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ABSTRACT

This paper introduces a new flow calculation theory for a wide subclass of
coloured nets : the regular nets (R.N.). Their parametrization allows to study
at the same time the flows for all nets differing only by the sizes of the colour
sets. The algebraic structure of the flows subspace provides a fundamental
decomposition theorem leading to an algorithm computing a flow basis for a
parametrized regular net. The modelling of a significant  classical example is
presented with the computation of a basis of flows.



INTRODUCTION

Recently, some extensions of Petri nets - coloured nets [Jen82] and
predicate transition nets [Gen81] - have been introduced to model in a
concise way, classes of objects with a similar behaviour (i.e. file's readers,
input-output buffers,…) for protocols or distributed applications. In fact a
coloured net is equivalent to a Petri net, but in the coloured net one needs
only  one subnet to represent similar objects behaviours instead of one
subnet per object since objects identities are kept by means of colours.

Coloured nets may be hardly studied by unfolding them and by
applying classical means - accessibility graph, flows calculus, reduction …
[Bra83] - to the equivalent Petri nets. But this method would have severe
drawbacks : the size of the unfolded nets may be very large, the unfolding
needs to fix the system parameters (number of objects i.e. colour ranges) and
moreover the results cannot in general be folded and interpreted in the
original coloured nets.

So many researchers have tried to extend the main results of the
Petri net theory and in particular the flows calculus by the Gauss elimination.
The first heuristic  method [Jen81] uses a set of transformation rules to
reduce the incidence matrix of a coloured net without changing the set of
flows. Afterwards Vautherin and Memmi [Vau84] compute directly a family of
flows for an unary predicate transition net by applying Gauss elimination on a
module generated by the constants and variables appearing in the net.
However this family is generally not a basis of flows. In [All84],[Sil85] one
applies a directed Gauss elimination in order to find folded flows weighted by
the colour functions and their inverses but this method needs a condition on
the incidence matrix and moreover one must fix the cardinalities of the colour
sets. Other researches [Gen82] describe different kinds of flows but without
giving any method to find them.

In fact these researches have failed to bring a complete and
adequate answer to the flows calculus problem since the predicate transition
nets allow too much arbitrary relations between arc variables [Lau85]. Hence
some restrictions are needed to obtain regularity and to simplify the algebraic
structure of the flows space by decomposition in outstanding subspaces.

Here we define the regular nets that are a subclass of coloured nets.
In these nets the colour functions must be in a normal form depending on
colour domains. Moreover to study at the same time all the nets having
identical structure but different cardinalities of the colour ranges, we have
parametrized our definition. The parametrized regular nets include the ones
defined in the Memmi's thesis [Mem83] and allow to model complex
distributed systems.



To study the flows space of a regular net, we build Petri nets
deduced from the regular net, such as the underlying net [Jen82] and mainly
the synchronized nets which measure the difference between tokens of two
colours of the same domain. Flows of these Petri nets are outstanding flows
of the original regular net and moreover we prove a fundamental theorem of
unique decomposition of the flows space over the subspace of the flows of
the underlying net and subspaces of the flows of the synchronized nets.
These last flows represent synchronizations between colours and were not
defined till now. An algorithm is given to compute a basis of flows for a
parametrized regular net and immediately obtain the bases for the whole
family of equivalent nets. This complete result is the main advantage of our
theory.

General notations

- ∃! means "there is one and only one…"
- N is the set of non negative integers
- Z is the set of integers
- Q is the set of rational numbers
- M.N , where M and N are matrices, denotes the matrices product (this

notation includes the product of a vector by a matrix, since a vector is
a special case of matrix)

- tM , where M is a matrix n x p, denotes the matrix p x n such that :
tMi,j = Mj,i

