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Abstract In this paper, we present an algorithm to compute structural
deadlocks in colored nets under specified conditions. Instead of applying the
ordinary algorithm on the unfolded Petri net, our algorithm takes advantage of
the structure of the color functions. It is obtained by iterative optimizations of
the ordinary algorithm. Each optimization is specified by a meta-rule, whose
application is detected during the computation of the algorithm. The
application of such meta-rules speeds up a step of the algorithm with a factor
proportional to the size of a color domain. We illustrate the efficiency of this
algorithm compared to the classical approach on a colored net modelling the
dining philosophers problem.

1 Introduction

Analysis techniques of Place-Transition nets [1] can be grouped in two broad
classes. The first approach consists in building the reachability graph, which gives
full information but is usually very expensive [2].

Another approach - the structural analysis - consists in getting information
about the behavior of the model directly from the structure of its underlying bipartite
and valuated digraph, the initial marking being considered as a parameter [3]. Two
kinds of structural analysis can be distinguished:

• The algebraic analysis, where the structure of the net is represented by the
incidence matrix associated with its underlying digraph. It provides results such as
conditions for liveness and boundedness of the net, or linear invariants [4] [5].

• The graph theoretical analysis, where the behavior of the net is related to the
flow relation of subnets generated by remarkable subsets of places, such as structural
deadlocks and traps [6]. With such techniques, liveness can be decided in
polynomial time for different classes of nets [7] [8] [9].

However, modelling real complex systems yields so large models that it is
difficult to handle the complexity of both the structural and the reachability



analyses. Thus High-Level nets - Predicate/Transition nets [10] or Colored nets [11]
have been introduced to concisely model large systems. In order to take advantage of
this high-level description, the analysis of the model must be performed without
refering to its equivalent unfolded net, i.e., a place-transition net with the same
behavior. Thus, a lot of research is being done to directly apply to High-Level nets
analysis techniques similar to those existing for Place-Transition nets.

The present paper is a contribution to graph theoretical analysis for colored nets.
On Place-Transition nets, this approach uses the flow relation of subnets generated
by structural deadlocks and traps, which are remarkable subsets of places. For these
nets, the problem of finding structural deadlocks was attacked from different points
of view. The technique of computing strongly connected deadlocks via a positive
flow calculus on an expanded net [8] was optimized and extended to the class of
Unary Predicate-Transition nets without guards [12]. The application of this method
to less restrictive classes requires a generalization of positive flow computation [13],
which seems to be a very difficult task [14]. In any case, the problem of obtaining
the set of minimal deadlocks by means of flow computation is NP-complete.

In [15], the problem is expressed as a logic programming problem, leading to
identify structural deadlocks (traps) with the set of solutions of a Horn-clause
satisfiability problem. In colored nets, the flow relation is defined by both the
underlying bipartite digraph and the functions labelling the arcs. Hence, a deadlock
of a colored net may not correspond to a deadlock of the net’s skeleton in the sense
of [16], while the converse is true. Yet, for a restricted class of colored nets, the
problem of finding deadlocks can be reduced to the problem of finding deadlocks in
the skeleton [17], and the technique proposed in [15] could be exploited. But an
efficient extension of the method to general colored nets is still an open problem.

In this paper, we develop a method for solving efficiently the following problem
Pb  by reasoning directly on the color functions, i.e., without an effective unfolding.

Pb: For any pair of disjoints subsets of places Pexc and Pinc,

find a structural deadlock D such that D ∩ Pexc = ∅ and Pinc ⊂ D,

or decide that no such deadlock exists.

The paper is organized as follows. Section 2 introduces a property of deadlocks
which yields propositional deduction rules. These rules are used in an algorithm that
solves problem Pb for Place-Transition nets. We then extend this approach to
colored Petri nets, rewriting the algorithm in terms of deduction rules of first order
logic.

In Section 3, we optimize the applications of the previous rules by defining meta-
rules. These meta-rules transform a set of rules so that one application of a
transformed rule corresponds to the application of several initial rules.

In Section 4, we present the optimized algorithm that exploits the effects of these
meta-rules, and we apply it on a model of the dining philosophers. Then we
compare its execution on a colored net with the execution of the ordinary algorithm
on the equivalent unfolded net. Section 5 contains the perspectives of this work.



