An Algorithm Providing Fault-Tolerance for Layered
Distributed Systems

M. Taghelit, S.Haddad and P. Sens

Université Pierre et Marie Cul
C.N.R.S. MASI
4, Place Jussieu
75252 Paris Cedex 05, France
e-mail: taghelit@masi.ibp.

Abstract

This paper presents a new approach for the fault-toleremlzgyered distributed systems. We develop
the dynamic regeneration method in which faulty software compisnare dynamically regenerat

In contrast to other techniques which duplicated crit@mahponents, this method does not increase the
complexity of the system and tolerates an unlimited nundddailures. To apply this technique, we
develop a method for the design of reliable systems. Westoam an initial software architecture in a
model which encloses homogeneous elements. Our study relidseadS! standard model defined
within the ISO organization. So, from an initial layeretistributed architecture, we exhibit a
homogeneous communication chain. The building and the maintemdrhies chain in an unreliable
environment is achieved by an algorithm using dynamic regener

Key words: fault-tolerance, dynamic regeneration, distributed systdayered systems, end-to-¢
communicatior

1. Introduction

Distributed systems provide new opportunities for developing bigitiermance applications; at -
same time, because of dependency of the components, such syatemarticularly fragile: one
component failure may imply all the system failure. Soist essential to have a fault-tolerant
management. Several methods based on the redundance teshmixjst [7][1]. These methods
prevent the failure of critical elements by duplicatingrthimm several copies. There are two basic kinds
of redundancy [6]: the passive one where copies run only ietement fails and the active one where
all copies run in parallel with the element. These teghas imply a great overhead of the system and
tolerates a limited number of failures (this numizeproportional to the number of copie

We propose a new solution that offers an optimum degre®lefance for a low cost: the dynar
regeneration. Instead of duplicating the elements, theyetrenerated in case of fail

From the OSI standard model defined within the ISO orgatibn, we generalize this kind
architecture to any communication chain. A communicatiaairc allows a dialogue between an initial
and a terminal entities through inner ones which relagsage:

The aim of the proposed algorithm is to build and preseieedommunication chain in an unrelia
environment. The entities of the chain are dynamically gdadranlike the other techniques where
elements have a static existence. When a failure of atyéstdetected, we regenerate a new entity
and integrate it into the cha

In the first part, we describe how to obtain a communicatibain from the OSI model. In the second
part, we outline the different methods providing fault-toleraacd we introduce the

principle of the dynamic regeneration. The third part infoitynpresents the algorithm and the foL
one describes it. Finally, the last part shows the canesg of the algorithr

2. Functional scheme for layered distributed systems

The ISO organization defines an architecture for commuinigeopened systems (the OSI stand
[3]. This hierarchical model is composed of seven layBach layer has apecific functionalityand
the communication between two layers of the same levdbize through the lower layers. Althol
the OSI standard does not impose a specific localimatb the layers, current systems loci
implement all of then

Host A
Application

Network | Network
Link Link
Physical Physical
Medium

figure 1 : The OSI model

We would like to make this kind of architecture reliableor that, we modify the basic functiol
scheme. The first step consists in unlayering the architeclure notion of layer disappears and this
new architecture, even though identical as the old one, makgsain composed of communicating
entities. This unlayering shows three kinds of entities:ittitgal entity at the beginning of the chain,
the ending entity at the end of the chain and the innettiemtwhich each has a predecessor a
successor. All functionalities of one layer are includedimentity but we generalize the initial model
by makingno assumption about the localizati

Entity [> Entity (3 ﬁﬁﬁﬁﬁﬁ,(; Entity [> Entity

figure 2 : Unlayering of the model

The global architecture being defined, we will proceedhe functional division of entities. All tt
entities have three functionalities: the receipt antb#®g of messagdseing homogeneous ,for all the
entities and the processing which ieeterogeneousWe bring together these functions in two
specialized modules: one module of communication that earout the communication tasks and
another one, processing module, that carries out the piinge§the communication module becomes
the communication interface between an entity and thes.

figure 3 : Functional division

Communication modules (CM) compose homogeneous communication chesince each modu
has the same functionality (sending/receipt). The pracgsaodules rema

heterogeneous and each of them locally communicates withdimencanication module of the sa
entity. Thus, afterwards we will pay attention to ers@ommunication between entities and this is
done by preserving the communication chain in case of fail

Note that the modularity of an entity implies a lindt@ropagation of the failures. The failure of
processing module does not mean the breaking of communicdloneover, the separation
functionalities allows diagnosis more precise of failuaesl thus a more efficient recove

figure 5: Communication chain

3. Tolerance by dynamic regeneration

Generally, techniques providing fault-tolerance use redundamethods [7]. These methods duplic

a basic element in several copies. In this way, theywent the failure of the basic element called the
primary.