- Let U be a finite set , then the set of functions from U to N is denoted

Bag(U). An item a of Bag(U) is noted ∑ au.u where the summation is

over u ∈ U .
- A partial order on Bag(U) is defined by :

a ≥ b if and only if ∀ u ∈ U , au ≥ bu

- The sum of two items of Bag(U) is defined by a+b = ∑ (au+bu).u

- The difference between two items a≥b of Bag(U) is defined by :

a-b = ∑ (au-bu).u

I REGULAR NETS AND PARAMETRIZED NETS

I.1 Coloured nets

We recall the definitions of a coloured net, the firing rule in a
coloured net, the incidence matrix and the flows of a coloured net. Since the
regular nets are a subclass of coloured nets, the definition of a regular net is
a restriction of the first definition and the other definitions can  be applied
without any transformation.



Definition 1  A coloured net R = <P,T,C,I+,I-,M> is defined by :
- P the set of places
- T the set of transitions

- C the colour function from P U T to Ω , where Ω is the set of finite
and not empty sets. An item of C(s) is called a colour of s and C(s) is called
the colour set of s.

- I+ (I-) is the forward (backward) incidence matrix of P x T , where

I+(p,t) is a function from C(p) x C(t) to N  ( i.e. a function from C(t) to
Bag(C(p)) )   

- M the initial marking of the net is a vector of P, where M(p) is a
function from C(p) to N ( i.e. an item of Bag(C(p)) )

Notation We note I+,I-(p,t,ct), where ct belongs to C(t), the corresponding
item of Bag(C(p)).
Definition 2 The firing rule is defined by :

- A transition t is enabled  for a marking M and a colour ct ∈ C(t) if

and only if : ∀ p ∈ P ,  M(p) ≥ I-(p,t,ct)

- The firing of t for marking M and a colour ct ∈ C(t) gives a new

marking M' defined by : ∀ p ∈ P ,  M'(p) = M(p) - I-(p,t,ct) + I+(p,t,ct)

Definition 3 The incidence matrix I of a coloured net is defined by :

- I = I+ - I-  , then I(p,t) is a function from C(p) x C(t) to Z
- I can be also wieved like a matrix of U (p,c) x U (t,c') of integers

where the first union is over p ∈ P and c ∈ C(p) and the second union is over

t ∈ T and c ∈ C(t), by the simple transformation : I((p,c),(t,c')) = I(p,t)(c,c')

Definition 4 The vector space of coloured places E of a coloured net is

defined as the rational vector space on U (p,c) where the union is over p ∈ P

and c ∈ C(p).

Then a vector of E can be written v = (vp,c) with vp,c  ∈ Q

or v = ∑ vp,c . (p,c)

Definition 5 The set of flows E' of a coloured net is a subset of E defined
by :

E' = { v ∈ E / tI.v = 0 }

In fact, because of the linearity of the product of matrices, E' is a
vector subspace of E .

Remark The definition of flows in [Jen82] involves a weight function for each
place p, from C(p) to Bag(U) where U is a finite set. In our case the weight
function is defined from C(p) to Q. But the first definition can be reduced to
the second in the following way :

Let ∑ fp.p be a flow for the first definition, then this flow is equivalent to the

family of flows ∑ fp,u.p where u belongs to U and where fp,u = Proju(fp) is

defined from C(p) to N (hence from C(p) to Q)



Definition 6   Let F be a subspace of E, F' is the subspace of the flows of F

defined by :          F' = { v ∈ F / tI.v = 0 }

I.2 Regular nets

Since the regular nets are a subclass of coloured nets, they are
defined by restriction. There are two kinds of restrictions :

- On the colour sets
- On the items of I+ and I-

a. The colour sets of a regular net

Given two places of the net, then either their colour sets are identical
either their colour sets have an empty intersection :

∀ p,p' ∈ P ,  C(p) = C(p')  OR  C(p) ∩ C(p') = ø

Then we call the different colour sets of places {C1,…,Ck} , the
classes of the net. These classes have two properties :

∀ i≠j, Ci ∩ Cj = ø  AND ∀ p ∈ P  ∃ i  such that C(p) = Ci
Ci is called the class of p

