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Abstract

This paper presents the coloured Petri net model and the flows

computation and the reduction theory we have developped for it. We

show how coloured nets can model realistic parallel systems with the

help of coloured domains and functions. Since the computation flows

generates invariants family. it can be used in order to verify safeness

properties. The reduction rules which transform the net into a smaller

one with the same behaviour as the original one is a suitable tool for

verifying the liveness properties. Two significant applications and their

validation are given: a database management and the synchronization of

two logical clocks.



INTRODUCTION

In many models of parallelism, there are only two methods of validation: analysis of the
accessibility graph or verification of properties from axioms and inference rules. The first
method cannot be used on real systems since the size of the graph (even when finite) is
generally too big whilst the drawbacks of the second one are:

-a property may be true even if not provable in the formal system,
-a property may be verified but not computed.

An important advantage of Petri nets [Bra83] over the other models of parallelism is the
existence of alternative and constructive methods of proofs such as the flows computation
[Mem83] or the reduction theory [Ber83]. So, as abbreviations of Petri nets -coloured nets
[Jen82] and predicate transition nets [Gen81], [Lau8S] –were introduced in order to model
complex systems, many researchers have tried to extend the main results of the Petri net
theory and in particular the flows calculus [Jen81], [Gen82] , [Vau86] , [SiI8S] and the reduction
theory [CoI86].

The main purpose of this paper is the presentation of the flows computation and the reduction
theory we have developped for coloured nets and their efficient use in automatic prooves of a
modelling [Had86] , [Had87a] , [Had87b] , [Cou88].

Generally in a parallel system the modeller searchs two kinds of properties: safeness properties
and liveness properties. For instance a safeness property could state that a ressource is never
shared (mutual exclusion) whilst a liveness property could state that every user who wants to
own this ressource will eventually own it. Then the flows computation which generates
invariants is a suitable tool for verifying safeness properties and the reduction rules which
transform the net in an smaller one with the same behaviour as the original one is a suitable
tool for verifying the liveness properties.

The first section presents the coloured Petri net model which is built from the ordinary Petri net
model by adding colour domains to places and transitions and colour functions to the arcs. The
second section presents the principle of the flows computation which is based on finding the
kernel of a matrix in a polynomial ring. The third section presents the reduction rules which are
defined by structural and functional conditions. In the last section two significant applications
are given: a database management and the synchronization of two logical clocks.

1 COLOURED NETS [Jen82]

1.1 Definition

In a coloured net one associates to each place and transition of the net a coloured domain.
Each token of a place is coloured by a colour of the place domain and it is necessary to select a
colour of a transition to fire it. Then the precondition bound to a place in order to fire a transition
is a coloured function which associates to a colour c1 of a transition and a colour c2 of the
place, the number of tokens coloured by c2 in the place necessary to fire the transition coloured
by c1. In a similar way, the postcondition is a colour function which gives the number of tokens
added to the place by the firing of the transition once the tokens of the precondition are
removed. The non nul functions label the arcs between places and transitions.

Definition 1 A coloured net R = <P,T,C,I+,I-,M> is defined by :
• P the set of places
• T the set of transitions
• C the colour function from PUT to Ω , where Ω is the set of finite and not empty sets. An

item of C(s) is called a colour of s and C(s) is called the colour set of s.
• I+ (I-) is the forward (backward) incidence matrix of P × T , where I+(p,t) is a function

from C(p) × C(t) to N (the set of natural integers)
• M the initial marking of the net is a vector of P, where M(p) is a function from C(p) to N
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Definition 2 The firing rule is defined by:

• A transition t is enabled for a marking M and a colour ct E C(t) if and only if :

∀ p ∈ P ,∀ c ∈ C(p) , M(p)(c) ≥ I-(p,t)(c, ct)

• The firing of t for a marking M and a colour ct E C(t) gives a new marking M' defined by :

∀ p ∈ P ,∀ c ∈ C(p)  , M'(p)(c) = M(p) - I-(p,t)(c, ct) + I+(p,t)(c, ct)

In Petri nets, a flow is a vector over the places such that the sum of the tokens in the places
weighted by this vector is let unchanged by the firing of any transition. A basis of flows can be
computed by Gauss elimination on the incidence matrix. In order to similarly define the flows on
a coloured net, one needs also the definition of the incidence matrix. In a coloured net, a flow is
now a vector over the colours of the places.