There are two kinds of redundancy techniques: the acteindancy where copies are actives in
parallel with the primary element, and the passive redundaviwere copies are active only if the
primaly element fails

3.1. Active redundancy

Each copy receives the same input and do the same tesat@nly one result is taken into account
[8]. To achieve this, two different methods are curreniged.
In the first one, a vote mechanism chooses one result fromang all of those produced by f

redundant elements. A disagreement between elements mwosaidailure detection. The simple
majority is the most used vote technique

data result 1
—————> clement 1

result 2

_dan el element 2 |

result 3

_daa ! element 3

figure 6: The vote mechanism

In the second method, only the result of the primary elenemonsidered. If the primary modi
fails, it is replaced by one of its copies. The recovieryery simple, it only consists in taking new
results on the output of the chosen cc

data sult
- ——>»! element 1 e >

failure
: detection

—>» clement 2

figure 7: ...

The vote technique allows a limited degree of toleranae the number of element failures): fo
number of n redundant elements, a majority vote tolratnly n/2 failures. Moreover, the vote
component can itself fail. This kind of failure is catagthic, and a replication of the vote component
is recommende

The second technique allows a greater degree of tolettéuacethe vote. For n redundant element
tolerate n-| failures. But this method does not prevent @tyabehaviour of the primary eleme
Contrary to the vote technique, erroneous results pratibgethe primary element will be taken into
account

These methods lead to a great overhead of treatnfdhie degree of redundancy is n (i.e. there &
redundant elements) there must be n treatments for the produaf one issue. Moreover, each
redundant element has a failure probability and so the glialilalre probability is greater. But, active
redundancy provides a fast recovery failure, because it ralstate's restoration (all the time, copies
do the same process and are in the same state). Thigodhes currently used for reliable real time
systems where the recovery time is bounded

3.2. Passive redundancy

A redundant element can only start running when the pringde@nent is failing. All the time, on
one element is activ

data result
>»| clement 1 >

failure

detection

> clement 2

figure 8: passive redundancy

When a copy replaces the faulty primary element, a previtate of the primary element must
restored. Passive redundancy needs also a checkpoinhgeaent. This kind of technique is
expensive in processing time and space. Moreover, like ttigeaedundancy, the failure probability
of redundant modules is non-null. Generally, this techaias a lower cost than active redundancy
and it is often preferred to this one |

The main drawbacks of redundancy techniques is the isereé the system's complexity and
limited fault-tolerance degree. We propose a new techrigatesolves these problems while profiting
of the characteristics of our architecture and of theetional division: the dynamic redundan

3.3. Principle of the dynamic regeneration

The entities are no longer duplicated but generated dynamiagter their failure. The generat
element has no existence and is integrated in the mystdy after one failure. This element has the
same tunctionality of the faulty element. This approamnplies the following point:

e .The system has as much element as a fault-free sy§enit is less complex than a system using
redundancy techniqut

.The overhead is only related to the fault detection.

The fault tolerant degree is not limited.

The generated element have no localization constraint utiiikeedundant elements which hay
fixed localization. A new module may be dynamically genedson an unfaulty hos

More precisely, the treatment of a failure is composéthree steps: the detection, the regeneratis
a new element and its insertion in the ch

:@,, CM i+l

Regeneration
CM i1 CMi+1

Insertion

figure 9 : The dynamic regeneration

Each module has to supervise the one it has generated (tesswr) and to regenerate it in cas
failure. This ensures a decentralized control which amswour tolerance and performance
requirement:

4. Implementation of the dynamic regeneration

4. 1. Targets of the algorithm

e The building of the communication chain

The building of the chain consists in generating a finiteafecommunication modules such that e
inner module has a predecessor and a successor. Unlikethbe systems where the elements are
static, the modules are generated dynamically. On the dthed, an initialization step is required.
This step consists to generate the first module which igsan's initiative

+ Maintenance of the communication chain in an unreli@l@ronmer
If one or several modules fail, the chain breaks and no conication between the initial and end

entities is possible. To keep end-to-end communicatiois, riiecessary to replace the faulty modules.
This is carried out by the dynamic regeneration of the famibdules

4.2. Principles of the algorithm

We want to construct and keep a chain of N modules, @aatiule communicating with the adjac
modules. There are three principles :

e Activation principle: Each non-ending module carries on thédinig of the chain.