All the transitions have the same colour set C(t) = C1 x…x Ck , that
means a firing of a transition t selects exactly one colour per domain. As we
shall see in the following paragraph, if no place with colour set Ci is
connected to t the firing of t is independant of the colour of Ci distinguished by
the firing.

 b. The incidence matrices of a regular net

Let p ∈ P such that C(p)=Ci and t ∈ T, then I+,I-(p,t) has the
following form :

a.Si + b.Xi : Ci x (C1 x … x Ck) ----> N  , with a,a+b ∈ N where :
a.Si + b.Xi(c,c1,…,ck) = If c=ci Then a+b Else a

Using the bag notation :

a.Si + b.Xi : (C1 x … x Ck) ----> Bag(Ci)  , with a,a+b ∈ N where :

a.Si + b.Xi(c1,…,ck) = ∑ a.c + (a+b).ci

where the summation is over c ∈ Ci , c≠ci

Interpretation

- An arc from p to t the valuation of which is Xi, means that to fire t
one needs a token coloured by the colour of Ci selected by the firing of t in p.

- An arc from p to t the valuation of which is Si, means that to fire t
one needs a token per colour of Ci in p.

- An arc from p to t the valuation of which is a.Si+b.Xi, means that
to fire t one needs "a+b" tokens coloured by the colour of Ci selected by the
firing of t and "a" tokens per colour different from the colour of Ci selected by
the firing of t in p.



Definition A regular net is a coloured net which verifies the restrictions
defined in a and b.

The definitions 2,3,4,5,6 about the coloured nets can be immediatly
applied to the regular nets. We give now an example of a regular net and a
firing in this net.

Example

p q

r s

t

S1 + X1 2.S3 - X3

2.S1 X2

C(p) = C(r) = {a,b} = C1 

 

C(s) = {c,d,e} = C2 

 

C(q) = {f,g,h,i} = C3

Let M be a marking defined by (using the bag notation) :
- M(p) = 2.a + 2.b
- M(q) = 3.f + 2.g + 2.h + i
- M(r) = b
- M(s) = 0

Then t is enabled for M and for the colour (a,d,i) and the new
marking is obtained by :

- M'(p) = b
- M'(q) = f
- M'(r) = 2.a + 3.b
- M'(s) = d

I.3  Parametrized regular nets

In a coloured net, the colour sets are generally not defined by
enumeration ( set of readers, set of buffers,… ). So the numbers of items of a
colour set can be supposed variable and it is always interesting to obtain
properties independantly of these numbers. We call these numbers the
parameters of the net and a parametrized regular net (P.R.N.) is a regular net
where the cardinalities of Ci are let variable.



We note :
- ni the fixed cardinality of Ci in a R.N.
- Ni the variable cardinality of Ci in a P.R.N. In this case,

{N1,…,Nk} are called the parameters of the net.

I.4  Example of modelling by P.R.N.

We present the modelling of a data base management with
multiple copies [Jen81]. To modify the data base, a site must get a grant
modelled by a unique token in Mutex. Then the site sends messages with the
updates to all the other sites, and it releases the token after having received
all the acknowledgments.

The two classes of the net are the sites and the grant. The colour
set of the places Iddle, Mess, Wait, Update, Ack is the sites class and the
colour set of Mutex is the grant class. Initially there is a token of each site
colour in Iddle and a token in Mutex.

II ALGEBRAIC STRUCTURE OF R.N. FLOWS

II.1 Some recalls about vector spaces

Definition 1 Let E be a vector space, then B = {v1,…vn} a set of vectors of
E is a basis if and only if :

∀ v ∈ E   ∃! (a1,…,an) ∈ Qn   such that v = a1.v1 + … + an.vn

Definition 2 Let F,G be two subspaces of a vector space, then F+G is the

subspace defined by :            F+G = { v+w / v ∈ F, w ∈ G }
and F+G is a direct sum of F and G if and only if

∀ u ∈ F+G    ∃! v ∈ F   ∃! w ∈ G such that u = v + w

Proposition       Let  F,G be two subspaces of a vector space, such that F+G
is a direct sum, let BF be a basis of F and BG be a basis of G. Then BF U  BG

is a basis of F+G.
This may be generalized to a finite number of subspaces.