Definition 3 The incidence matrix I of a coloured net is defined by :
• I= I+ - I- , then I(p,t) is a function from C(p) × C(t) to Z
• I can be also wieved like a"matrix of ∪ (p,c) × ∪ (t,c') of integers where the first
union is over p ∈ P and c ∈ C(p) and the second union is over t ∈ T and c' ∈ C(t), by
the simple transformation: I((p,c),(t,c')) = I(p,t)(c,c')

Definition 4 A flow v of a coloured net is a vector over ∪ (p,c) such that: lt.v = 0

Notation A flow can be written v = (vp,c) with vp,c ∈ Q the set of rationals or v = � vp,c .(p,c)

1.2 Examples

The definition of coloured nets is quite abstract whilst in practice coloured domains and
coloured functions are easily interpretable. The purpose of this section is to present the most
frequently used domains and functions and to show how they can simply model a transition of a
parallel system.

1.2.1 Colour domains

The objects of a parallel system can be decomposed in classes related to their nature. For
instance there is two (or more) class of users of a file: the readers and the writers. In a parallel
program one can distinguish the class of the processes runningconcurrently and the class of the
ressources shared by these processes, etc...

Then the classes of objects modelled by the net will be basic domains and the coloured
domains of the net will be products of these basic domains. For instance, let R be a net with
three basic domains: C1 the producers class, C2 the buffers class and C3 the consumers class.
A place p which models associations between producers and consumers will have for coloured
domain C1 × C3.

1.2.2 Colour functions

Let R be the net with the classes defined as above, let us suppose the firing of a transition t
involves a producer pr, a consumer cs and a buffer bf, and that this transition needs one token
<pr ,cs> in the place p defined above. This precondition is specified by a projection.

Definition 1 Let u be an injection from {1...p} to {1...n} and Ci, for i ∈ {1...n}, be a basic

domain then Proju related to the Ci' is defined by :

Proju: (C1×...×Cn) x (Cu(1)×...×Cu(p))→N

with Proju(<c1,...,cn>, <c'1,...,c'p>) = Π Eq(cu(i),c'i)

where the product is over {1...p} and Eq(x,y) ≡ If x=y then 1 else 0
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Notation The projection Proju will be denoted <Xu(1),…,Xu(P)> when there is no ambiguity about

C1×…×Cn, We also call identity functions the projections associated to u the identity function of

{1,…,n},

Now let us suppose that in R a transition t' needs for firing that all buffers are empty and that a

place p' contains a token coloured by any empty buffer, Then this precondition is specified by a

constant function sum,

Definition 2 Let Ci be a basic domain, then Si the constant function sum related to Ci is defined

by :
Si : C' × Ci→N  with Si (c', ci) = 1

At last let us suppose that the buffers are circulary ordered and that a place p" contains a

token coloured by the next buffer to be used, If a transition t" models the access to this buffer,

then once this transition is fired the token in p" is removed and replaced by its successor in the

circular order, This postcondition is specified by a successor function,

Definition 3 Let Ci be a basic domain, then Xi ⊕ n, the nth successor function related to Ci is
defined by :

Xi ⊕ n : Ci × Ci→ N
with Xi ⊕ n (c,c') = If c' is the nth successor of c then 1 else 0

As a coloured function can be wieved as a matrix, new colour functions can be built by the
standard operations on matrices such as the addition, the multiplication by a scalar, the
composition and a non standard "product":

Definition 4 Let f be a coloured function defined on C × C' and g be a coloured function defined
on C × C" , then <f,g> the product of f and g is defined by :

<f,g> : C × (C' × C")→ N
with <f,g> (c,<c',c">)= f(c,c'),g(c,c")

The notation is consistent with the notations of projections since for instance the projection
<Xi,Xj> is the product of the projections Xi and Xj.This product is associative and thus the
product of f1,…,fn will be denoted < f1,…,fn >.

Notation Let f and g be two functions, we will denote the composition of f by g, g ο f

1.2.3 Sample actions modelled by coloured nets

We present now some transitions in order to illustrate the coloured domains and functions and
to show how they can be used in modelling:

(a) An idle producer in p takes an empty buffer in be and becomes an active producer in p', The
coloured domain of p is C1 , the coloured domain of be is C2 and the coloured domain of p and
the transition is C1 × C2 . X1 , X2 are projection functions and < X1 , X2 > is an identity function.

(b) An active producer in p' sends a full buffer in bf with the identity of the consumer and
becomes idle, The coloured domain of bf and the transition is C1×C2×C3. Let us notice that
<X1,X2> is no more an identity function since the domain of the transition is now C1×C2×C3.