2 Structural Deadlocks in Colored Nets

In the first part of this section, we recall the basic notations of Petri nets,
together with the definition of a deadlock. We then extend this definition to colored
Petri nets. Finally, we show on an example how the color functions of a model could
be exploited to improve the efficiency of deadlock characterization algorithms.
2.1  Structural Deadlocks in Ordinary Petri Nets

Definition 2.1 A Petri net N is a 4-tuple <P, T, W-, W+> where
P is a finite set of places,
T is a finite set of transitions,

W- (resp. W+) : P × T →  is the input (resp. output) function.

We also define the input set and output set of a subset of places, which contain
respectively the input and output transitions of the places under consideration.

Definition 2.2 Let p ∈ P. The input (resp. output) set of p, denoted by •p
(resp. p•) is defined as:

•p = {t ∈  T | W+(p, t) ≠ 0}

(resp. p• = {t ∈  T | W-(p, t) ≠ 0})
This definition can be extended to a subset D of places:

•D  = •p ∪
p ∈ D 

          (resp.     D•  = p•∪
p ∈ D 

)

A similar definition exists for transitions.

Definition 2.3 Let t ∈ T. The input (resp. output) set of t, denoted by •t (resp.
t•) is defined as :

•t = {p ∈ P | W-(p, t) ≠ 0} (resp. t• = {p ∈ P | W+(p, t) ≠ 0})

We now give the definition of a structural deadlock:

Definition 2.4 Let D be a non-empty subset of places. D is a structural
deadlock iff     •D ⊂  D•.

The following property states that if no input place of a transition belongs to a
deadlock, then the output places of this transition neither belong to the deadlock.
Such a property is introduced since it leads to the construction of maximal
deadlocks.

Property 2.1 Let D be a non-empty subset of places. We have:
[ ∀ t ∈ T, •t ⊂ (P \ D)   �   t• ⊂ (P \ D) ]   ⇔   D is a structural deadlock



Proof: If we consider the negation of the left-hand part of the property, we
can write:
[∀ t ∈ T,   ∃ p∈  D, p∈ t•  �  ∃ p' ∈ D, p' ∈ •t ]  ⇔  D is a deadlock.
but we also have  ∃ p ∈ D,  p ∈ t• ⇔  t ∈ •D
and ∃ p' ∈ D,  p' ∈ •t ⇔ t ∈ D•
Hence, the left-hand part of the property is equivalent to:

∀ t ∈ T, t ∈ •D  �  t ∈ D•
which is the definition of a structural deadlock.

Actually, Property 2.1 defines removal rules according to which places that do
not belong to a deadlock can be eliminated from the net. We know that a place
cannot belong to a deadlock if it is an output place of a transition such that no input
place of this transition belongs to the deadlock.
Definition 2.5

• Let t ∈ T. Then R(t) is the removal rule associated with t and is written as:

R(t) : •t   �   t•

• Let E be a subset of P. Then R(t) is applicable on E iff •t ⊂ E. The
application of t on E is given by   E := E  ∪  t•.

We will call hypothesis the left-hand part of the rule, whereas the right-hand
part will be called conclusion. Using Definition 2.5, we can write a generic
algorithm for finding a structural deadlock satisfying two constraints:

• places contained in a set called Pexc must not belong to the deadlock,

• places contained in a set called Pinc must belong to the deadlock.

The principle of the algorithm is simple: a set R is initialized with all the rules of
the net, a set Removed is initialized with the set Pexc and we try to apply on

Removed the different rules of R, i.e., to remove the places that do not belong to the
deadlock. When no more rule is applicable, we verify that Pinc is included in the

complementary of Removed. If so, the algorithm has produced the maximal
deadlock satisfying the constraints. Else, there is no deadlock satisfying these
constraints.
Abstract Algorithm 1

Removed := Pexc
While ∃ t such that R(t) is applicable on Removed do

Apply R(t) on Removed
Delete R(t) in R

done;
Deadlock := P \ Removed
If Pinc ⊂ Deadlock and Deadlock ≠ ∅ then return
(success,Deadlock)
else return(failure)

An optimized implementation of this algorithm [15] requires an execution time
proportional to the size of the net (expressed as the sum of the number of nodes and
arcs). In the next section we extend the definitions and the algorithm to colored
nets.



