
Cascade Decomposition of
Asynchronous Zielonka Automata

Paul Gastin

LMF, ENS Paris-Saclay, IRL ReLaX

Joint Work with Bharat Adsul (IIT Bombay), Shantanu Kulkarni (IIT
Bombay), Saptarshi Sarkar (IIT Bombay) and Pascal Weil (LaBRI, ReLaX)

Based on CONCUR’20, LMCS’22, CONCUR’22 and submitted work
1

Outline

2

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

Labelling function θ : Σ* → Γ*

3

+
-

+ - - - - +
O H M O O M L L O L M H H O

+ +

 and Σ = { , − , + } Γ = {𝖮, 𝖫, 𝖬, 𝖧}

💡

letter-to-letter sequential transducer 𝒯 = (Q, q0, Σ, δ, Γ, μ)
4

+
-

+ - - - - +
O H M O O M L L O L M H H O

+ +

💡

1 2 3

+ | H+ | M

- | M- | L

+ | O
- | O

+ | H- | L

4 5 6

+ | O
- | O

+ | O
- | O

| H| M| L
| O| O| O

𝒯1 ∘ 𝒯2 = (Q1 × Q2, δ, (qin
1 , qin

2), μ)

Composition - Cascade product
• Composition of labelling functions

• Cascade product of (letter-to-letter) sequential transducers

Σ* θ1 Γ* θ2 Π*

𝒯1

(Q1, δ1, qin
1 , μ1)

𝒯2

(Q2, δ2, qin
2 , μ2)

Σ Γ Π

5

δ((p, q), a) = (δ1(p, a), δ2(q, μ1(p, a)))
μ((p, q), a) = μ2(q, μ1(p, a))

6

+
-

+ - - - - +
O H M O O M L L O L M H H O

+ +

💡

1 2

+ | off
- | off

+ | +
- | -

| on

| off

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

on | M
off | O

on | H
off | O

on | L
off | O

Outline

7

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

Krohn-Rhodes
Theorem

Any (letter-to-letter) sequential transducer can be realised by a cascade
product of reset or permutation transducers:

𝒯

𝒯 ≡ 𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Reset or Permutation is a property of the underlying input automaton:

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2

8

1 2

a
Permutation 3a

a

b

b

b
c c c

9

+
-

+ - - - - +
O H M O O M L L O L M H H O

+ +

💡

1 2

+ | off
- | off

+ | +
- | -

| on

| off

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

on | M
off | O

on | H
off | O

on | L
off | O

Permutation

Neither Reset
nor Permutation

10

+
-

+ - - - + +
O H L O O L L H O H H L L O

- -

💡

1 2

+ | off
- | off

+ | +
- | -

| on

| off

1 2

+ | H

- | L

+ | H- | L

on | H
off | O

on | L
off | O

Permutation

Reset

Krohn-Rhodes
Theorem

• Any regular language can be accepted by a cascade product of reset or

permutation automata.

• Any aperiodic language can be accepted by a cascade product of reset

automata.

Reset or Permutation automata:

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2

11

1 2

a
Permutation 3a

a

b

b

b
c c c

KR proof for aperiodic

12

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

on | M
off | O

on | H
off | O

on | L
off | O

• If we ignore on and off

State_1 =

• With and

State_1 =

{ + , − }* − − (+ −)*

A = {𝗈𝗇, 𝗈𝖿𝖿, + , − } B = {𝗈𝗇, 𝗈𝖿𝖿}
A* − B* − B* (+ B* − B*)*

cascade product of

reset tra
nsducers

KR proof for aperiodic

13

• If we ignore on and off

State_1 =
{ + , − }* − − (+ −)*

Theorem (Kamp)

Aperiodic = Past Temporal Logic

− ∧ ((+ → 𝖸 −) 𝖲 (− ∧ 𝖸 −))

KR proof for aperiodic

14

Each PastLTL formula defines a boolean labelling function

Each position is labelled with the truth value of at this position.

φ
θφ : Σ* → {0,1}

φ

Theorem (Kamp)

Aperiodic = Past Temporal Logic

Example

a b b b a a b a b b a

0 1 0 0 0 1 1 0 1 0 0

φ = 𝖸 a Example

a b b a a c c b a a c

0 1 1 1 1 0 0 1 1 1 0

φ = a 𝖲 b

KR proof for aperiodic

15

Theorem (Kamp)

Aperiodic = Past Temporal Logic

Each PastLTL formula defines a boolean labelling function

Each position is labelled with the truth value of at this position.