(c) A process in p begins some task in p' and sends messages to all others processes in m with
its own identity, The coloured domain of p , p' and the transition is C1 and the coloured domain
of m is C1 × C1, The function < X1, S1- X1> is obtained by the product of X1 and S1- X1 and this
latter function is obtained by substracting X1 to S1,

(d) An idle producer in p takes the next empty buffer to be used in nbu and becomes an active
producer in p', The next buffer to be used is updated, The coloured domain of p is C1 , the
coloured domain of nbu is C2 and the coloured domain of p' and the transition is C1 x C2 . X2⊕1
is the immediate successor function of C2.
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2 COMPUTATION OF FLOWS

2.1 Methods

As explained above, the flows space is the kernel of the incidence matrix of the net. In Petri
nets a flows basis is easily computed by the elimination of Gauss. But in the coloured nets, this
problem is much harder since the any item of the matrix is itself a coloured function (and then
can be wieved as a submatrix). So the whole problem is to find a symbolic computation of a
basis of flows or at least a generative family of flows taking into account the structure of the
coloured functions used in the net. No general algorithm exists now but there are different
powerful algorithms developped by the authors depending on the coloured functions used in the
net. We simply present the two algorithms that can alternatively be used for almost every
realistic coloured net. The first algorithm works with the projections and the sum functions whilst
the second one works with the projections and the successor functions. These algorithms are
based on the following principles:
• Find one or more linear isomorphisms which transform the incidence matrix into one or

more matrices the items of which are in a polynomial ring.
• Then compute a flows basis (or a generative family) of the kernel of the transformed matrix.
• At last apply the inverse isomorphisms to obtain the family of the flows.

The main difference between the two algorithms is that in the first one the isomorphisms are
complex and the computation is simple and vice versa for the second one.
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Then it can be shown that the computing of the homogeneous flows is equivalent to the
computing of the flows in the Petri net (a) and that the computing of the differential flows is
equivalent to the computing of the flows of the Petri net (b).

The nets (a) and (b) have be obtained by the following symbolic transformations.
Homogeneisation: In (a) the function S1 becomes the scalar N1 (the cardinality of C1) and the
functions X1 becomes the scalar 1.
Differentiation: In (b) the function S vanishes and the function X1 becomes the scalar 1.

Let us suppose now that a net has two basic domains, then once we apply these
transformations on a basic domain we obtain two coloured nets with only a basic domain and
we apply again these transformations on the remainder basic domain obtaining now four Petri
nets. This iterative process can be wieved as the building of a tree where the root is the initial
net, the nodes are the successive coloured nets and the leaves are the final Petri nets. The
next figure presents the successive transformations of a coloured function.

In this net a flow v can be written: �vp,c.(p,c) + �vq,c.(q,c). Now let us suppose that we are

interested by two kind of flows:

• Homogeneous flows which count the number of tokens in a place independently from their

colour. These flows can be written : vp. � (p,c) + vq. � (q,c)

• Differential flows which count the difference between the tokens of two different colours of

the domain C1. These flows can be written: vp .[(p,c)-(p,c')] + vq .[(q,c)-(q,c')]

2.2 Computation with the projectlons and the sum functions [Had87b]

We begin with a simple example in order to show how the algorithm works.



H : Homogenisation , D : Differentiation

<S1 +2.X1 ,2.S2-X2>

N1 +2.(2.S2-X2) 2.(2.S2-X2)

(N1+2).(2.N1-1)   -(N1+2) 2.(2.N2-1) -2

Now we express the theoretical results and the algorithm which is based on these results:

Theorem Let R be a coloured net, Ci a basic domain of R, Hi(R) the coloured net obtained by
homogeneisation of R related to Ci and Di(R) the coloured net obtained by differentiation of R
related to Ci, then:
(1) The homogeneous flows space of R is isomorphic to the flows space of Hi(R)
(2) The differential flows space of R is isomorphic to the flows space of Di(R)
(3) The flows space of R is a direct sum of the homogeneous flows space of R and the
differential flows space of R

The proposition (3) is fundamental since it implies that any flow of R is an unique linear sum of
homogeneous flows and differential flows. Then we can deduce:

Corollary The union of a homogeneous flows basis and a differential flows basis is a general
flows basis.