2.2  Structural Deadlocks in Colored Nets

Before giving a formal definition of a structural deadlock in a colored net, we recall
the notations associated with this model.

Definition 2.6 A colored Petri net N is a 5-tuple <P, T, C, W-, W+> where
P is a finite set of places,
T is a finite set of transitions,
C is the color function, mapping P ∪ T onto Ω, where Ω is some finite

set of finite and non-empty sets. C(s) is called the color set of s.

W- (resp. W+) is the input (resp. output) function defined on P × T, where

W-(p, t) (resp. W+(p, t)) is a function from C(t)MS to C(p)MS.

In this definition, EMS denotes the set of multisets over a set E. Informally, an

element of EMS is a subset of E where the same element can appear several times.

Notation:

In the rest of this section, we will use PC to denote the set [∪p ∈ P {p} × C(p)], i.e.,

the set containing couples of places and associated color instances.

Definitions 2.7 and 2.8 are the extension to colored nets of Definitions 2.2 and 2.3.

Definition 2.7 Let p be a place, and c ∈ C(p) be a color instance of p. The
input (resp. output) set of (p, c) is defined by the set •(p, c) (resp. (p, c)•)

•(p, c) = {(t, c')  |  W+(p, t)(c')(c) > 0}

(resp. (p, c)• = {(t, c')  |  W-(p, t)(c')(c) > 0})
This definition can be extended to a subset D ⊂ PC, i.e., a subset D of places with
associated color instances:

•D  = •(p, c) ∪
(p , c) ∈ D  

          (resp.     D•  = (p, c)•∪
(p , c) ∈ D  

 )

Definition 2.8 Let t be a transition, and c ∈ C(t) be a color instance of t. The
input (resp. output) set of (t, c) is defined by the set •(t, c) (resp. (t, c)•)

•(t, c) = {(p, c')  |  W-(p, t)(c)(c') > 0}

(resp. (t, c)• = {(p, c')  |  W+(p, t)(c)(c') > 0})

Now the formal expression of the definition of a structural deadlock is quite similar
to the definition of a deadlock in an ordinary Petri net.

Definition 2.9 Let D be a non-empty subset of PC. D is a structural deadlock
iff       •D ⊂ D•.



In the same way as we did for ordinary Petri nets, we now give a property that is
equivalent to the definition of a deadlock.

Property 2.2 Let D be a non-empty subset of PC. We have:

[ ∀ (t, c) ∈ [∪t ∈ T {t} × C(t)],      •(t, c) ⊂ (PC \ D)   �   (t, c)• ⊂ (PC \ D) ]  

⇔   D is a structural deadlock

The proof of this property is quite similar to the proof of Property 2.1.

In order to extend the algorithm computing the maximal structural deadlock that
verifies some conditions, we extend the definition of removal rules to colored nets.
Considering a transition t and an associated color c, we know from Property 2.2 that
if no input place of (t, c) in the unfolded net belongs to a deadlock, then also none of
the output places belongs to this deadlock. Hence, we introduce a function that gives
for each place p the set of colors of p that are input (resp. output) of (t, c). These
functions map the color domain of t onto the powerset of the color domain of p, i.e.,
the set of subsets of C(p), that we denote by P[C(p)] .

Definition 2.10 Let p be a place and t be a transition. The function Γ-(p, t) :
C(t) → P[C(p)] defines for every color instance c of t the corresponding input
colors in p:

Γ-(p, t)(c) = {c' | W-(p, t)(c)(c') > 0}

The output colors are defined by Γ+(p, t) : C(t) → P[C(p)]

Γ+(p, t)(c) = {c' | W+(p, t)(c)(c') > 0}

However, we already know that if there is no arc between p and t (resp. t and p),

the set Γ-(p, t)(c) (resp. Γ+(p, t)(c)) will be empty for any value of c. Hence, we need
to determine which places and transitions are connected, disregarding the color
functions. The sets •t and t• that we define now are the sets that would be calculated
on the ordinary Petri net obtained when ignoring the color functions on the arcs.