Each module with no successor and which is not the Nth omergées a successor. This allow.
carry on the building of the chain if it is not completedato rebuild it if modules fai

+ Knowledge principle: Each module knows all its successors

When a module fails, it is regenerated according to tttévation principle. Then, this new mod
needs to be attached to the predecessor (the one who gehijaté the faulty module and to its
successor. The regenerating module must know its two imneediatcessors so as to give to the
regenerated module the informations necessary to attadhtiv the chair

But that is not enough in case of multiple failures dfeecent modules. In that case, each regenerated
module has to regenerate a successor until a valid ssmrckas been found. So, to

restore the chain whatever the number of faulty adjacemdules, each module has to know al
successor

If the regenerated module is the initial one, it cannot ireeénformations from its successor by
predecessor since the last one does not exist. In orderoid the building of a new chain, the initial

module must keep in stable memory informations of itscessors. These informations will be
communicated to it, if it is regenerated after a fail

» Purge principle: Each non-initial module with no predecesksstroies itself after a finite time

When the predecessor of a module fails, this module mustlibenated if no new module replac
the predecessor after a finite time. We avoid, like tha,creation of "parasite” schain

e Suspicion principle: The validity of the chain is periodlgaksted

Periodically, each module supervises its successor.rmachanism allows to detect faulty modu

More precisely, the detection is based on an acknowledgemeahanism. Each module periodici
transmits a control message to its successor so aerify that it is still valid. If after a whilet no
answer is given, the successor is considered faulty. Migishanism can bring false detections which
rate is proportional tt.

4.3. Few execution

e The chain building

The activation principleallows the chain building. The chain building of N long is doneN steps
Each step corresponds to a generation of a new module ajuihitsg to the chain already built. This
joining is achieved when all its predecessors know its eméete The new module communicates
identity to its predecessor (regenerating module) whichsédrzhck to its predecessor and so on until
the initial module receives it. Then, the initial moduleansmits an acknowledgement whict
retransmitted from successor to successor until itvasrto the new module. It is only at this moment
that the new module is joined to the chain. This prodeseepeated until the joining of the N

» Chain maintenance in case of failu
The principles obkuspicion, activatiomndknowledgellow the chain maintenance. Assume

that two modules, CMi and CMi+l, fail at the same &mTrhe CMi-l module detects by ttsuspicion
principle the CMi module failure and regenerates a substingdule CMi' by theactivationprinciple.
The substitute CMi' module detects the CMi+l failure andlofe the same process. That is,
regeneration of the substitute CMi+l' module to which it giitesown identity and those of CMi+2 to
CMN modules according to thHenowledgeprinciple. Then, CMi+lI' module connects itself to CMi+2
module and thus restores the chain. This example of &tua shown in figure 1(

----- <—>{CMi1 | | Oni [[|+ [CMis2 [

Figure 10: Recovery from multiple failures

With the knowledgeprinciple, it is possible to restore a communicatibiin, whatever the number
faulty modules. The failure of the first communication mod{@l module) is particular, because its
detection and regeneration are done by the

e creation and destruction of a parasite sub-chain

We saw that the probability of false detection is non-nlilcase of false detection, a new modul
regenerated and will be reconnected to the successor omtuhile supposed to be faulty. The
supposed faulty module becomes isolated (with no succesgbpi@edecessor). It constitutes a ¢
chain which can grow up by following ttactivationprinciple. Such a case is shown in figure

‘///7((:h4¢
o

Figure 11: Creation of a sub-chain from an isolated modaMJ)

This situation is not the only one where a sub-chain istekaSeveral adjacent modules which ca
be accessible can also constitute a sub-chain. The déstrat parasite sub-chain is achieved by the
purgeprinciple

4.4, Definition of the algorithm

4.4.1. Description of a module

The states transitions of a communication module are sbyupe reduced graph of figure 12. For
sake of simplicity, only the main transitions are ddsed. In this graph, we do not specify neither
various recovery cases (during or after complete buildinthefchain) nor the fact that a module can
fail at any moment and thus in any st

Non-exlistent WaitConnPre WaltReConnPred
\ Module #N
Generated Connected
Module #1
WaitConnSucc

Figure 12: States transitions of a communication module

Non-existen: the module does not exist.

