Basics of model checking

Paul Gastin
LIAFA (Paris) and LSV (Cachan)

Paul.Gastin@liafa. jussieu.fr

Paul.Gastin@lsv.ens-cachan.fr

MOVEP, Dec. 2004

Outline

o Introduction

Need for formal verifications methods

Critical systems
o Transport
2 Energy
2 Medicine
o> Communication
2 Finance
o Embedded systems

9 ...

Complementary approaches
2 Theorem prover
2 Model checking
o Test

Model Checking

3 steps

> Constructing the model M (transition systems)
2 Formalizing the specification ¢ (temporal logics)
2 Checking whether M |= ¢ (algorithmics)

Main difficulties

Size of models (combinatorial explosion)

[*]

¢

Expressivity of models or logics

©

Decidability and complexity of the model-checking problem

¢

Efficiency of tools

Challenges

2 Extend models and algorithms to cope with more systems.
Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, ...

2 Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, ...

References Outline

<

The Temporal Logic of Reactive and Concurrent Systems: Specification.
Z. Manna and A. Pnueli. Springer, 1991.

Temporal Verification of Reactive Systems: Safety. Z. Manna and A. Pnueli. © Models
Springer, 1995.

Model Checking. E.M. Clarke, O. Grumberg, D.A. Peled. MIT Press, 1999.
Systems and Software Verification. Model-Checking Techniques and Tools.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
Ph. Schnoebelen. Springer, 2001.

©

©

©

Constructing the model Transition system

Example : Men, Wolf, Goat, Cabbage

Model = Transition system

o State = who is on which side of the river

o Transition = crossing the river

Kripke structure

M= (S,A,T,I,AP,?)
o S: set of states (often finite)
o T CSxAxS: set of transitions
o I C S: set of initial states
2 AP: set of atomic propositions

o £: 8 — 2AP: labelling function.

Digicode

Pb: How can we easily describe big systems?

Using variables

Digicode

Kripke structures with variables

M= (S,A,V,T,I,AP,?)
V: set of (typed) variables, e.g., boolean, [0..4], ...

<

o Condition: formula involving variables

©

Update: modification of variables

condition,label,update

©

Transition: p

Programs = Kripke structures with variables
o Program counter = states
2 Instructions = transitions

o Variables = variables

Expanding variables (n = 2)

Digicode

Symbolic representation

Logical representation

cpt < n cpt <n
B,C A
cpt++ cpt++ B.C

ERROR
op

s=1Acpt<nAs =1Acpt' =cpt+1
s=1Acpt=nAs =5Acpt' =cpt+1
s=2As =3ANcpt' =cpt

s=3ANcpt<nAs =1Acpt' =cpt+1
s=3Acpt=nAs =5Acpt' =cpt+1

<< <<

Modular description of concurrent systems

Elevator

> Cabin: o_

> Door for level i: _ Opened

— (=)

> Call for level i: False o 1 True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3 x 23 x 23 = 192 states.

Synchronized products

General product
o Components: M; = (S;, A;, T;, I;, AP;, £;)
o Product: M = (S, A,T,I,AP,) with
S=1[;S. A=[LAU{e}), and I=][1L

CT’:{(p17,7pn)M>

AP = Lﬂz APZ and g(pl, 000 7pn) = LJZ e(pl)

(q1,y---,qn) | forall i, (pi,ai,q:;) €T; or
pi =¢; and a; = ¢}

Synchronized products are restrictions of the general product.
> Synchronous: Asyne =[] A;
> Asynchronous: Agyne = 1, Ai
2 By states: Sgync € S
o By labels: Agyne €A
2 By transitions: Tyyne € T

Example: Printer manager
Synchronization by states: (7, P) is forbidden

Idle —@ Print

‘@‘.

Example: Elevator

Synchronization by actions

?down ?up ?up up

lleave;
lreachsy

Heaveu

Cabin:
?down ?down
lleave, lleaves
Ireachg Ireach;
?leave; ?reach;

Door for level i:

Example: digicode

Synchronization by transitions

ERROR

Example: Peterson’s algorithm (1981)

Synchronization by shared variables

reqli] :=false turn:=1-i

if req[l-i]=false

if turn=i

reqli] :=true

The global state is a 5-tuple: (stateg, state;, req[0], req[1], turn)

High-level descriptions

Sequential programs = transition system with variables
Concurrent programs with shared variables

Concurrent programs with Rendez-vous

Concurrent programs with FIFO communication

Petri net

¢ ¢ ¢ ¢ ¢ ¢

Models: expressivity versus decidability

(Un)decidability
o Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

2 Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Some infinite state models are decidable
o Petri nets. Several unbounded integer variables but no zero-test.
2 Pushdown automata. Model for recursive procedure calls.
o Timed automata.