Definition 2.11 Let t be a transition. The input (resp. output) places of t are
defined by the set •t (resp. t•):

•t = {p ∈ P  |  ∃ c ∈ C(t),  Γ-(p, t)(c) ≠ ∅}

(resp. t• = {p ∈ P  |  ∃ c ∈ C(t),  Γ+(p, t)(c) ≠ ∅})

The following definition introduces new notations that allow a more compact
expression of set of places and associated colors.
Definition 2.12 Let p and q be two places, E and F be subsets of C(p) and C(q)
respectively. We define:

• [p, E]  =  {(p, c) | c ∈ E}
• [p, E]  ∧ [q, F]  =  [p, E] ∪ [q, F]

Now we have all the elements that allow us to define the rules, whose application
will determine if a place belongs to a deadlock or not.



Definition 2.13

• Let t ∈ T. Then R(t) is the removal rule associated to t and is written as:

R(t) :    [p, Γ -(p, t)]∧
p ∈ •t

  �  [p, Γ+(p, t)]∧
p ∈ t •

• The color domain C[R(t)] of the rule is the color domain of the transition.
• Let E be a subset of PC, and c ∈ C[R(t)]. R(t) is applicable for c on E iff

[p, Γ -(p, t)(c)]∧
p ∈ •t

  ⊆ E 

• The application of R(t) for c on E is given by

E := E ∪ [p, Γ+(p, t)(c)]∧
p ∈ t •

We use removal rules to write an algorithm that computes structural deadlocks.
We first define a set Pexc (resp. Pinc) of places and associated color instances that

are excluded from the deadlock (resp. that must belong to the deadlock). We
initialize a set R with the rules of the net, a set Removed with Pexc and we try to

apply the removal rules. If a rule R(t) is applicable for a color c, we add the output
places of (t, c) to Removed, i.e., we remove these places because they cannot belong
to the deadlock, and we also remove c from the color domain of the rule. When this
color domain is empty, we remove the rule from R. When no more rule is
applicable, places that have not been included in Removed form the maximal
deadlock under the constraints of Pexc. If Pinc is included in the complementary of

Removed, then the research has been successful.

Abstract Algorithm 2

Removed := Pexc;

While ∃ t and c such that R(t) is applicable for c on Removed
do

Apply R(t) for c on Removed ;
C[R(t)] := C[R(t)] \ {c};
If C[R(t)] = ∅ then Delete R(t) in R;

done;
Deadlock := PC \ Removed;
If Pinc ⊂ Deadlock and Deadlock ≠ ∅ then return (success,
Deadlock)
else return (failure)

Clearly, the complexity of this algorithm depends on the size of the unfolded net,
even if we extend the optimized version that exists for ordinary Petri nets. But such
an algorithm does not exploit at all the structure of the color functions, which
corresponds to particular structures of the graph of the unfolded net. Actually, these
functions often have a regular structure that can be used to optimize the application
of removal rules. We present two examples of this optimization in the next section.

2.3  Two Introductory Examples



In this section, we present two structures of ordinary Petri nets that correspond to
usual color functions, and we show how these color functions can be exploited to
improve the efficiency of algorithms for finding structural deadlocks.

The first case where we can benefit from the color functions is the case where
several places of the unfolded net can be eliminated at the same time, because their
input transitions have the same input places. This is what we call "parallel
deduction". We show on an example how it works. Let us consider the colored Petri
net in Figure 1. The removal rule associated with the transition of the colored net is:

[P1, ε]  �  [P2, X]

But when considering the unfolded net, we immediately remark that places P2a,
P2b and P2c have the same set of input places, namely place P1. Hence, instead of
trying the possible assignments of variable X, if we already know that P1 does not
belong to a deadlock, we could eliminate all of the instances of P2 at the same time.

To do so, we should rewrite the former removal rule as:

[P1, ε]  �  [P2, C1.all]

where function  C1.all  is defined by :       C1.all(x)  =   {x}∪
x ∈ C1

 

P1

class C1 is [a, b, c]; 

X

P1

P2

P2cP2bP2a

P1

unfolding
transformation  
of the rule

P2cP2bP2a

Fig. 1: Parallel deduction

The applicability of this new rule does not depend on any variable, whereas the
original rule required the assignment of X. Hence, the number of applications of the
rule is divided by the cardinality of the class on which X is defined.