Generated the CMi module has just been generated.

WaitConnpred: the CMi module gave its identity to the module which gebedat (CMi-|
module) and waits the acknowledgement message.

WaitConnSucc the CMi module generated a CMi+l module to which it géteddentity,
and waits for the reception of the CMi+l ident

Connectec: the CMi module received the identity f'orm the modulbats generated (CMi
module).

WaitReConnPred: the CMi module detected its disconnection with its predesoe it
waits a reconnection messz

Each module has a set of variables including its lewmethie chain and &knowledge vector whicl
contains all its successors' identit

4. 4 .2. Description of message types

The various message types that are exchanged betweenurtcation modules are:

New: allows a newly generated module to be known by all its pcedsors. Each predecessor w
receives this message memorizes the identity of the newlgrgéed module and transfers it to its own
predecessor When this message arrives to the first madulee chain, it memorizes the identity in
the stable memory and sends an acknowledgement messagsuccessor.

AckNew: is the acknowledgement message for the New message stre hgwly generated module.
It is used to confirm to this module that it is actuatigown by all its predecessors.

Update: in case of recovery, this message is sent by the regwtbmodule in order to inform t
successor that it is its new predecessor. This medsadeays taken into account and acknowled

AckUpdate: confirms to a regenerated module that its successoidenssit as its new predecess

When a module Is generated, or regenerated, It recelvegehsty and the knowled
vector from its predecessor (the generating module) Wheimitied module is generated, or

regenerated, it receives the knowledge vector saved in stahieory

This example shows the generation and the insertion of thieHfanodule In the first step, the third
module generates a new module and changes to the WaitCon\B0&) state The new module is in
GeneratedG) state. In the second step, the new module sends its iddihéw message) to its
predecessor and changes to the WaitConnPred (WCP) stageNd@w message is retransmitted from
predecessor to predecessor. In the last step, the imtdlle sends the acknowledgement of the New
message (AckNew message) which is retransmitted frantessor to successor. When the new
module receives the AckNew message, it generates a socaassd changes to the WaitConnSucc
state This process is repeated until the generationresadtion of the Nth module.

W [T e 2T ¢ Twes]
® [l 2]
New New New

AckNew AckNew AckNew

O [Cle T cle 2]

This second example shows the recovery of a faulty modulehénfitst step, the second module
detects the failure of the third one. It regenerates a substimodule and changes to the
WaitConnSucc (WCS) state. The fourth module detectsisisotinection with the faulty module a
changes to the WaitReConnPred (WRCP) state. The regedaradule is in the Generated state. In
the second step, the substitute module is recognized by itsqaestars, like in the above exam|
sends an Update message to its successor and chartgeswaitConnSucc state. In the last step, the
fourth module receives the Update mess

acknowledges it by sending an AckUpdate message and changfes @onnected state. When
substitute module receives the AckUpdate message it chantes @onnected sta

4 .4.3. Definition of rules

We give the various rules for the building of the chain, igbuilding after the failure of particul
modules and the elimination of sub-cha

4.4.3. 1. Rules of building

Initialization rule: The original chain creation demand comes from the user gém®erates the fir
module (CMI module). When this first module is generatech@gated state) it then also generates
the second module and so

Connection rule: When a module is generated, it simultaneously receives tmitigef the module
which generated it (except for the first module). A modthat is in state Generated sends its
identity to its predecessors (the generating module) thrabglemission of a New message, and
waits for an acknowledgement (WaitConnpred st

The identity of a communication module enclose localizatimtalization of the associat
processing module etc

Knowledge rule: A module which receives its successor's identity from wipegenerated module
memorizes it and sends it back to its predecessor.elfrdieeiver is the initial one of the chain, it
saves it in stable memory and sends an acknowledgemessage (AckNew message) to its
successor. Moreover, if the receiver is in state WaittSrce (it has no successor) then the
message sender is considered as its successor and char@esnected state (it generated the
sender of messag