Algorithm
Calcul (R:coloured net; Var B:basis of flows);
Begin

If R is a Petri net Then
Extended_Gauss(R;B)

Else
Begin

Calcul (Hi(R),Bh);
Calcul (Di(R),Bd);
B:= Ish (Bh ) ∪ Isd (Bd);

End;
End;

Remarks
• lsh and ISd are the isomorphisms stated by the theorem.
• When one obtains a Petri net by succesive transformations, the items of the incidence
matrix are not in Z but in the polynomial ring Z[N1,...,Nn] where Ni are the variable cardinalities of
the basic domains. Happily this ring is entire (no divisors of 0) and commutative, then it can be
embedded in its fraction field and an extended Gauss elimination may be applied on it

2.3 Computation with proiections and successor functions [Cou88]

We begin with a simple example. Looking at the coloured net above, it is easy to show that:
{(p,c') + (q,c)  | c ∈ C1 and c' is the mth predecessor of c} is a flows basis.

Let us suppose now that we choose some colour c in C1 and we denote it 1 and that any

colour c' is denoted λ1
i if c' is the ith predecessor of c and (p,c') is denoted λ1

i.p. Then the basis

can be rewritten { λ1
i+m .p + λ1

i .q I i=0,...,N1-1} with the convention that for any i λ1
i+N1 = λ1

i. At

last the basis can be rewritten with respect to the polynomial product: { λ1
i . (λ1

m .p + q)

I i=0,...,N1-1}
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Now looking at the following Petri net where the valuations are in the polynomial ring Z[λ1]

quotiented by the ideal {P(λ1). (λ1
N1 -1)} , it is easy to show that {λ1

m .p + q} is a flows basis.

Moreover this net have been obtained by the symbolic transformation:

 Any Xi ⊕ m becomes λ1
m (and thus any Xi becomes 1).

We will denote the net obtained from a coloured net R by this transformation λ(R) and now
we express the theoretical results:

Theorem Let R be a coloured net and λ(R) the Petri net obtained by the preceeding
transformation, then (with the convention on the coloured places) the three propositions are
equivalent:

(1) � vp,j1,…,jn .(λ1j1... λnjn. p) is a flow of R

(2) ∀ k1,...,kn, � vp,j1,…,jn .(λ1j1+k1... λnjn+kn. p)is a flow of R

(3) � vp,j1,…,jn. (λ1j1... λnjn. p) is a flow of λ(R)

Remark We recall that in (1) and (2), (λ1j1... λnjn. p) and (λ1j1+k1... λnjn+kn. p) denote coloured

places whilst in (3) , (λ1j1... λnjn. p) denotes the place p weighted by the polynom λ1j1... λnjn.

The equivalence between (2) and (3) is very important since it enables the computation of a
generative family of flows:

Corollary Let F be a generative family of flows of λ(R) , then F' the family of flows of R
obtained by all the transformations defined in the proposition (2) is generative.
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Then one computes a generative family of the flows on the polynomial ring Z[λ1,...,λn]/ I

where I is the ideal generated by the polynoms {λNi -1}. Let us only say that since this ring is no

more entire, the computation is much harder that for the case 2.3 and for instance the Gauss

elimination can not be used. Some efficient methods can be found in [Bur83] , [Laz81] , [FuI55].

3 REDUCTION OF NETS [Had87b]

For the reductions we need some properties on the coloured functions.

Definition Let f be a coloured function from C x C' to N , then
• f is unitary if and only if ∀ c,c' f(c,c') = 0 or f(c,c') = 1
• f is quasi injective if and only if ∀ c,c',c" f(c,c') ≠ 0 and f(c,c") ≠ 0 � c' = c"

In a modelling the functions are almost ever unitary since generally the firing of a transition
involves at most one token of each different colour for any place. The quasi injectivity is a
significant property since it implies that a colour in a place will be used by at most one coloured
firing of a transition if a quasi injective function valuates the arc between the place and the
transition.

3.1 Coloured implicit place simplification

This reductions deletes a place which never disables the firing of a transition and the marking
of which can be computed from the marking of the other places. In contrast to the other
reductions that we will present here, the implicit place is based on a algebraic property
(existence of a particular flow). Then the application of this reduction implies the existence of
flows computation for coloured nets which already justifies the Interest of section 2. Since the
computation of flows for coloured nets is much more complex than in ordinary Petri nets, this
reduction which could be done manually in Petri nets needs now the help of a good flows
computation.

Definition 1 Let (R,Mo) be a coloured net, a place p is implicit if and only if :

(1) ∀ c ∈ C(p)

There is a flow fc the support of which is {(p,c)} ∪ P' where P' = {(q1,c1),...,(qk,ck) }

fc = apc.(p,c) -�i=1,…,k. ai.(qi,ci) with apc,ai ∈ N and ∀ c', (p,c') ∉ P'

(2) ∀ t ∈ T, ∀ct ∈ C(t)

apc.I
-(p,t)(c,ct) –�ai.I-.(qi,t)(ci,ct) ≤ apc.Mo(p,c) -� ai.Mo(qi,ci)

Interpretation An implicit place will never disable the firing of a transition since initially it does
not disable it because of (2) and this condition is reproductible for all the reachable markings
because of (1).