We consider now the colored net in Figure 2, whose graph contains a loop.
According to Property 2.2, we know that (P, a) cannot belong to a deadlock, and
then according to Definition 2.13, the removal rule associated with T1 is:

True  �  [P, a]

If we consider now transition T2, the associated removal rule is:

[P, X]  �  [P, X++1]

where X++1 stands for the successor function, modulo the color class. By trying
successively the different assignments of this rule, we deduce that if (P, a) does not
belong to a deadlock, then neither (P, b) nor (P, c) belongs to the deadlock. In fact,
the successive applications of the rule are equivalent to finding a deadlock in the
unfolded net. These successive applications are what we call "iterative deduction".



However, if we try to iterate the application of the rule before any assignment,
then we immediately find that this rule can be replaced by the following rule:

[P, X]  �  [P, C.all]

for which only one application is necessary in order to obtain the wanted
information. The application of this new rule, combined with the application of the
rule associated with T1 ensures that no occurrence of P belongs to a deadlock. With
this rule, the number of steps of the removal algorithm is divided by the cardinality
of the color domain of T2.

In fact, the transformation of the rule is based on the cyclic structure of the graph
of the colored net. One lap in the colored cycle provides information, through the
color functions, on the color instances of places that must be excluded from the
deadlock. This information is immediately reused to try to obtain more results.

Hence, by a combination of the color functions that appear in the cycle, we
obtain directly the information given by a repeated application of the original rule.

These two examples show that for particular structures of the unfolded net,
represented by specific structures of both the color functions and the graph of the
net, the deadlock computation algorithm can be improved.

unfolding

class C is [a, b, c];

P

a

T1

T2

XX++1

T1a

Pa

Pb

Pc

T2a

T2b

T2c

T1a

Pa

Pb

Pc

T2a

T2b

T2c

transformation  
of the rule

Fig. 2: Iterative deduction

What we have presented on the examples is in fact a very general approach,
namely transforming the removal rules of the unfolded net by applying meta-rules
on them. In order to obtain automatic transformations, we develop and formalize the
approach in the next section.

3 Removal Rules and Meta-Rules

The aim of the meta-rules is to rewrite removal rules in order to improve their
application. At every step of the computation of a deadlock, one application of a rule
must provide as much information as possible. The computation of a deadlock relies



on the initial creation of one rule per transition of the net. A meta-rule is a
transformation that applies to a rule R, or to a set of rules, and that produces a new
rule R', or a set of new rules. A meta-rule can modify not only the rule, but also its
color domain, i.e., the possible assignments of the variables that appear in the rule.
The application of a meta-rule transforms a rule in such a way that one application
of the new rule corresponds to a series of applications of the original rule in the
unfolded net. The efficiency of the approach is thus linked to the number of ordinary
rules that have been replaced by this transformation.

As removal rules correspond to transitions, we can identify a set of rules with the
colored net from which they have been written. The modification of a rule that
results from the application of a meta-rule can be seen as a transformation of the
associated Petri net. Based on this identification, we extend to rules notions that
exist for colored nets. The skeleton of a rule will be the set of places that appear in
the rule, disregarding the color instances that are associated with these places. We
will also use p• to denote the set of rules for which p appears in the hypothesis.

3.1  Basic Meta-Rules

In an ordinary Petri net, the algorithm for computing a structural deadlock
consists in removing the places that cannot belong to the deadlock. In a colored
Petri net, we only remove color instances of the places. However, if all the instances
of a place have been removed, then we can remove the place. Removing the place
from the net is equivalent to remove it from the rules. Actually, in both cases this
suppression accounts for the fact that nothing more will be proved for this place, and
also that any hypothesis requiring that a subset of color instances of this place does
not belong to the deadlock will be true. Hence, our first meta-rule consists in
removing the places for which everything has been proved.
Definition 3.1 (MR1)  Let p0 be a place such that no element of [p0, C(p0)]

belongs to a deadlock. Then meta-rule MR1 consists in replacing rule R by rule R'
such that C(R') = C(R) and:

R :     [p, fp]∧
p ∈ P1

  �  [q, fq]∧
q ∈ P2

R' :    [p, fp]∧
p ∈ P1\{p0}

  �  [q, fq]∧
q ∈ P2\{p0}

Once MR1 has been applied, some rules may no longer have a conclusion. These
rules can be removed because they will give no further information.