Generation rule: When a module CMi receives an AckNew message from its pesgec (CMi-l), i
sends it to its successor (CMi+l). If CMi is the newdgnerated one (WaitConnpred state) two
cases are possible:

.CMi is the Nth module of the chain (i.e. the last one) thathdnges to the
Connected state and the building is over;

.CMi is not the last of the chain#N), two other cases can occur: either it received thetite
of CMi+ 1 (rebuilding step) and then it can connect its@lfit and the rebuilding is over;
either the CMi did not receive the identity of CMi+l, théh generates a successor and
changes to the WaitConnSucc state (building s

When a module detects its successor's failure it only geegran other module when i
connected to a predeces:

4.4.3.2. Rules of maintenanc

The rebuilding rules of the chain consist in starting tleeovery process as soon as a failur
detected. Two cases must be taken into account: eltieechain is already built either it is in building
or rebuilding stef

Regeneration rule: When a CMi-I detects its successor failure, the CMi oied it replaces it wit
the generation of CMi' substitute module and waits in thet@famnSucc state. At the same time, it
gives it its own coordinates and those of CMi+l to CMNbdules, if they exis

Update rule: An CMi module receiving a Update message from a CMj oleclway:
acknowledgesdt, and considers the CMj module as its new predece

Purge rule: When a module, that is disconnected to its predecedses not recei\
reconnection demand (Update message) during a particular, iidstroys itsel

This rule allows the gradual elimination of modules iaub-chain wrongly created.

4.5, Verification of the algorithm

45.1. Mode

The specification of a distributed application alwaysuiegs the choice of a model. Two possibilit
are mainly considered: either the programming language supposedld the application; either any
formal model such as C.C.S. [5] or the Petri nets [doligh the first solution is more attractive for
reduced cost reasons, it does not include any proving mettudh is irrelevant for complex systems
that require a validity proof. With the second solution, sarakdation tools are available which alls
the formal proving of the system correcti

We choose a formal model, though more general then the ondganed above and which is higt
inspired from [4]: the so called event model. It is wordhbr while to choose a general model than
others which are more specit

4.5.1.1. Definition of transition systems

The event model describes a system with the totalitytobtates and the set of events that make it
change from one state to anotl

Definition 1: A transition systenSis a pair(E,R)where
» Eis the set of system states.

* Ris the set of system rules.
wherer OR, .r.p:E - {true, false} is a predicate which defines the guard
r.a E-E is a function which defines the action

More precisely, r.p is a predicate on a system stabichvtakes the true value if the r.a actiot
possible in that state, and the false one if the actionat possible in that state. Thug,defines the
system behaviour and a step of the system is defined by :

e -, e'ifand only if r.p(e) and €' =r.a(e)

Such a model is called event model for the event is the @enae of an action. Then, an event makes
the system change from a state to ano

4.5.1.2. Proving technigues on the model

System states and properties may be expressed asgie=di€he proof method based on
capture of system states and properties by predicateswhich is adapted to our model, is

called assertions-oriented method.

We are often interested to ensure that if a systerifiee a property at a moment or at a given stat
this property is retained whatever the system evolutioredieates which express this kind
properties are called invariar

Given a transition system, we generally study the behawbthre system when startec
certain initial states: It is, of course, unlikely t are interested’in considering all elements

of E as possible initial states. When a system startsg, ithe only interesting states are those reached
by the system fromee

D(ﬁfinition 2: Let S= (E,R be a transition system ang [0 E . We define the t'unctio.Accover E a
follows :

(i) eo O Acdep)
(i) if e O Acd &) and e -, e' then el] Acde)

Acc(e) is the set of all reachable states from e.

Definition 3: Let S= (E,R)be a transition system and @ E . A predicateP is said to be ginvariant
if for each eJ Acdey) P(e) is true.

To prove that a predicate is eyinvariant requires to prove thaR is true for all states ofcdey). This
is, tedious for complex systems and impossible wiAeq(ey) is infinite. Following Keller [4], we
propose a more restrictive concept naniabjuction.