& oao

Outline

9 Specification
@ Linear Time Specifications
@ Branching Time Specifications

Static and dynamic properties

Static properties

Example: Mutual exclusion
Most safety properties are static.

They can be reduced to reachability.

Dynamic properties

Example: Every request should be eventually granted.

J\Vt, (Calli(t) — 3t' > ¢, (atLevel;(t') A openDoor;(t')))

The elevator should not cross a level for which a call is pending without stopping.

J\Vtvt', (Calli(t) At < t' AatLevel;(t')) —

3t <t <+, (atLevel;(t") A openDoor,(t")))

First Order specifications

First order logic

2 These specifications can be written in FO(<).

2 FO(<) has a good expressive power.
... but FO(<)-formulas are not easy to write and to understand.

2 FO(<) is decidable.
... but satisfiability and model checking are non elementary.

Temporal logics
2 no variables: time is implicit.

2 quantifications and variables are replaced by modalities.

©

Usual specifications are easy to write and read.

¢

Good complexity for satisfiability and model checking problems.

Linear versus Branching
Let M = (S,T,I,AP, () be a Kripke structure.

Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): o = sg — $1 — S — -+ with s; = 8,41 €T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

l(o) = L(sp) — l(s1) — L(s2) — - -

Branching specifications
Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

Outline

9 Specification
@ Linear Time Specifications

Linear Temporal Logic (Pnueli 1977)

Syntax: LTL(AP, X, U)
pu=L|p(PEAP)|-p|pVe|Xe|pUyp

Semantics: ¢t = [N, <, A\] with A\: N — X =24P and v € N

t,xE=p if peix)

t,x = - if taxpop

t,x =EpVy if txEgort,rEY

t,x EXp if Jyz<y & t,yEop

taEpUy if Fzz<z & tzEY & Vy. (z<y<z)—>tykEop

Example
Uy
(@) P P)

Linear Temporal Logic (Pnueli 1977)

Macros:
2 Eventually: Fo=TUp
Fo
¥
2 Always: Gp=-F-p
Gy
P ¥ 14 ¥ ¥
> Weak until: oWy =GpVepU
2 (e Uy) = (G) V(= U (o A—)) = W (=p A —¢)
2 Release: eRY =9 W (p A1) =-(=p U)
o Next until: ¢ XU = X(p U)
p XUy
2 14 Y

° Xip =1L XU and Ut =1V (o A XU).

Linear Temporal Logic (Pnueli 1977)

Specifications:

o Safety: G good

o MutEx: — F(crity A critg)

o Liveness: G Factive

2 Response: G(request — F grant)

> Response’: G(request — X(—request U grant))
o Release: reset R alarm

©

Strong fairness: G Frequest — GF grant

<

Weak fairness: F Grequest — G F grant

Linear Temporal Logic (Pnueli 1977)

Examples

Every elevator request should be eventually satisfied.

/\ G(Call; — F(atLevel; A openDoor;))
i
The elevator should not cross a level for which a call is pending without stopping.

/\ G(Call; — —atLevel; W (atLevel; A openDoor,)

4

Past LTL

Semantics: ¢t = [N, <, A\ with A\: N — ¥ = 24P and z € N

t,zEYp if Jyy<z & t,yEp
t,el=pSy if Fzz<z & tzEY & Vy. z<y<z)otykEe

Example
%
W 12 Y pSyY

Past LTL

Semantics: t = [N, <, A\] with A\: N — ¥ = 24P and 7 € N

t,rEYop if Jyy<z & t,yEp
te=pSy if Fzz<z & tzEY & Vy. z<y<z)-otykEe

Example

g g T g R
LTL versus PLTL
G(grant — Y(—grant S request))
= (request R —grant) A G(grant — (request V X(request R —grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)
PLTL may be exponentially more succinct than LTL.