Definition 3.2 (MR2)  Let R be a rule whose conclusion is empty. Then meta-rule
MR2 consists in removing R.

The two former meta-rules do not depend on the color functions that appear
around the transition corresponding to rule R. Hence, they can be applied on the
skeleton of the colored net as well. We present now two meta-rules that improve the
removal process by using the structure of the colored net through the color
functions.



 3.2  Parallel Deduction

The following meta-rule corresponds to the parallel deduction process. As we
have shown on the example of Section 2.3, we can define a meta-rule exploiting the
case where the hypothesis of a rule is partially independent of the conclusion. The
meaning of this meta-rule can be explained as follows. We recognize on the color
functions around a transition that, in the unfolded net, some transitions have the
same input places. The semantics of the meta-rule is then to substitute all these
transitions by a unique transition, whose input places are those common input places
and whose output places are the union of the output places of the transitions. And
the substitution is performed at the colored net level.

In order to give a formal expression of this meta-rule, we introduce two
functions:
Definition 3.3 Let C1 and C2 be two sets.

•   The projection π of C1 × C2 on C1 is defined by: π(<x, y>) = x
•   Σ is a function on C1 that defines the sum over the elements of C2:

Σ (x)  =  {<x, y>}∪
y ∈ C2

Consider now a rule R with a domain C(R) = C1 × C2, where C1 and C2 can in
turn be Cartesian products of color sets. For a partial independence of the hypothesis
and the conclusion, we want a condition on the color functions in the hypothesis,
such that the hypothesis is verified independently of the assignment of the variable
in C2.

A necessary and sufficient condition is that the functions of the hypothesis can be
written as  gp = fp o π, where fp is a function defined on C1. After the application of

the meta-rule, the composition of function fp with a projection is no longer

necessary, as the domain of the rule has been reduced to C1.

In the conclusion of rule R, a function fq that applies to C1 × C2 is associated to

each place q. But the aim of the meta-rule is to obtain a new rule, whose domain is
only C1 and whose conclusion is the union of the conclusions obtained for all the
assignments of the variable in C2. Hence, once an assignment has been done for the
variable in C1, we first compute all the couples that associate this assignment to an
element of C2. This is done by applying function Σ. Then we apply fq to all these

couples.
Definition 3.4 (MR3)  Let R be a rule whose domain can be written as C(R) = C1 ×
C2, and whose expression is:

R :     [p, fp o π]∧
p ∈ P1

  	  [q, fq]∧
q ∈ P2

Then the meta-rule MR3 produces a new rule R' whose domain is C(R’) = C1, and
whose expression is :

R' :    [p, fp]∧
p ∈ P1

  	  [q, fq o Σ]∧
q ∈ P2



However, the problem is to detect in which cases this meta-rule can be
applied. The easiest to detect and also the most frequent case is when the expression
of a rule contains in the conclusion a variable that does not appear in the hypothesis.
The application of the meta-rule then consists in replacing this variable by the
constant representing all the elements of the domain of the variable.

We now present the last meta-rule that corresponds to the iterative deduction
process.

3.3  Iterative Deduction

The following meta-rule corresponds to the iterative deduction process. As we
have shown on the example of Section 2.3, we can define a meta-rule exploiting the
case where there exists a circuit such that each of its transition has only one input
place in the graph of the Petri net. We call external places w.r.t. a circuit places that
are connected to a transition of the circuit but do not belong to the circuit. We are
thus interested in circuits without external input places.

Moreover, if the functions valuating the input arcs of the transitions of the circuit
are all identity functions, then all the transitions of the circuit only have one input
place in the unfolded net. Hence, if a place of the unfolded circuit does not belong to
the deadlock, then no descendant of this place obtained by a path meeting only
transitions of the circuit can belong to the deadlock.

The meaning of the meta-rule can be explained as follows. We substitute to the
output places of a transition the set of descendant places of this transition. This set
of places can be obtained by computing the transitive closure of the subnet under
consideration. An algorithm for this computation can be found in [18]. It uses the
transitive closure of a color function that we recall now.

Definition 3.5 Let E and F be two sets, f be a function P(E) → P(F). The

transitive closure f* of f is defined by:

c' ∈ f*(c)   ⇔  ∃ n 
 0 such that c' ∈ fn(c)

where fn = f o…o  f  (n times).