φ
θφ : Σ* → {0,1}

φ

Given a PastLTL formula , we will implement with a transducer constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

φ θφ 𝒯φ

KR proof for aperiodic

16

F T

0 | 0
1 | 0

1 | 1

0 | 1

𝒯𝖸

𝒯φΣ 𝒯𝖸

{0,1} {0,1}

𝒯𝖸φ

Reset

Given a PastLTL formula , we will implement with a transducer constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

φ θφ 𝒯φ

Example

a b b a a c c b a a c

0 1 0 0 1 1 0 0 0 1 1

φ = 𝖸 a

KR proof for aperiodic

17

F T

(0,0) | 0

(1,0) | 0 (0,1) | 1

(1,1) | 1

(1,1) | 1

(0,1) | 1

(1,0) | 1

(0,0) | 0

𝒯𝖲

𝒯φ

𝒯ψ

Σ 𝒯𝖲

{0,1}

{0,1}

{0,1}

𝒯φ 𝖲 ψ

Reset

Example

a b b a a c c b a a c

0 1 1 1 1 0 0 1 1 1 0

φ = a 𝖲 b

Given a PastLTL formula , we will implement with a transducer constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

φ θφ 𝒯φ

KR proof for aperiodic

18

(1,1) | 1

(0,1) | 1

(1,0) | 1

(0,0) | 0

𝒯∨

𝒯φ

𝒯ψ

Σ 𝒯∨

{0,1}

{0,1}

{0,1}

𝒯φ ∨ ψ
0 | 1

1 | 0

𝒯¬

 | 1

| 0

a
Σ∖{a}

𝒯a

One-state tra
nsducers

can be eliminated

from the cascade product

Given a PastLTL formula , we will implement with a transducer constructed
inductively as a cascade product of reset transducers.

PastLTL: boolean connectives, Yesterday and Since

φ θφ 𝒯φ

19

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L Neither Reset
nor Permutation

F T

+ | 0
- | 0

+ | 1

𝒯𝖸 −

- | 1

1v2 2v3

(-,1) | L

(-,1) | L
(-,0) | L
(+,1) | M

(+,0) | H

𝗌𝗍𝖺𝗍𝖾𝟣∨𝟤 = (+ → 𝖸 −) 𝖲 (− ∧ 𝖸 −)
𝗌𝗍𝖺𝗍𝖾𝟤∨𝟥 = (− → ¬𝖸 −) 𝖲 (+ ∧ ¬𝖸 −)

(+,1) | H
(+,0) | H
(-,0) | M

20

on | M
off | O

on | H
off | O

on | L
off | O

𝒯(𝗈𝗇 ∨ 𝗈𝖿𝖿) 𝖲𝖲 −

on | 0
off | 0

on | 1
off | 1

(On,1) | L
(On,0) | M
(Off,*) | O

(On,1) | M
(On,0) | H
(Off,*) | O

1 2 3

+ | H+ | M

- | M- | L

+ | H- | L

F T

+ | 0
- | 0

+ | 1

𝒯𝖸 −

- | 1

Repalce with 𝖸 − (𝗈𝗇 ∨ 𝗈𝖿𝖿) 𝖲𝖲 −

1v2 2v3

(-,1) | L

(-,1) | L
(-,0) | L
(+,1) | M

(+,0) | H

𝗌𝗍𝖺𝗍𝖾𝟣∨𝟤 = (+ → 𝖸 −) 𝖲 (− ∧ 𝖸 −)
𝗌𝗍𝖺𝗍𝖾𝟤∨𝟥 = (− → ¬𝖸 −) 𝖲 (+ ∧ ¬𝖸 −)

(+,1) | H
(+,0) | H
(-,0) | M

1 2

+ | off
- | off

+ | +
- | -

| on

| off

Outline

21

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

Mazurkiewicz Traces

𝒫 = {1,2,3}
Σ = {a, b, c, d, e}
loc(a) = {1,2}
loc(b) = {2,3}
loc(c) = {1}
loc(d) = {2}
loc(e) = {3}