Expressivity
Theorem (Kamp 68)

LTL(Y,S,X,U) = FOx(<)

Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)

For all ¢ € LTL(Y, S, X, U) there exist {; € LTL(Y,S) and @; € LTL(X, U) such
that for all w € ¥¢ and k£ > 0,

wkkEe = wkkE\ A

Corollary: LTL(Y, S, X,U) = LTL(X, U)
For all p € LTL(Y, S, X, U) there exist @ € LTL(X,U) such that for all w € %,

w,0 ¢ <= w,0E P

Elegant algebraic proof of LTL(X, U) = FOx(<) due to Wilke 98.

Satisfiability for LTL

Let AP be the set of atomic propositions and ¥ = 24F.

(Initial) Satisfiability problem
Input: A formula ¢ € LTL(Y, S, X, U)

Question: Existence of w € ¥ such that w,0 = ¢.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)
The satisfiability problem for LTL is PSPACE-complete

Model checking for LTL

Model checking problem
Input: A Kripke structure M = (S, T,I,AP, /) and a formula ¢ € LTL

Question: Does M = ¢ 7

2 Universal MC: M = ¢ if £(0),0 = ¢ for all initial infinite run of M.
o Existential MC: M = ¢ if £(0),0 = ¢ for some initial infinite run of M.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)
The Model checking problem for LTL is PSPACE-complete

MC(X, U) <p SAT(X,U) (Sistla & Clarke 85)

Let M = (S,T,1,AP,¢) be a Kripke structure and ¢ € LTL(X, U)

Introduce new atomic propositions: APg = {at, | s € S}
Define AP’ = AP & APg 5 = AP 7% = ¥ by 7(a) = a N AP.

Let w € ¥, We have w = ¢ iff 7(w) = ¢

Define

Y = (\/ ats> AG L\ [atsA A-aten A\ pA A\ oA\ Xat
sel ses t#s peL(s) pEL(s) teT(s)

We have w = ¢ iff m(w) = ¢(o) for some initial infinite run o of M.

Therefore, M [= ¢ iff £(o) = - for some initial infinite run o of M
iff w = Yp A g for some w € X%
iff v A g is satisfiable

QBF <p MC(X, U) (Sistla & Clarke 85)

Let v = Qi1 Qnrp /\ \/ a;; with Q; € {V,3} and consider the KS M:

1<i<m 1<5j<k;

[o [b
—»60—»81/ \61—>52/ \62 Sn/ \en
| ~ 7 N ¢]
]) T
I aiy az1 am1
N e

fo

ey
NN TN

A1k, A2k, Amk,

Let 1y, — G(I{ — —a;; Ws) if a;; = xp,
o Gz}, — —a;; Wsg) if a;; =~y

~

Let pj = G(ej—1 — (msj—1 Uzh) A (=sj-1 U Lf) and o= /\ ©;.

Decision procedure for LTL

The core

From an LTL formula ¢, construct a Biichi automaton A, such that

L(A) = L(p) ={w € X¥ | w,0 = ¢}.

Satisfiability (initial)

Check the Biichi automaton A, for emptiness.

Model checking

Construct the product B = M x A-, so that the successful runs of B correspond
to the successful run of A satisfying —p.

Then, check B for emptiness.

Buchi automata

Definition
A=(Q,%,1,T, F) where
2 @: finite set of states
2 X: finite set of labels
o I C @Q: set of initial states
o T C @ XX X Q: transitions
o F C @: set of accepting states (repeated, final)

Example

L(A) ={w € {a,b}" | |w|s =w}

Buchi automata for some LTL formulas

Definition

Recall that ¥ = 24P For p,q € AP, we let
2Y¥,={a€eX|pe€a} and X ,=%\%,
9 Ypag =2pNEg and Ypyg =2, U,
> Tpa-g =Zp \ Eq

Examples

Dy
S O e O e O e O

Buchi automata for some LTL formulas

Buchi automata for some LTL formulas

Examples
> . . 2, Examples
YpA—
F Gp: 0 Zp @ no deterministic Blichi automaton. Zp . 5 . x pAma . 5 . X
pUg O— O——Q@
DI 5
’ 8 > é ’ deterministic Biichi automaton Zp . . % P . . %
GFp: e = %
are not closed under complement. pWq: il or il
S H @ @ @
>3 b Ygn-p DY
S o (s () (Jx. (]
(3 s (] ITI o N o I o &N o
Gp—Fa: —~(D__X2)
2y
Buchi automata Buchi automata
Properties
Blichi automata are closed under union, intersection, complement.
2 Union: trivial
Exercice

2 Intersection: easy (exercice)

2 complement: hard

Let o = F((p AX" =p) V (=p A X" p))

Any non deterministic Biichi automaton for - has at least 2" states.

