL for Traces
Main Theorem 2


• Sentences            locPastPDL = PastPDL = Regular Trace Languages


• Event formulas     locPastPDL = PastPDL = Regular Past Predicates

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

40

1
2
3
4

t1

t2 t3difficult



(Local) Past-PDL for Traces
Main Theorem 2


• Sentences            locPastPDL = PastPDL = Regular Trace Languages


• Event formulas     locPastPDL = PastPDL = Regular Past Predicates

• Let  be a morphism to a finite monoid


• For each , we construct a locPastPDL event formula  such that, 


if  is a prime trace (i.e., having a single maximal event),


 if and only if 


Induction on the number of processes


• For each , we construct a sentence  which defines 


decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

41

Decompositions depend crucially on


 

, 

 and 

, 

𝖸 i ≤
𝖸 j

𝖸 i,k
≤ 𝖸 j

𝖫 i ≤
𝖫 j

𝖫 i,k
≤ 𝖫 j

difficult



Extended locPastPDL for Traces

• State/Event formulas               


• Program/Path expressions      

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ ∣ 𝖸i ≤ 𝖸j ∣ 𝖸i,k ≤ 𝖸j

π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

• Trace formulas / Sentences    Φ ::= 𝖤𝖬i φ ∣ Φ ∨ Φ ∣ ¬Φ ∣ 𝖫i ≤ 𝖫j ∣ 𝖫i,k ≤ 𝖫j

• 


•

T ⊧ ¬(𝖫1 ≤ 𝖫3)

T ⊧ 𝖫1,2 < 𝖫3

42

𝖸3 ≤ 𝖸2

¬(𝖸3 ≤ 𝖸2)

𝖸1,3 < 𝖸3



Theorem (Mukund-Sohoni 1997)

There is an asynchronous letter-to-letter transducer  which computes the 
truth values of the constants from


.

𝒢

𝒴 = {𝖸i ≤ 𝖸j , 𝖸i,k ≤ 𝖸j ∣ i, j, k ∈ 𝒫}
43

Theorem (Adsul, Gastin, Sarkar, Weil — CONCUR’22)

• Extended locPastPDL is expressively complete for regular trace languages

• Any regular trace language is accepted by a cascade product of the gossip 

transducer followed by a sequence of local asynchronous transducers:

𝒢 ∘ 𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Extended locPastPDL for Traces
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Theorem (Adsul, Kulkarni, Gastin, Weil — SUBMITTED’24)

• locPastPDL = Extended locPastPDL

• locPastPDL is expressively complete for regular trace languages

• Any regular trace language is accepted by a cascade product of local 

asynchronous transducers:




• The gossip problem can be solved with a cascade product of local 
asynchronous transducers.

𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Extended locPastPDL for Traces



Aperiodic = FO-definable
Theorem [Adsul, Gastin, Sarkar, Weil — Concur’20, LMCS’22]

Any aperiodic (FO) trace language is accepted by a cascade product of the 
gossip transducer followed by a sequence of local reset transducers:


𝒢 ∘ 𝒰2 ∘ 𝒰2 ∘ ⋯ ∘ 𝒰2

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2

Direct proof (Not using Krohn-Rhodes theorem)

based on a past temporal logic  proved expressively complete for FO𝖫𝖳𝖫(𝖸i ≤ 𝖸j, 𝖲i)
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Outline
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• Labelling functions, sequential transducers and cascade product


• Krohn-Rhodes theorem for aperiodic/regular word languages


• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata


• Asynchronous labelling functions, transducers and cascade product


• Propositional dynamic logic for traces


• Conclusion



Conclusion
Main results

• (Local) (past) Propositional dynamic logic expressively complete for regular trace languages


 Specification language: natural, easy, expressive, good complexity

• Cascade decomposition using simple & local asynchronous automata/transducers


 Allows inductive reasoning on automata


• Aperiodic = FO = 


 Equality for acyclic architectures (communication graph).

 Inclusion strict in general: gossip is (past) first-order definable, but cannot be computed 

with an aperiodic asynchronous transducer, hence also with a cascade of .

𝒰2 ∘ ⋯ ∘ 𝒰2 = 𝗅𝗈𝖼𝖳𝖫(𝖲𝖲i) ⊆ 𝗅𝗈𝖼𝖳𝖫(𝖲𝖲i, 𝖸i ≤ 𝖸j) = 𝒢 ∘ 𝒰2 ∘ ⋯ ∘ 𝒰2

𝒰2

Future work

• Generalisation to other structures, eg, Message sequence charts & Message passing automata?
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Thank you for your attention!
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