As in ordinary Petri nets, the transformation deletes the implicit place and its arcs.

Definition 2 The reduced net (Rr,Mor) obtained from the net (R,Mo) by simplification of the
implicit place p is defined by :
• Pr = P\{p}
• Tr = T

• ∀ t ∈ Tr ∀ p' ∈Pr, Cr(p') = C(p') and Cr(t) = C(t)

• ∀t ∈ Tr, ∀ p' ∈ Pr, Ir
-(p',t) = I-(p',t) and Ir

+(p',t) = I+(p',t)

• ∀ p' ∈ Pr Mor(p') = Mo(p')

9



Theorem Let (Rr,Mor) be a reduced net obtained from the net (R,Mo) by simplification of the
implicit place, then:

(R,Mo) is bounded ⇔ (Rr,Mor) is bounded  (R,Mo) is safe � (Rr,Mor)) is safe
(R,Mo) has an invariant ⇔ (Rr,Mor) has an invariant (R,Mo) is quasi-live ⇔ (Rr,Mor) is quasi-live
(R,Mo) is live ⇔ (Rr,Mor) is live  (R,Mo) is pseudo-live ⇔ (Rr,Mor) is pseudo-live
(R,Mo) has a normal end ⇔ (Rr,Mor) has a normal end
(R,Mo) has an home state ⇔ (Rr,Mor) has an home state
(R,Mo) has an unavoidable state ⇔ (Rr,Mor) has an unavoidable state
(R,Mo) verifies abstraction properties ⇔ (Rr,Mor) verifies abstraction properties [And81]

3.2 Coloured Pre agglomeration

All the agglomerations are based on the following idea: given a place p, its input transition set
H and its output transitions set F, one wants to disable the intermediate states with p marked.
Then the agglomeration merges the two transitions set in order to simulate the firing of any
transition of H followed by the firing of any transition of F.

In the pre agglomeration the set H is reduced to one transition. The principle of pre
agglomeration IS the following: in every sequence of firings with an occurence of h followed
later by an occurence of a transition f of F, one can postpone the firing of h and "merge" it with
the firing of f.

Definition 1 Let (R,Mo) be a marked Petri net, a subset of transitions F is pre agglomerable if
and only if there is a place p and a transition h E F such that the following conditions are
verified:

(1)    ∀ t ≠ h , I+(p,t) = 0 and ∀ t ∉ F , I-(p,t) = 0
C(p) = C(h) and I+(p,h) is the identity function
∀ f ∈ F , I-(p,f) * 0 and I-(p,f) is an unitary function
Mo(p) = 0
{The single input transition of p is h and the output transitions of p are F }
{P is unmarked}
{The arc from h to p is valuated by the identity function}
{Every arc coming from p is valuated by an unitary function}

(2) ∀ p' ≠ p, I+(p',h) = 0 { The single output place of h is p }
(3) ∃ p' ∈ P ,such that I-(p',h) ≠ 0 {h has an input place}
(4) ∀p' ∈ P ∀ t ∈ T\{h},

I-(p',h) ≠0 =>I-(p',t) = 0 and I-(p',h) is a quasi injective function
{ h does not share its input places}
{ Every arc going to h is valuated by a quasi injective function}

In the transformation, the place p and the transition h disappear. The input arcs of h are
transferred on each transition f of F but the function valuating these arcs are composed by the
function valuating the arc between p and f.

Definition 2 The reduced net (Rr,Mor) obtained from the net (R,Mo) by a coloured
preagglomeration of hand F is defined by :
• Pr = P \ {p} ,
• Tr = T \ {h}
• ∀ t ∈ Tr, ∀ p' ∈ Pr, Cr(t) = C(t) and Cr(p') = C(p')
• ∀ t ∈ Tr, ∀p' ∈ Pr, Ir

+(p',t) = I+(p',t)
Let Ph = { p' ∈ Pr  | I

-(p',h) ≠ 0 }
• ∀ t ∈ T, ∀ p' ∉ Ph, Ir

-(p',t) = I-(p',t)
• ∀ f ∈ F, ∀p' ∈ Ph, Ir

-(p',f) = I-(p',h) ο I-(p,f)
• ∀ p' ∈ Pr, Mor(p') = Mo(p')