•

• Trace Language:

set of traces denoted Tr(Σ, 𝒫, loc) or simply Tr(Σ)

L ⊆ Tr(Σ)

1

2

3

a

b

c

d

e
b

c

d

22

Architecture

Concatenation, Independence,
Commutation, Monoid

1

2

3

a

b

c

d

e
b

c

d

•

•

•

x I y iff loc(x) ∩ loc(y) = ∅

a I e

a ⋅ e = e ⋅ a

23

• with trace concatenation is a monoid

• Free partially commutative monoid

• is regular if  
for some morphism (finite monoid)

Tr(Σ)

L ⊆ Tr(Σ) L = η−1(η(L))
η : Tr(Σ) → M

Concatenation, Independence,
Commutation, Monoid

1

2

3

a

b

c

d

e
b

c

d

•

•

•

x I y iff loc(x) ∩ loc(y) = ∅

a I e

a ⋅ e = e ⋅ a

• with trace concatenation is a monoid

• Free partially commutative monoid

• is regular if  
for some morphism (finite monoid)

Tr(Σ)

L ⊆ Tr(Σ) L = η−1(η(L))
η : Tr(Σ) → M

24

Asynchronous automata (Zielonka)

1

2

3

a

b

c

d

e
b

c

d

• local states for process

• transition function for action

• global initial state

• global accepting states

𝒜 = ({Si}i∈𝒫, {δa}a∈Σ, sin, F)
Si i
δa a
sin = (sin

1 , sin
2 , sin

3)
F

sin
1

sin
2

sin
3

δc : S1 → S1

δb : S2 × S3 → S2 × S3

δd : S2 → S2

δa : S1 × S2 → S1 × S2

δe : S3 → S3

2

3

1

4

1

2

3

4

2

3

2

Theorem (Zielonka, 1987)

Asynchronous Automata = Regular Trace Languages

25

Outline

26

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

1

2

3

a

b

c

d

e
b

c

d

θ : Tr(Σ) → Tr(Σ × Γ)

0

0 0

1
1

1

1

1

: In the strict past,

the last event on process 3 is below
the last event on process 2

Γ = {0,1}

𝖸3 ≤ 𝖸2

Asynchronous Labelling function

27

1

2

3

a

b

c

d

e
b

c

d

θ : Tr(Σ) → Tr(Σ × Γ)

μc : S1 → Γ
μb : S2 × S3 → Γ
μd : S2 → Γ
μa : S1 × S2 → Γ
μe : S3 → Γ

Asynchronous (letter-to-letter) transducer

•

•

𝒯 = (𝒜, {μa}a∈Σ)
𝒜 = ({Si}i∈𝒫, {δa}a∈Σ, sin)
μa : Sa → Γ

0 0

0 1
1

11

1

 and

In the strict past,

the last event on process 3 is below
the last event on process 2

Γ = {0,1} 𝖸3 ≤ 𝖸2

Asynchronous Labelling function

28

sin
1

sin
2

sin
3

2

3

1

4

1

2

3

4

2

3

2

𝒯1 ∘ 𝒯2 = ({Si × Qi}, {δ′ ′ a}, (sin, qin), {μ′ ′ a})

Composition - Cascade product
• Composition of labelling functions

• Cascade product of asynchronous (letter-to-letter) transducers

Tr(Σ) θ1 Tr(Σ × Γ) θ2 Tr(Σ × Π)

𝒯1

({Si}, {δa}, sin, {μa})
𝒯2

({Qi}, {δ′ (a,γ)}, qin, {μ′ (a,γ)})
Tr(Σ) Tr(Σ × Γ) Tr(Σ × Π)

29

δ′ ′ a(s, q) = (δa(s), δ′ (a,μa(s))(q))
μ′ ′ a(s, q) = μ′ (a,μa(s))(q)

Cascade Decomposition

 is -local if only is non-trivial 𝒯 = ({Si}i∈𝒫, {δa}, sin, {μa}) k k (i = k ∨ |Si | = 1)

Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

30

Corollary: Zielonka’s theorem

Asynchronous Automata = Regular Trace Languages

Cascade Decomposition
Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

31

Bonus: Using Krohn-Rhodes theorem

Each local asynchronous transducer can be chosen to be (on its non-trivial component)𝒯