For the sake of clarity, we first present a simplified version of the meta-rule. In this
version, we only consider a circuit without external output places.

Let p0, …, pn-1 be the places belonging to the circuit, and let fi be the color function

valuating the input arc of place pi+1. Starting from an instance c of pi, we can reach

the descendant instances c' of pj that are such that:
c' ∈ fj-1 o . . .ofi(c)

Hence, as the graph is cyclic, from an instance c of pi, we may reach all the

instances c' of pi that are such that
c' ∈ fi-1 o . . .ofi(c)

But these instances may in turn reach instances c" such that



c" ∈ fi-1 o . . .ofi(c'), i.e., c" ∈ fi-1 o . . .ofi o fi-1 o . . .ofi(c)

By repeating the process, from an instance c of pi, we can reach the descendant

instances c' of pi that are such that
c' ∈ (fi-1 o . . .ofi)

*
(c)

As know how to compute the colors that can be reached from these colors of pi for

any place pj belonging to the circuit , we can now give the general expression of the

meta-rule for a circuit without external output places.

Definition 3.6 (simplified MR4)
Let p0, …, pn-1 be n places belonging to a cycle of the colored net. Let ti be the

output transition of pi in the cycle, and Ri be the rule associated with ti. If Ri has

the following expression:

Ri :    [pi, id]  �  [pi+1, fi]

the application of the meta-rule transforms Ri in R'i such that:

R'i : [pi, id]
�

[pj, fj-1 o . . .ofi o(fi-1 o . . .ofi)
*
]∧j = 0

n-1

where the operations on the indices are performed modulo n.

The introduction of external output places does not change the expression of the
color functions, but these places must now appear in all the rules. The meta-rule
becomes:

Definition 3.7 (MR4)
Let p0, …, pn-1 be n places belonging to a cycle of the colored net. Let ti be the

output transition of pi in the cycle, and Pi be the set of output places of ti that do

not belong to the cycle. Let Ri be the rule associated to ti. If Ri has the following

expression:

Ri :    [pi, id]    [pi+1, fi] [q, gq]∧
q ∈ Pi

the application of the meta-rule transforms Ri in R'i such that:

R'i : [pi, id]
�

[pj, fj-1 o . . .ofi o(fi-1 o . . .ofi)
*
]∧j = 0

n-1

[q, gq ofj-1 o . . .ofi o(fi-1 o . . .ofi)
*
]∧q

∈
Pj

where the operations on the indices are performed modulo n.

We have considered only identity functions on input arcs. The result can be
easily extended to the case where the functions on input arcs are bijective, by using
the same kind of transformation as for reductions in colored nets [19].



4 An Algorithm to Compute Structural Deadlocks

4.1  Presentation and Definition of the Algorithm
This algorithm differs from Algorithm 2 on the two following points:

•  The occurrence of places in rules is used only at the "skeleton" level.
• The structures of both the color functions and the skeleton are exploited by

meta-rules MR3 and MR4.

More precisely, the algorithm works as follows. The first step (instructions 1-7)
initializes the color instances of places that are excluded from the deadlock, the
rules to be examined - those with a hypothesis containing a place for which at least
one color is excluded from the deadlock - and tries to apply the meta-rules once.

The main loop (instructions 8-20) then applies one rule at a time with all the
possible assignments, updating the excluded color instances of places and the rules
to be examined. The main optimization (instructions 15-17) is the detection of the
application of the meta-rules; due to the test in (15), the execution of instruction 16
always applies at least one meta-rule (see below). In this loop, all the control
instructions work at the skeleton level and colors only appear in the application of
an ordinary rule. The end of the algorithm (instructions 21-22) is identical to that of
Algorithm 2. The algorithm is developed below.
Notation Given E, some subset of PC, we need to know the subset of colors of a
place included in E. So we introduce the following notation: E.p = {c | (p, c) ∈ E}
Abstract Algorithm 3

(1) Compute the elementary circuits of the skeleton
(2) Removed := Pexc
(3) To_Examine := ∅
(4) For all place p such that Removed.p ≠ ∅ do
(5) Insert p• in To_Examine
(6) done
(7) Apply the Meta-rules on Removed
(8) While To_Examine ≠ ∅ Do
(9) Extract R from To_Examine
(10) A := {c | R is applicable for c on Removed}
(11) For all c in A do
(12) Apply R for c on Removed ;
(13) For all p such that Removed.p has increased do
(14) Insert p• in To_Examine;
(15) If Removed.p = C(p) then
(16) Apply the Meta-rules
(17) endif
(18) done
(19) done
(20) done
(21) Deadlock := PC \ Removed
(22) If Pinc ⊂ Deadlock and Deadlock ≠ ∅ then

return (success, Deadlock)
else return (failure).