II.2 Special flows of a regular net

In this paragraph we define different kinds of flows of a regular net
and we show that the subspace of each kind of flows is isomorphic to the
space of flows of an ordinary Petri net deduced from the initial regular net.

Definition 1   Let R be a regular net and E its vector space of coloured places,

then H is the homogeneous subspace of E  a basis of which is (pn), p ∈ P ,

with pn = ∑ (p,c), where the summation is over c ∈ C(p)

Proposition 1Let R be a regular net , let p be a place of R, t be a transition of
R and ct be a colour of C(t), let I(p,t) = a.Si + b.Xi . Then :

I(p,t,ct).pn = a.ni + b

Proof :
Let ct = (c1,…,cn)

I(p,t,ct).pn = ∑ I(p,t,(c1,…,cn)).(p,c)

c ∈ Ci

= ∑ I(p,t,(c1,…,cn)).(p,c) + I(p,t,(c1,…,cn)).(p,ci)

                                      c ∈ Ci,c≠ci

                    =  (ni-1).a  + (a+b) = a.ni + b    ‰

Definition 2   The underlying Petri net Rn associated to a regular coloured net
R = <P,T,C,K,I+,I->  (obtained by forgetting the colour information) is defined

by :
- the set of places P
- the set of transitions T
- Let I+(p,t) = a.Si + b.Xi then
   In+(p,t) = a.ni + b   where ni = I Ci I
- In- is similarly defined

Remark The definition of the underlying net in [Jen82] is based on the
multiplicity of a colour function f(p,t) which is denoted by | f | and which counts
the number of tokens in a place p if this number is independant from the
selected colour of C(t). One can see in our definition that (for example) :
In+(p,t) = a.ni + b = | I+(p,t) | = | a.Si + b.Xi |
Hence the two definitions are equivalent.

Proposition 2Let λn be the linear application from En the vector space of

places of Rn to H defined by : λn(p) = pn . Then λn is an isomorphism between

the flows of En and the flows of H.

Proof
This proposition is a consequence of the proposition 1. Indeed in

order to obtain the flows from the incidence matrix of ( pn) , it is sufficient to

keep only one column per transition since all the columns of a transition are
equal. Then it is easy to verify that this reduced matrix is exactly the incidence
matrix of the underlying net. ‰



Since a flow of H does not keep the colour information it is
necessary to also study the different behaviour between the colours of a
same class when such a class has more than one element. Let J = { i/ ni > 1 },

for each class Ci with i ∈ J, we choose any reference colour ci0 ∈ Ci in order

to examin such differences.

Definition 3 Let R be a regular net and E its vector space of coloured

places, let i ∈ J and let  c ∈ Ci be a colour distinct from ci0 , then Dc is the c-

synchronous subspace of E a basis of which is (pc) for all places p such that

C(p) = Ci and where pc = (p,c) - (p,ci0) .

Proposition 3 Let R be a regular net , let p be a place of R, t be a transition
of R and ct = (c1,…,cn) be a colour of C(t), let I(p,t) = a.Si + b.Xi . Then :

I(p,t,ct).pc = b  if ci = c

=   - b if ci = cio
= 0 otherwise

Proof
I(p,t,ct).pc = I(p,t,(c1,…,cn)).(p,c) - I(p,t,(c1,…,cn)).(p,ci0)

= (a+b) - a = b   if ci = c
= a - (a+b) = -b  if ci = cio
= a - a = 0          otherwise ‰

Definition 4   The i-synchronous Petri net Ri associated to a regular
coloured net R = <P,T,C,I+,I-> is defined  by :