Theorem Let (Rr,Mor) be a reduced net obtained from the net (R,Mo) by a coloured pre
agglomeration, then:

(R,Mo) is bounded ⇔ (Rr,Mor) is bounded (R,Mo) is safe � (Rr,Mor) is safe
(R,Mo) has an invariant ⇔ (Rr,Mor) has an invariant (R,Mo) is quasi-live ⇔ (Rr,Mor) is quasi-live
(R,Mo) is live ⇔ (Rr,Mor) is live (R,Mo) is pseudo-live ⇔ (Rr,Mor) is pseudo-live
(R,Mo) has a normal end ⇔ (Rr,Mor) has a normal end
(R,Mo) has an home state ⇔ (Rr,Mor) has an home state
(R,Mo) has an unavoidable state ⇔ (Rr,Mor) has an unavoidable state
(R,Mo) verifies abstraction properties ⇔ (Rr,Mor) verifies abstraction properties [And81]
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3.3 Coloured post agglomeration with multiple outputs

The principle of post agglomeration is the following: in every sequence of firings with an
occurence of a transition h of H followed later by an occurence of a transition f of F, one can fire
f immediately after the firing of h. As we enable the multiple output transitions of p, we require
the functions valuating the arcs to p to be projections in order to ensure that the token game
around p can be simulated by the reduced net.

Definition 1 Let (R,Mo) be a coloured Petri net, a subset of transitions F is post agglomerable if
and only if there is a place p and a subset of transitions H with H ∩ F = ∅ such that the
following conditions are verified:
(1) ∀ t ∉ H , I+(p,t) = 0 and ∀ t ∈ F, I-(p,t) = 0
     ∀ h ∈ H , ∃ Ch such that C(h) = C(p) × Ch

and I+(p,h) is the projection of C(h) over C(p)
∀ f ∈ F , C(f) = C(p) and I-(p,f) is the identity function

     Mo(p) = 0
     {All the arcs going to p are valuated by projections}
     {All the arcs coming from p are valuated by identities}
     {p is unmarked}
(2) ∀c ∈ C(p) , ∃ f ∈ F , ∃ p' ∈ P , ∃ c' ∈ C(p) , such that I+(p',f)(c,c') ≠ 0

{ For each colour c of C(p), there is a transition of F the c-firing of which
produces some tokens}

(3) ∀ f ∈ F , ∀ p' ≠ p, I-(p',f) = 0 {The single input place of every transition of F is p}

11

In the post agglomeration with multiple outputs, the place p disappears and one substitutes the

"product" transitions of H × F to the transitions of H and F. The arcs of these transitions are
obtained by the union of the arcs of H and F but where the output arcs of F are composed by
the corresponding projection.

Definition 2 The reduced net (Rr,Mor) obtained from the net (R,Mo) by a coloured post
agglomeration of H and F is defined by :
• Pr=P \ {p}
• T = T ∪ (H × F) \ (H ∪ F)

• ∀ f ∈ F, ∀ h ∈H, one notes hf the transition (h,f) of H × F
•   ∀ t ∈Tr \ (H × F), ∀ p' ∈ Pr, Cr(t) = C(t) et Cr(p') = C(p')

∀ f ∈ F, ∀ h ∈ H, Cr(hf) = C(h)
•   ∀ t ∈ Tr \ (H × F), ∀p' ∈Pr, Ir

-(p',t) = I-(p',t) and Ir
+(p',t) = I+(p',t)

•   ∀ h ∈ H, ∀ f ∈ F,
∀ p' ∈ Pr, Ir

-(p',hf) = I-(p',h) and Ir
+(p',hf) = I+(p',h) + I+(p',f) ο I+(p,h)

• ∀ p' ∈Pr , Mor (p') = Mo(p')

Theorem Let (Rr,Mor) be a reduced net obtained from the net (R,Mo) by a coloured post
agglomeration with multiple outputs, then:

(R,Mo) is bounded ⇔(Rr,Mor) is bounded (R,Mo) is safe � (Rr,Mor) is safe
(R,Mo) has an invariant ⇔(Rr,Mor) has an invariant (R,Mo) is quasi-live ⇔(Rr,Mor) is quasi-live
(R,Mo) is live ⇔ (Rr,Mor) is live (R,Mo) is pseudo-live ⇔(Rr,Mor) is pseudo-live
(R,Mo) has a normal end ⇔(Rr,Mor) has a normal end
(R,Mo) has an home state ⇔ (Rr,Mor) has an home state
(R,Mo) has an unavoidable state ⇔ (Rr,Mor) has an unavoidable state
(R,Mo) verifies abstraction properties ⇔(Rr,Mor) verifies abstraction properties [And81]

3.4 Coloured post agglomeration with a single output

In contrast to the post agglomeration with multiple outputs, here F is reduced to a single
transition. Then the colour function which valuates an arc from a transition of H to the place p is
less constrained: it must be an unitary function (a very weak condition). There is no more
constraint on the colour domain of the transitions of H. The other conditions are the same as the
post agglomeration with multiple outputs.