Definition 4: Let S= (E,R)be a transition system and[@ E . A predicateP is said to be ginductive
provided that:

(i) P(er) and

(i) Je,e'OE, P(e) AND e -, e impliesP(e"

The power which lies in the induction principle is thatloes not require a complete characterize

of reachability in order to demonstrate that a predidatinvariant. Proving that a predicate remains
true after every action which makes the system change &@tate to another is enough to conc
that this predicate is invariant. Thus, we have justttolg the initial state and the rul:

It is not a restriction to consider an inductive predicatstead of an invariant predicate because
first one is obtained by strrengthening and including th@sd®ne

Proposition 1 [4]: Any invariant is not an inductive invariant, but anyariant has an inductive
invariant which implies i

The discussion above has involved the use of the induction prantipshow that certain propert
always hold. However, there are other conditions which migghtrequired before a system can be
considered correct.

In some cases, it is desirable that a system alwaysitates for certain initial values. This is the case
with a system designed to complete a specific task. @rother hand, many systems are designed not
to terminate, or to terminate only in abnormal situasi

Our algorithm matches the first case. The chain building masminate when N modules ¢
generated and each of them is in its "Connected" state.chnistitutes a home state, noted fr the
system. However, it is not obvious to show that startimgrfran initial state the system will inevitably
reach its home state. Hence we use another method for primrimination

Definition 5: Let S= (E,R)be a transition system and @ E . We say that a function : E - w(any
well-ordered set will do in place ab) is aR'-norm(R' O R) with minimal states; provided that

() n(e) is minimal iff e = g

(i) ded Acdey), n(e) is not minimal=0edE, OrOR', e -, e'n(e") <n(e)

R' is awell-founded subseif R such that each rule @R’ decreases. To prove the termination, we
associate &'-normfunctionn with the system such that decreases each time an action is executed
by the system and is minimal for the state we wish th&tesy reach. This means that no matter what

state the system goes to, it must always get to its hetate.

4.5.2. Modelling
4.5.2.1. Problems related to the mod

The time does not exist in the event model. Thus, itickyr to model events whose occurrences ¢

to temporal constraints. Scheduling may also be tedicasihyeved. The ncexistence of time implies
sometimes uncontrolled event occurrences which express cordigasily avoidable in the real
system. The time abstraction can not be an inconveniemme ¢she model allows to describe a
behaviour which includes the real system behav

4.5.2.2. Modelling choice

To model our system we choose an approach based on thecthaation of its states. T
communication chain is composed of a set of modules aednamunication channel. The module
state is defined by the values of its variables and ttennkl state is defined by the set of messages
sent but not yet received. The system state is then@lfity a combination of the states of the whole
modules and the channel. In this way, we can study the sybBtemeans of its states and the actions
which make it change from one state to another. An instafi@m action is called an event and each
sequence of events expresses the system behe

We assume that the system is composed of an infiniteyafmod[]) of modules. Each module

indexed with its identity that designates it in an uréquanner. We give the structure components of a
module which are used to prove the correctness of the #hgoiin the next section.

Array of modules indexed with Id

mod[ld] Id: Integerd {-1} is the module identity
MLev: [1,..., n]0{-1} expresses the module level in the chain
Pred: Id0 {-1} is its predecessor's identity

Succ: Id0I {-1} is its successor'sidentity

State: [Non-existent, Generated, WaitConnPred,
WaitConnSucc, Connected, WaitReConnPred]

mod[ld] is the module indexed by its identity Id. When a cament is not defined, we give it the -1
value. We use a global variable Next to allocate an umigientity for each module.

Initially, all the modules have their State component edadllon-existent and Next is equal to «

().

The channel is modelled by a multi-set "Channel". Theatldht types and contents of the exchal
messages are given in the following. We give the only necessapgages that are used to prove the
correctness of the algorithm in the next sect

New = (type = New, Sender, receiver, source-sender, L
AckNew = (type = AckNew, Sender, receiver, final-recei

Two actions are defined on the messa
e Channel :=Channel-m, expresses the reception of the message m.
e Channel := Channel + (type, compl, comp2, ...), expressestiwsion of the
message (type, compl, comp2, ...).
Moreover,
e Channek m, expresses that there is at least one message mdahamael.
e Channe = [0, expresses that the channel is err

4.5.2.3. Proo

The assertions-oriented method lies on predicates thanh @xpress system global variables. In
way, the user has a general view of the system and carltbier master its evolution in case of event
instances

For sake of simplicity and lack of place, we give the eatness of the algorithm for the ch
building in a reliable environmel