- the set of places Pi = { p ∈ P / C(p) = Ci }

- the set of transitions T

- Let I+(p,t) = a+. Si + b+. Xi , I-(p,t) = a-. Si + b-. Xi

   if b+ - b- > 0 then Ii+(p,t) = b+ - b- , Ii-(p,t) = 0

                                else Ii+(p,t) = 0 , Ii-(p,t) = b- - b+

Proposition 4 Let λc be the linear application from Ei the vector space of

places of Ri to Dc defined by : λc(p) = pc . Then λc is an isomorphism between

the flows of Ei and the flows of Dc.

Proof   
This proposition is a consequence of the proposition 3. Indeed, in

order to obtain the flows from the incidence matrix of (pc) , it is sufficient to

keep only one column per transition since the nul columns and those either
equal or opposite to the column kept can be eliminated. Then it is easy to
verify that this reduced matrix is exactly the incidence matrix of the i-
synchronous net. ‰

Definition 5   For i ∈ J , the i-synchronous subspace Di = ∑ Dc where the

summation is over c ∈ Ci, is generated by all the differences between two
arbitrary colours of Ci.



Definition 6    The synchronous subspace D = ∑ Di where the summation is

over i ∈ J, is generated by all the differences between two arbitrary colours of
a same class.

II. 3 Structure of the flows subspace

The following theorems show a detailled decomposition of each
flow of E'  as sum of an homogeneous flow of H' and synchronous flows of
D'c . Moreover this decomposition is unique. Since proofs are technical and

long, we prefer to give sketches of proof. The proofs will be found in [Had87].

Theorem 1   E'  =  H'  +  D'  and  this sum is direct

Sketch of proof   Given any flow v, we build a vector w belonging to H by
taking for coefficients of this vector the averages on each colour domain of
coefficients of v. We show that w is a also a flow, because of the regularity of
colour functions. Then by construction, v-w belongs to D and since v and w
are flows, v-w is also a flow  ‰

Theorem 2   D'  =  ∑ D'i   where the summation is over  i ∈ J   and this sum

is direct

Sketch of proof   Given any flow v of D, we build one vector vi per Di by

projection of v on places p such that C(p) = Ci. We have v = ∑ vi . The proof
that vi is a flow is based on the following point : the tokens evolution of vi by a
transition does not depend of  the colours distinguished in domains different
from Ci   ‰

Theorem 3   Let i ∈ J,  D'i  = ∑ D'c  where the summation is over  c ∈ Ci ,

c ≠ ci0 and this sum is direct

Sketch of proof    We use a similar construction to the proof of the second
theorem and then we study the different cases of selected colour of Ci in a
firing of a transition   ‰

III  ALGORITHM FOR A P.R.N. FLOWS BASIS

Using now the propositions given in II.2 and the theorems given in
II.3 , we can obtain a basis of flows of a regular net by computing only :

- A basis of H'  i.e. a flows basis of the underlying net.

- ∀ i ∈ J , a basis of D'c for only one c ∈ Ci , i.e. a flows basis of the

i-synchronous net. (Indeed the flows of Dc are isomorphic to the flows of the i-

sychronous net for any c ∈ Ci from the proposition II.2.4)

To generalize this method to parametrized nets we have to
distinguish the cases where the class cardinalities are fixed or variable.



Notations

- Z[N1,…,Nk] denotes the ring of polynoms with k variables and
coefficients in Z

- Z*[N1,…,Nk] denotes the subset of non nul polynoms
- V[N1,…,Nk] denotes a matrix or a vector or a family of vectors with

coefficients in Z[N1,…,Nk]
- V[n1,…,nk] denotes the corresponding matrix (vector, family of

vectors) with coefficients in Z , ni substituted for Ni

III.1 Homogeneous flows of a P.R.N.