Definition 1 Let (R,Mo) be a coloured Petri net, a transitions f is post agglomerable if and only if
there is a place p and a subset of transitions H with H ∩ {f} = ∅ such that the
following conditions are verified:

(1) ∀ t ∉ H , I+(p,t) = 0 and ∀ t ≠ f , I-(p,t) = 0
      I+(p,h) ≠ 0 and I+(p,h) is an unitary function

          C(f) = C(p) and I-(p,f) is the identity function

          Mo(p) = 0
           {All the arcs going to p are valuated by unitary functions}
           {All the arcs coming from p are valuated by identities}
           {p is unmarked}

(2) ∀ c ∈ C(p) , ∃ p' ∈ P , ∃ c' ∈ C(p') ,such that I+(p',f)(c',c) ≠ 0
{ For each colour c of C(p), the the c-firing of f produces some tokens}

    (3) ∀ f ∈ F , ∀p' ≠ p, I-(p',f) = 0 {The single input place of every transition of F is P }

In the post agglomeration with a single output, the place p and the transition f disappear and
one substitutes the "product" transitions of H × {f} to the transitions of H. The arcs of these
transitions are obtained by the union of the arcs of H and {f) but where the output arcs of f are
composed by the corresponding unitary function of the transition of H.

Definition 2 The reduced net (Rr,Mor) obtained from the net (R,Mo) by a coloured post
agglomeration of H and f is defined by :
• Pr = P \ {p}
• T = T \ {f}
• ∀ t ∈ Tr \ H , ∀ p' ∈ Pr, Cr(t) = C(t) and Cr(p') = C(p')
• ∀ t ∈ Tr \ H, ∀p' ∈ Pr, Ir

-(p',t) = I-(p',t) and Ir
+(p',t) = I+(p',t)

• ∀ h ∈ H, ∀ p' ∈ Pr, Ir
-(p',h) = I-(p',h) and Ir

+(p',h) = I+(p',h) + I+(p',f) ο I+(p,h)
• ∀ p' ∈ Pr , Mor (p') = Mo(p')

Theorem Let (Rr, Mor) be a reduced net obtained from the net (R,Mo) by post agglomeration
with a single ouput, then:

(R,Mo) is bounded ⇔(Rr,Mor) is bounded (R,Mo) is safe �(Rr,Mor)  is safe
(R,Mo) has an invariant ⇔(Rr,Mor)  has an invariant (R,Mo) is quasi-live ⇔(Rr,Mor)  is quasi-live
(R,Mo) is live ⇔(Rr,Mor)  is live (R,Mo) is pseudo-live ⇔(Rr,Mor)  is pseudo-live
(R,Mo) has a normal end ⇔(Rr,Mor)  has a normal end
(R,Mo) has an home state ⇔(Rr,Mor)  has an home state
(R,Mo) has an unavoidable state ⇔(Rr,Mor)  has an unavoidable state
(R,Mo) verifies abstraction properties ⇔(Rr,Mor)  verifies abstraction properties [And81]

4 APPLICATION

4.1 Database management
We present now the modelling of a data base management with multiple copies.This

modelling is an improved version of those of [Jen81]. Each site has two processes, an active
one and a passive one. The access grant of a file of the data base is centralized and submitted
to the mutual exclusion. In order to modify a file the active process of a site must get its grant
and once it has modified the file, it sends messages to the others sites with the updated file.
Then the passive processes update their own data base and send an acknowledgment. Once
the active process has received all the acknowledgments, it releases the grant. Simultaneous
accesses to different files are allowed.

In the net, an active process must get in Mutex the single token coloured by the file it wants
to access. The messages are composed by the name of the receiver followed by the name of
the file. The acknowledgments are composed by the name of the sender followed by the name
of the file. Accessing and modifying a file is modelled by a transition (atomic step) whilst the
updating of the passive process is modelled by a place (divisible step). Initially there is a token
per site in Active and Passive and a token per file in Mutex.