At each time, in the chain building step we have:

lo: 00<k<Nmodulesi, i <k = mod[i].statez Non-existent

which expresses that k modules have been generated. dllsrihth of the chain we want to build.
Thel invariant which expresses all the states stemming fromltarithm execution, i.e. the states of
the k modules and the channel, is defined as fol

| = IoAND (1 4¢ep OR I;OR I, OR I30R 1,0R 15)

where
Ideb: k=0, The building is not started
I Oi O [1k2], mod]i] .state = Connected
mod[k-I] .state = WaitConnSucc
mod[k] .state = Generated
| 5 Oi O [1k2], mod[i.state = Connected

mod[k-I] .state = WaitConnSucc
mod[K] .state = WaitConnPred

Channel =m, m.type=New
| 3 Oi O [1k41], mod[i].state = Connected

mod[K] .state = WaitConnPred

Channel = m, m.type = New
| 4 Oi O [1k41], mod[i].state = Connected

mod[K] .state = WaitConnPred

Channel =m, m.type = AckNew
| 4 Oi O [1k. mod]i] .state = Connected

Channel =0
k=N

Informally, thel 4, predicate takes into account the system states for whigltchain building has n
started. This predicate becomes and remains true aisasothe initialization starts. The last predicate
I's allows to express the termination condition of the building. ®tteer predicates take into account
the situations where the building is still in progrt

We show now that the previously defined invariant remains whatever the action that can cha
state to the system. For that, we systematically salbghe actions which can altér We consider one
by one each predicate bfand establish that if an action of the system altBesconsidered predicate,
then one of the others predicatesl becomes true.

Let I, be true. The only one possible event is the sending of a Megsage by the k-th module. Two
cases are possible. If the k-th module is the initial ond)(kthen it generates a successor andlthe
predicate remains true. Otherwisez{}}, it sends its identity (included in a New message)tto i
predecessor and changes to the WaitConnpred state. Tdnisl atliut make true .

We proceed in the same manner with the others predicatetemnonstrate thal is an inductiv
invariant since we take into account all the possioles of the syster

5. Conclusio

We have presented an algorithm providing fault-tolerance dgered distributed systems. From
OSI model, we have considered a communication chain. @uarithm ensures the building and the
preserving of the chain in a unreliable environment. Thisdhieved by introducing the dynamic
regenera tion of faulty elements. In contrast to otherthnds, the dynamic regeneration method
tolerates an unlimited number of failures with a sierabverhead. Naturally this technique is c
applicable for software architectures. The correctnésiseoalgorithm is formally prove

At the prospect, the generalization of the dynamic regermreid any architectures where e
component has one predecessor and one or more successerkind of architectures includes ring,
tree and so on which are most often oper:

Reference

[1] A. Avizienis, TheN-version Approach to Fault- ToleranEEE Transactions on Software
Engineering vol n° 12, December 1985.

[2] G.W. BRAMS (collective name)Réseaux de Petri: Theorie et pratiqugdited by
Masson, Vol. 1 and 2, Paris, 1982 and 1983.

[3] J. Henshall, S. Shav)SI1 EXPLAINED End-to-End Computer Standar@iscond
Edition, Ellis Horwood limited, 1990.

[4] R.M. Keller, Formal Verification of Parallel ProgramsCommunications of the ACM,
July 1976, Vol. 19, No.7, pp. 371-384.

[5] R. Milner, Communication and Concurrendgdited by Prentice Hall, 1989.

[6] V.P. Nelson,Fault-Tolerant Computing: Fundamental Conce@$MPUTER, July
1990.

[7] B. Randell,Design Fault Tolerancelhe evolution of Fault-Tolerant Computing, A.
Avizienis, H. Kopetz, J-C. Laprie, Edited by Springerfiag 1987, Vol. 1, pp 251-270.

[8] S.S.B. Shi, G.G. BelforcConsistent Replicated Transactions, A highly Reliable Program era
EnvironmentEighth Symposium on Reliable Distributed Systems, Smattlashington, October
1989, pp 30-41.

[9] N.A. Speirs , P.A. BarettlJsing passive Replicates in DELTA-4 to provide dependable
distributed computingl9-th Fault-Tolerant on Computing Systems, 1989.

[10] P. Thambidurai, K.S. Trivedifransient Overloads in Fault-Tolerant Real-Time
SystemsReal Time Systems Symposium, Santa Monica, Califort®89, pp 126-13