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2
1 2

a
Permutation 3a

a

b

b

b
c c c

Cascade Decomposition
Main Theorem 1

Any asynchronous labelling function can be realised by a cascade product of
local asynchronous transducers:

𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

32

Proof sketch:

• Design a local and past propositional dynamic logic (locPastPDL)

• State/Event formulas

• Program/Path expressions

• Prove that event formulas are expressively complete wrt regular past predicates (difficult)

• For each event formula , construct by structural induction a cascade product of local
asynchronous transducers computing its labelling function (easier)

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

φ
θφ

Outline

33

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

Propositional Dynamic Logic
• First introduced to reason about programs (Fischer, Ladner 1979)

• State formulas

• Program expressions

• If then else

• While do od;

• Interpretation over words: Linear Dynamic Logic (Giacomo, Vardi 2013)

Regular word languages = MSO definable = LDL definable

φ ::= p ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ x := e ∣ π + π ∣ π ⋅ π ∣ π*

φ π1 π2 (φ? ⋅ π1) + (¬φ? ⋅ π2)
φ π1 π2 (φ? ⋅ π1)* ⋅ ¬φ? ⋅ π2

34

Past PDL for Traces

• State/Event formulas

• Program/Path expressions

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

⟨ ←1 ⟩ a

⟨((a ∨ d)? ⋅ ←2)*⟩ b

⟨((d ∨ ⟨ ←1 ⟩c)? ⋅ ←2)*⟩ b

(a ∨ d) 𝖲2 b

35

𝖸1 a

(d ∨ 𝖸1 c) 𝖲2 b

T ⊧ 𝖤𝖬1 c ∧ 𝖤𝖬3 (b ∧ ⟨←2 ⋅ ((a ∨ d)? ⋅ ←2)*⟩b)
Past PDL for Traces

• State/Event formulas

• Program/Path expressions

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ
π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

• Sentences / Trace formulas Φ ::= 𝖤𝖬i φ ∣ Φ ∨ Φ ∣ ¬Φ

T ⊧ 𝖤𝖬1 c

36

(Local) Past-PDL for Traces
Main Theorem 2

• Sentences locPastPDL = PastPDL = Regular Trace Languages

• Event formulas locPastPDL = PastPDL = Regular Past Predicates

• Let be a morphism to a finite monoid

• For each , we construct a locPastPDL event formula such that,

if is a prime trace (i.e., having a single maximal event),

 if and only if

Induction on the number of processes

• For each , we construct a sentence which defines

decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

difficult

37

(Local) Past-PDL for Traces
Main Theorem 2

• Sentences locPastPDL = PastPDL = Regular Trace Languages

• Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

38

1
2
3
4

c ca a a

t1 t2 t3difficult

(Local) Past-PDL for Traces
Main Theorem 2

• Sentences locPastPDL = PastPDL = Regular Trace Languages

• Event formulas locPastPDL = PastPDL = Regular Past Predicates

• Let be a morphism to a finite monoid

• For each , we construct a locPastPDL event formula such that,

if is a prime trace (i.e., having a single maximal event),

 if and only if

Induction on the number of processes

• For each , we construct a sentence which defines

decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

39

difficult

(Local) Past-PDL for Traces
Main Theorem 2

• Sentences locPastPDL = PastPDL = Regular Trace Languages

• Event formulas locPastPDL = PastPDL = Regular Past Predicates

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

40

1
2
3
4

t1

t2 t3difficult

(Local) Past-PDL for Traces
Main Theorem 2

• Sentences locPastPDL = PastPDL = Regular Trace Languages

• Event formulas locPastPDL = PastPDL = Regular Past Predicates

• Let be a morphism to a finite monoid

• For each , we construct a locPastPDL event formula such that,

if is a prime trace (i.e., having a single maximal event),

 if and only if

Induction on the number of processes

• For each , we construct a sentence which defines

decompose an arbitrary (non prime) trace into a product of prime traces.