When the class cardinalities are variable the coefficients of the
incidence matrix of the underlying net have the form a.Ni+b instead of a.ni+b.
Thus these coefficients belong to the ring Z[N1,…,Nk] and we can denote this
matrix I[N1,…,Nk]. Z[N1,…,Nk] being entire and commutative Gauss
elimination may be applied to find a basis of flows. Indeed any entire and
commutative ring can be imbedded in a field which is called its field of
fractions. Moreover Gauss elimination may be applied in this field in order to
obtain that the coefficients of the basis belong to the ring. A practical method
with evaluation is given in [Kuj84].

Yet, we must solve the following problem : let B[N1,…,Nk] be a
flows basis of I[N1,…,Nk] what condition must verify (n1,…,nk) so that
B[n1,…,nk] is a flow basis of I[n1,…,nk] ? The following propositions give us a
sufficient and computable condition.

Proposition 1  If V[N1,…,Nk] is a flow of I[N1,…,Nk] then V[n1,…,nk] is a flow
of I[n1,…,nk]

Proof   ∀  t ∈ T   V[N1,…,Nk] . I[N1,…,Nk] (t)  is the nul polynom.
So V[n1,…,nk] . I[n1,…,nk] (t) is nul  ‰

Proposition 2   Let B[N1,…,Nk] be a basis of flows of I[N1,…,Nk] computed by

Gauss elimination, then there exists a computable polynom P ∈ Z*[N1,…,Nk]
such that :

P(n1,…,nk) ≠ 0   ⇒ B[n1,…,nk] is a flows basis of I[n1,…,nk]

Remark A computable polynom is a polynom the coefficients of which can be
computed by an algorithm.

Proof   In Gauss elimination each step builds a basis of flows for I reduced to
its (q+1) first columns from a basis of flows for I reduced to its q first columns.
Our proof follows this recurrence schema :
- Initially   B0 = (pn)   and   P0 = 1  the constant polynom

- After the qth step ,
. Let Bq[N1,…,Nk] = {V1,…,Vr} be the basis of flows of I[N1,…,Nk]

reduced to q columns



. Let Pq be the polynom found at the qth step, i.e.

  Pq(n1,…,nk) ≠ 0   ⇒ Bq[n1,…,nk] is a flows basis of I[n1,…,nk]

                                        reduced to q columns
- For the next step of the algorithm

. t  is the (q+1)th transition

. f(Vi) = Vi.I[N1,…,Nk](t) ∈  Z[N1,…,Nk]

1) If f(Vi) = 0 for all Vi then the basis and the polynom remains the same :
. Bq+1[N1,…,Nk] =  Bq[N1,…,Nk]    ,  Pq+1 =  Pq

2) If f(Vi) ≠ 0 for at least one Vi, we may suppose f(V1) ≠ 0 :
. A new base of r-1 vectors  Bq+1[N1,…,Nk] = {W2,…,Wr} is

computed by Gauss elimination : Wi = f(V1).Vi - f(Vi).V1, for i = 2…r
. Let M be the matrix Wi/Vi :

-f(V2)   .  .  .     -f(Vr)

  f(V1) 

 f(V1)
0

0

. The sub-determinant SD obtained by deleting the first row verifies :

SD = f(V1)r-1

. We take Pq+1 = Pq . f(V1)

. Let (n1,…,nk) be such that Pq+1(n1,…,nk) ≠ 0 then

  (i)  Pq(n1,…,nk) ≠ 0         (ii)  f(V1)(n1,…,nk) ≠ 0

  (i) ⇒ Bq[n1,…,nk] is a flows basis of I[n1,…,nk] reduced to q columns

  (ii) ⇒  Bq+1[n1,…,nk] is a free family since M has a non nul sub-

determinant SD

  (ii) ⇒ The vectorial subspace of flows of I[n1,…,nk] reduced to

q+1 columns, has dimension r-1 since f(V1).(n1,…,nk) ≠ 0
. Hence Bq+1[n1,…,nk] is a flows basis at the (q+1)th step and Pq+1

is the required polynom  ‰

In fact, we have a more general result given without proof.