Given Biichi automata for ¢ and),
> Construct a Biichi automaton for X ¢ (trivial)

2 Construct a Biichi automaton for ¢ U 9

This gives an inductive construction of A, from ¢ € LTL(X,U) ...

... but the size of A, might be non-elementary in the size of .

Generalized Biuchi automata

Definition: acceptance on states
A=(Q,S,I,T,F,...,F,) with F; C Q.

An infinite run o is successful if it visits infinitely often each F;.

GFpA GFg:

Definition: acceptance on transitions
A=(Q,2,I,T,Ty,...,T,) with T; C T.

An infinite run o is successful if it uses infinitely many transitions from each T;.

GFpA GFg:

GBA to BA

Synchronized product with

Negative normal form

Syntax (p € AP)

pu=L|plpleVeleAp|XeleUp|eRep

Any formula can be transformed in NNF

» X=X

(e Uy) = () R (=)
' (e RY) = (=¢) U (=)
(e V) = (me) A (=)
(e AY) = (=) V ()

Note that this does not increase the number of Temporal subformulas.

Reduction graph
Definition
Z C NNF is reduced if

2 formulas in Z are of the form p, —p, or X 3,
o 1 & Zand {p,—p} € Z for all p € AP.

Reduction graph
9 Vertices: subsets of NNF
2 Edges: Let Y C NNF and let & € Y maximal not reduced.

If a =aq V as: Y - Y \{a}U{aa},

Y =Y \{a}U{as},
If o = aq A as: Y - Y \{a}U{a,as},
If =01 Rag: Y - Y \{a}U{a,az},

Y - Y\ {a}U{az,Xa},

If a=a; Uas: Y =Y \{a}U{as},
Y 5 Y\ {a}U{a1,Xa}.

Note the mark « on the last edge

Reduction graph

Example: ¢ = G(p — Fq)

w=G(-pVFq) (6. X¢)

Y

(X)) (XFg,X¢)

State = set of obligations.
Reduce obligations to litterals and next-formulas.

Note again the mark F ¢ on the last edge

Automaton A,

Definition: For Y C NNF, let
2 Red(Y) = {Z reduced |Y 5 Z}
> Redn(Y) = {Z reduced | Y = Z without using an edge marked with o}

Definition: For Z C NNF reduced, define
o next(Z) ={a|Xa € Z}

°0%z=(1%% n [] S

pPEZ -pEZ

Automaton A,
> States: Q = 25"P(¥), I={¢}
2 Transitions: T' = {Y 2z, next(Z) | Y € @ and Z € Red(Y)}

> Acceptance: T, = {Y =% next(Z) | Y € Q and Z € Red,(Y)}
for each @ = a3 U as € sub(y).

Automaton A,

Example: ¢ = G(p — Fq)

Transition = check litterals and move forward.

Simplification

Automaton A,

Theorem L(A,) = L(p)
o Q| < 2l¢l

2 number of acceptance tables = number of until sub-formulas.

Corollary
Satisfiability and Model Checking are decidable in PSPACE.

Remark

An efficient construction is based on Very Weak Alternating Automata.
(Gastin & Oddoux, CAV'01)

The domain is still very active.

Original References

o Sistla & Clarke 85. Complexity of propositional temporal logics. JACM 32(3),
p. 733-749.

o Lichtenstein & Pnueli 85. Checking that finite state concurrent programs
satisfy their linear specification. ACM Symp. PoPL’85, p. 97-107.

2 Gabbay, Pnueli, Shelah & Stavi 80. On the temporal analysis of fairness.
ACM Symp. PoPL'80, p. 163-173.

> Gabbay 87. The declarative past and imperative future: Executable temporal
logics for interactive systems. conf. on Temporal Logics in Specifications,
April 87. LNCS 398, p. 409-448, 1989.