η : Tr(Σ) → M

m ∈ M φ(m)

T

η(T) = m T, max(T) ⊧ φ(m)

m ∈ M Φ(m) η−1(m)

PastPDL

MSO

Morphisms

locPastPDL

⊆
⊆

⊆

easy

known

41

Decompositions depend crucially on

,

 and

,

𝖸 i ≤
𝖸 j

𝖸 i,k
≤ 𝖸 j

𝖫 i ≤
𝖫 j

𝖫 i,k
≤ 𝖫 j

difficult

Extended locPastPDL for Traces

• State/Event formulas

• Program/Path expressions

φ ::= a ∣ φ ∨ φ ∣ ¬φ ∣ ⟨π⟩φ ∣ 𝖸i ≤ 𝖸j ∣ 𝖸i,k ≤ 𝖸j

π ::= φ? ∣ ←i ∣ π + π ∣ π ⋅ π ∣ π*

1

2

3

a

b

c

d

e
b

c

d

• Trace formulas / Sentences Φ ::= 𝖤𝖬i φ ∣ Φ ∨ Φ ∣ ¬Φ ∣ 𝖫i ≤ 𝖫j ∣ 𝖫i,k ≤ 𝖫j

•

•

T ⊧ ¬(𝖫1 ≤ 𝖫3)

T ⊧ 𝖫1,2 < 𝖫3

42

𝖸3 ≤ 𝖸2

¬(𝖸3 ≤ 𝖸2)

𝖸1,3 < 𝖸3

Theorem (Mukund-Sohoni 1997)

There is an asynchronous letter-to-letter transducer which computes the
truth values of the constants from

.

𝒢

𝒴 = {𝖸i ≤ 𝖸j , 𝖸i,k ≤ 𝖸j ∣ i, j, k ∈ 𝒫}
43

Theorem (Adsul, Gastin, Sarkar, Weil — CONCUR’22)

• Extended locPastPDL is expressively complete for regular trace languages

• Any regular trace language is accepted by a cascade product of the gossip

transducer followed by a sequence of local asynchronous transducers:

𝒢 ∘ 𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Extended locPastPDL for Traces

44

Theorem (Adsul, Kulkarni, Gastin, Weil — SUBMITTED’24)

• locPastPDL = Extended locPastPDL

• locPastPDL is expressively complete for regular trace languages

• Any regular trace language is accepted by a cascade product of local

asynchronous transducers:

• The gossip problem can be solved with a cascade product of local
asynchronous transducers.

𝒯1 ∘ 𝒯2 ∘ ⋯ ∘ 𝒯n

Extended locPastPDL for Traces

Aperiodic = FO-definable
Theorem [Adsul, Gastin, Sarkar, Weil — Concur’20, LMCS’22]

Any aperiodic (FO) trace language is accepted by a cascade product of the
gossip transducer followed by a sequence of local reset transducers:

𝒢 ∘ 𝒰2 ∘ 𝒰2 ∘ ⋯ ∘ 𝒰2

1 2

Σ1

Σ2

Σ0 ∪ Σ1 Σ0 ∪ Σ2

Reset - 𝒰2

Direct proof (Not using Krohn-Rhodes theorem)

based on a past temporal logic proved expressively complete for FO𝖫𝖳𝖫(𝖸i ≤ 𝖸j, 𝖲i)

45

Outline

46

• Labelling functions, sequential transducers and cascade product

• Krohn-Rhodes theorem for aperiodic/regular word languages

• Model of concurrency: Mazurkiewicz traces and asynchronous Zielonka automata

• Asynchronous labelling functions, transducers and cascade product

• Propositional dynamic logic for traces

• Conclusion

Conclusion
Main results

• (Local) (past) Propositional dynamic logic expressively complete for regular trace languages

 Specification language: natural, easy, expressive, good complexity

• Cascade decomposition using simple & local asynchronous automata/transducers

 Allows inductive reasoning on automata

• Aperiodic = FO =

 Equality for acyclic architectures (communication graph).

 Inclusion strict in general: gossip is (past) first-order definable, but cannot be computed

with an aperiodic asynchronous transducer, hence also with a cascade of .

𝒰2 ∘ ⋯ ∘ 𝒰2 = 𝗅𝗈𝖼𝖳𝖫(𝖲𝖲i) ⊆ 𝗅𝗈𝖼𝖳𝖫(𝖲𝖲i, 𝖸i ≤ 𝖸j) = 𝒢 ∘ 𝒰2 ∘ ⋯ ∘ 𝒰2

𝒰2

Future work

• Generalisation to other structures, eg, Message sequence charts & Message passing automata?

47

Thank you for your attention!

48