C1 = {Sites} , C2 = {Files} ,C(Active) = C(Passive) = C1 , C(Mutex) = C2
C(Wait) = C(Update) = C(Mess) = C(Ack) = C1 × C2
For every transition t , C(t) = C1 × C2
The colour functions are defined as in the preceeding examples.
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Post agglomeration with a single output around Update

Simplification of the implicit place Passive

Pre agglomeration around Ack

Post agglomeration with a single

output around Wait

Simplification of the implicit

places Mutex and Active

Comments Thus we have shown that the net has all the good behavioural properties since it is
reductible to a simple transition (which is a "perfect" net). All the reductions can manually be
verified except the simplification of the implicit place Mess which needs to find the flow stated in
the definition 3.1.1. By application of the algorithm given in 2.2 we find the adequate flow:
∀ x ∈ C1, Mess(x) -�x'≠x Wait(x') = 0
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Pre agglomeration around Ack Simplification of the implicit place Mess



4.2 Synchronlzed clocks

This example is due to H.Eckert and R. Prinoch who used it to verify certain facts in the
field of communication protocols. A study of this model was done In [Gen821. Two partners, L
and R, are sending each other the positions of their local counters ZL and ZR, resp., by
messages. The initial position of both counters is 0, their capacity is assumed to be N. The only
class C is the position of counters {0,...,N-1}. The messages (on the "channels" P3 and P4), the
position of counters ZL and ZR and the situations of both partners are modeled by places of
colored domain.

The initial marking, Mo(ZL)= Mo(P1)= MQ(ZR)= Mo(P6)= <0>, Mo(Ps)= 0 for s=2,3,4,5,
indicates that the position of ZL and ZR is 0 and Land R are ready to send the message <0> to

each other. A partner say L, may increase its counter ZL by firing of ψL if P2, P4 and ZL are
carrying the same equal token. We want to show that the absolute difference of counter
positions (modulo N) is at most one. Using the method 2.3 we do not need any examination of
the accessibilty set to prove it.

From the first invariant we deduce the right term (and thus the left term) of this equality is
bounded by 1. Let us now apply this equality for the current value c of ZL then we get:
ZL(c) =  ZR(cΘ1) + ZR(c) + ZR(c ⊕1)=1
Thus ZR(cΘ1)=1 or ZR(c) = 1 or ZR(c⊕1) =1 which is exactly the searched property
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We give now the generative family of flows computed by the algorithm preceeded by their
interpretation. On the left the flows are the ones computed on the polynomial matrix whilst on
the right we present the final flows obtained by application of the isomorphisms.

There is at most one token in the place ZR .It represents the position of the counter ZR:
(1+ λ+...+ λN-1

) ZR ZR(0) + ...+ ZR(NΘ1)-1
There is at most one token in the place P1 or P2 (resp. P5, P6) .This token is also the position
of the counter ZL (resp. ZR ):

P1 + P2 - ZL ∀x ∈ C, P1 (x) + P2(x) -ZL(x)
P5 + P6 - ZR ∀x ∈ C, P5(x) + P6(x) -ZR(x)

The next two invariants proves the synchronization of the counters:
ZL -λZR +(λ-1}(P4+P6) ∀x ∈ C, ZL(x) +P4(xΘ1) +P6(xΘ1) –ZR(xΘ1) + P4(x) +P6(x)
P1 +P3+λ(P4+P6)- (λ+1 )ZR ∀x ∈ C, P1(x) +P3(x) + P4(xΘ1) +P6(xΘ1) -ZR(x) + ZR(xΘ1)

If we add these last invariants for the respective colours x and x ⊕1, we obtain:
∀x ∈ C, ZL(x) + P1(x⊕1) + P3(x⊕1) + P4(xΘ1) +P6(xΘ1) = ZR(xΘ1) + ZR(x) + ZR(x⊕1)



CONCLUSION

In this paper we have presented the coloured nets and shown how they can be efficiently used in the
modelling of the parallel systems with the help of the coloured domains and functions. We have also
caracterized the coloured domains and functions which are the most frequently used in practice.

Then we have developed our theory of flows calculus for coloured nets which is based on two
principles: first we show that the flows space of a coloured net is isomorphic to the kernel of a polynomial
matrix and then we compute this kernel by extended Gauss elimination in the simplest cases and by
more accurate methods depending on the polynomial ring.

We have also extended the reduction rules of Petri nets [Ber83] to the coloured nets by adding to the
structural conditions the adequate functionnal conditions. This extension leads to the definition of four
rules the application field of which is very large.

At last by combining the tools developed above we have verified the safeness and the liveness
properties of two applications: a database management and the synchronization of two logical clocks.
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