Outline

© Specification

@ Branching Time Specifications

Possibility is not expressible in LTL

Example
@: Whenever p holds, it is possible to reach a state where ¢ holds.
(cannot be expressed in LTL.

Consider the two models:

Myl but Mg
My and M satisfy the same LTL formulas.

Quantification on runs

Example

@: Whenever p holds, it is possible to reach a state where ¢ holds.

¢ = AG(p — EFq)
2 E: for some infinite run

2 A: for all infinite run

Some specifications
2 EF ¢: @ is possible
2 AG: @ is an invariant
2 AF ¢: ¢ is unavoidable
2 EGp: ¢ holds globally along some path

CTL* (Emerson & Halpern 86)

Syntax: CTL*: Computation Tree Logic
pi=L|p(peAP)|-p|oVe|Xp[pUp|Ep|Ap

Semantics:
Let M = (S,T,I,AP, /) be a Kripke structure and o an infinte run of M.

o,i EEp if o',0 = ¢ for some infinite run o’ such that ¢'(0) = o (i)
o,i EAp if o',0 ¢ for all infinite runs ¢’ such that ¢'(0) = o(4)

State formulas

A formula of the form p or E ¢ or A ¢ only depends on the current state.
State formulas are closed under boolean connectives.

If ¢ is a state formula, define S(¢) = {s € 5| s E ¢}

Model checking of CTL"

Model checking problem
Input: A Kripke structure M = (S,T,1,AP,¢) and a formula ¢ € CTL"
Question: Does M = 7

Remark
ME ¢ iff £(0),0 | ¢ for all initial infinite run of M.
iff 1 S(Ayp)
Theorem

The model checking problem for CTL* is PSPACE-complete

Proof
PSPACE-hardness: follows from LTL C CTL*.
PSPACE-easiness: inductively compute S(¢) for all state formulas.

Computing S(1))

State formulas

° S(p)={se€S|pels)}
° S(—p) = S\ S(¥),

o S(¥1 Ap2) = S(¥1) N S(3h2),

o S(Y1Vaha) = S(th1) US(2),

o S(Ey)=7

Compute Ay, replacing state subformulas of ¢ by new atomic propositions.

To check whether s € S(E), check for emptiness the synchronized product

of Ay and M with initial state s.
*J A L‘ = =[5 Y

Model checking
MEiff I CS(Ayp).

CTL (Clarke & Emerson 81)

Syntax: CTL: Computation Tree Logic
pu=L[p(PEAP)[~p|pVp|EXp|AXp|EpUp|ApUp

Remarks

The semantics is inherited from CTL*.

All CTL-formulas are state formulas. Hence, we have a simpler semantics.

Semantics: only state formulas
Let M = (S,T,1,AP,¢) be a Kripke structure and let s € S.

sEp if pel(s)

sEEXp if ds=s9— s — 83— - withs; Ep

sEAXp if Vs=s9— s — 83—, wehave s; = ¢

sEEeUY if ds=s9— 8 — sg— -+ ,35 >0 with
siEvand sy =@ forall 0 <k <j

sEApUY if Vs=s9— 8 — sg— -+ ,35 >0 with

siEvand sy =@ forall 0 <k <j

CTL (Clarke & Emerson 81)

Semantics: only state formulas
Let M = (S,T,I,AP,¢) be a Kripke structure without deadlocks and let s € S.

sEp if pel(s)

s EEXp if ds— s withs o

sEAXy if Vs— s wehave s o
sEEpUY if ds=s9— 51— 59— -5, with

siEvand sy =@ forall 0 <k <j
sEApUY if Vs=s9— 8 — sg— -+ ,35 >0 with
siEvand sy =@ forall 0 <k <j

Macros
>oEFp=ETUy¢ and AFp=ATUgp Fo=TUep.
2> EGp=-AF-¢ and AGyp=-EF-p

CTL (Clarke & Emerson 81)

Example
P, D, P, q
.O‘G O—®
CO—————
q p,q q r
Compute

n

(EXp) ={1,2,3,5,6}
S(AXp) = {3,6}
(EFp) = {1,2,3,4,5,6,7,8}
S(AFp) = {2,3,5,6,7}
S(EqUr)=1{1,2,3,4,5,6}
S(AqUr) ={2,3,4,5,6}

|95)

CTL (Clarke & Emerson 81)

Equivalent formulas
> AX @ = —EX -y,
ApUyp = —E-(pUv)

~E(G % A=t U (= A)
~EG—¢V =E~¢ U (~p A)

o> AG(req — Fgrant) = AG(req — AF grant)

> AGFp =AGAF¢p infinitely often
> EFGp =EFEGyp ultimately

> EGEFp #EGF¢p
> AFAGp # AFGep

> EGEX¢p #EGXgp g ¢ g

Model checking of CTL

Model checking problem
Input: A Kripke structure M = (S,T,I, AP, ¢) and a formula ¢ € CTL
Question: Does M = ¢ ?