Proposition 3  Let B[N1,…,Nk] be any basis of flows of I[N1,…,Nk] , then

there exists a computable polynom  P ∈ Z*[N1,…,Nk]  such that :

P(n1,…,nk) ≠ 0   ⇒ B[n1,…,nk] is a flows basis of I[n1,…,nk]

III.2  Synchronous flows of a P.R.N.

As we noticed in the beginning of the paragraph, the computing
of a basis of D'c is made one time per class of colour. Moreover the ni

coefficient does not appear in the i-synchronous net. Hence there is no
difference between computing synchronous flows in R.N. and in P.R.N.



III.3 Example

We construct now the basis of flows for the net modelling the
data base management.At first we give the incidence matrix of this net :

T1 T2 T3 T4
Wait : X1 -X1 0 0
Update : 0 0 X1 -X1
Iddle : -X1 X1 -X1 X1
Mess : S1-X1 0 -X1 0
Ack : 0 -S1+X1 0 X1
Mutex : -S2 S2 0 0

1. Now we build the incidence matrix of the underlying net by
substituing (a.Ni + b) for (a.Si + b.Xi) :

T1 T2 T3 T4
W : 1 -1 0 0
U : 0 0 1 -1
I : -1 1 -1 1
Me : N1-1 0 -1 0
A : 0 -N1+1 0 1
Mu : -N2 N2 0 0

Then we apply Gauss elimination step by step on this
polynomial matrix, giving the successive values of the pivot and the polynom
P :

T1 : { pivot = 1 , P = 1 }
T2 T3 T4

U : 0 1 -1
I+W : 0 -1 1
Me-(N1-1).W : N1-1 -1 0
A : -N1+1 0 1
Mu+N2.W : 0 0 0

T2 : { pivot = N1-1 , P = N1-1}

T3 T4
U : 1 -1
I+W : -1 1
Me+A-(N1-1).W : -1 1
Mu+N2.W : 0 0

T3 : { pivot = 1 , P = N1-1}



T4
I+W+U : 0
Me+A+U-(N1-1).W : 0
Mu+N2.W : 0

Finally the basis of H' is :
Iddlen + Waitn + Updaten

Messn + Ackn + Updaten - (N1-1).Waitn
Mutexn + N2.Waitn

The polynom found for the basis of H' is N1-1. Then the basis found is

available for any value (n1,n2) such that n1 ≠ 1. In this particular case, one
can see that this basis is available even for n1 = 1 ( the polynomial condition
is sufficient but not necessary ).

2. Now we build the incidence matrix of the synchronised net for the
sites by substituing (b) for (a.Si + b.Xi) and only keeping the places the colour
set of which is the sites class :

T1 T2 T3 T4
Wait : 1 -1 0 0
Update : 0 0 1 -1
Iddle : -1 1 -1 1
Mess : -1 0 -1 0
Ack : 0 1 0 1

Then we apply the classical Gauss elimination (on integer
coefficients) and  we find a basis of D'c  (c colour of a site) :

Iddlec + Waitc + Updatec

Messc + Waitc + Updatec + Ackc

CONCLUSION

We have introduced a new subclass of coloured nets, the regular
coloured nets and parametrized these nets. Our main result is a fundamental
decomposition of the flows space over outstanding subspaces. This result
leads to an algorithm for computing a flows basis on a parametrized regular
net. Thus we have extended the calculus principles of flows of coloured nets
by pointing out the fact that every efficient algorithm to compute flows in high-
level nets must be based on the algebraic structure of the flows space.

There are two possible developments for this work. On the one hand
the definition of regular nets may be extended with similar results (product of
classes, colour successor,…). On the other hand different tools of proof for
Petri nets may be also generalized such as the reduction theory [Ber83] or
the accessibility graph. We have already developed a symbolic accessibility
graph construction  [Had86] improving, in the case of regular nets the results
given by [Hub85].
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