Remark
M= @ iff I C S(p)
Theorem

The model checking problem for CTL is decidable in time O(|M] - |¢]|)

Proof
Marking algorithm.

Model checking of CTL

procedure mark(yp)

case ¢ =p € AP
for all s € S do s.p := (p € £(s));
case ¢ = -y
mark(p1);
for all s € S do s.p := = 5.91;
case p = 1 V P2
mark(p1); mark(p2);
for all s € S do s. 1= s5.¢1 V S.¢p2;
case p = EX
mark(p1);
for all s € S do s.¢ := false;
for all (¢t,s) € T do if s.p;1 then t.p := true;
case p = AX
mark(p1);
for all s € S do s.¢ := true;
for all (¢,s) € T do if = s.¢1 then t.p := false;

Model checking of CTL

procedure mark((p)

case p = Fp1 U o
mark(¢1); mark(p2);
L:=0;
for all s € S do
S.p i= S.(p9;
if s.p then L := LU {s};
while L # () do
take s € L;
L:=1L\{s}
for all t € S with (¢,s) € T do
if t.o1 A~ t.p then t.p :=true; L := LU {t};

Model checking of CTL

procedure mark(y)

case ¢ = Ap1 U 2
mark(y1); mark(p2);
L:=0;
for all s € S do
S.p := S.pa; s.nb := degree(s);
if s.o then L := LU {s};

while L # () do
take s € L;
L:=L\{s}
for all t € S with (¢,s) € T do
t.nb:=tnb—1,

if t.nb=0At.o1 At then t.p:=true; L := LU {t};

fairness

Fairness

Only fair runs are of interest

> Each process is enabled infinitely often: /\ GFrun;

3

> No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-CS;
i i

Fair Kripke structure
M = (S,T,I,AP,(, F) where F = {F,...,F,} with F; C S.
An infinite run o is fair if it visits infinitely often each F;
Fair quantifications
Ef o = E(fair A ¢) and As o = A(fair — ¢)
where

fair = /\GFFi

1

fair CTL

Syntax of fair-CTL
pu=L|p@EAP) | -0 oV |EXe|ArXp|EroUp|ArpUep

Lemma: CTL; cannot be expressed in CTL
Consider the Kripke structure Mj, defined by:

(3 ®
2%k 2k — 1 2% — 2 %—3) -
p

p P p -p -p p -p

> My,2k =EEGFp but My, 2k—2 ¥~ EGFp
o If ¢ € CTL and || < m < k then My, 2k = ¢ iff My, 2m = ¢

If the fairness condition is £=!(p) then E; F T cannot be expressed in CTL.

Model checking of CTL;

First step: Computation of Fair ={s € S| M,s =E;F T}
Compute the SCC of M with Tarjan’s algorithm (in linear time).

Let S’ be the union of the SCCs which intersect each Fj.

Then, Fair is the set of states that can reach S’

Note that reachability can be computed in linear time.

Reductions

Er X = EX(Fair A) and Er Uy =EpU (Fair Ay)
It remains to deal with Ay p U .

Recall that Ap Uy = -EG—¢p V —E— U (—p A)

This formula also holds for the fair quantifications.
Hence, we only need to compute the semantics of E; G .

Model checking of CTL,

Computation of E; G

Let M, be the restriction of M to S¢(p).

Compute the SCC of M, with Tarjan’s algorithm (in linear time).
Let S” be the union of the SCCs of M, which intersect each Fj;.
Then, M,s =E; Gy iff M,s=EpU S’ iff M, =EF S’

This is again a reachability problem which can be done in linear time.

Theorem
The model checking problem for CTLy is decidable in time O(|M| - |¢|)

Missing in this talk

@ Symbolic model checking for CTL using BDDs.
@ u- calculus
...