Explanations and details of implementation

(1) In order to apply meta-rule MR4, we compute all the elementary circuits of
the skeleton. We choose to compute the circuits before eliminating the places in Pexc
because the result of this computation can be used for different problems on the
same net, such as the research of deadlocks and traps, or the research of deadlocks
with different conditions, namely different sets Pexc.

The computation of the circuits can be done in a time proportional to the product
of the size of the skeleton and the number of circuits [18]. Anyway, this time is
independent of the size of the color domains, which is the relevant criterion of
complexity for colored nets. To test efficiently if a circuit fulfils the condition of
MR4, we associate to each circuit the number of external input places and we link
each place to the circuits of which it is an external input place. Each time we apply
MR1, we update these numbers and see if new applications of MR4 are possible.

(3),(5),(8),(9),(14) To_Examine is a set-type variable which provides a
termination test to the algorithm. Again the updating of this variable is related to
the skeleton of the set of rules. Each time a color of a place is added to Removed, the
rules with this place appearing in the hypothesis are selected for examination. With
a link between a place and each rule where the place appears in the hypothesis, the
updating of To_Examine is quick.
(10),(12) These steps are the most time-consuming ones and they depend on the
color domains. Many heuristics, used in simulation techniques, (and already
applicable to Algorithm 2) optimize this step but the complexity remains color
domain dependent. But the aim of Algorithm 3 is to reduce the color domain of the
rules and to transform the conclusions of the rules in such a way that the cost of
testing is minimal and the information brought by the application of the rule is
maximal.

(13),(15) The evolution of Removed.p can easily be memorised with two
counters, one for the current cardinality and one for the preceding one. Hence these
two tests are a comparison of integers. If the test of instruction (15) is successful, we
already know that we can apply the deletion meta-rule MR1 on place p, and possibly
any of the three other meta-rules:

• MR2 becomes applicable if p was the last element of the conclusion of a rule
• MR3 becomes applicable if p appeared in the hypothesis of a rule and

determined part of the assignment. This can be detected by a very simple
syntactic analysis of the color functions, such as for instance the vanishing of
a variable in the hypothesis of a rule. The next section will give an
illustration of this.

• MR4 becomes applicable if p was the last external input place of a circuit.

One can see that the overhead time added by the test of the meta-rules is
minimal and once again independent of the color domain.

4.2  Application: The Dining Philosophers



The net in Figure 3 models the dining philosophers, in the case where they do
not take both forks at the same time. Initially all the philosophers are Thinking and
all Forks are free. When a philosopher X wants to eat, he takes his right fork
(X++1) and Waits for his left fork (X). If his left fork is free, then he Eats. When
he stops eating, he releases the two forks and starts thinking again. We will use C to
denote the set of philosophers (and of forks).

We are looking for possibly deficient, i.e., insufficiently marked deadlocks. For
the philosophers net, such a deadlock may appear with waiting philosophers.

So we look for deadlocks that do not contain place Wait, and we start our
algorithm with Pexc = [Wait, C(Wait)] and Pinc = ∅. The rules associated with

transitions T1, T2 and T3 respectively are:

R1 [Think, X] ∧ [Forks, X++1] � [Wait, X]
R2 [Wait, X] ∧ [Forks, X] � [Eat, X]
R3 [Eat, X] � [Forks, X + X++1] ∧ [Think, X]

We first (instruction 1) compute the elementary circuits and we find three ones:

(Think, Wait, Eat ), (Forks, Wait, Eat), ( Forks, Eat)

Then we initialize (instruction 2) Removed with [Wait, C] and (instructions 3-6)
we update To_Examine with rule R2. We now apply the meta-rules (instruction 7):
MR1 is applicable on Wait, and the rules become:

R1 [Think, X] ∧ [Forks, X++1] � True
R2 [Forks, X] � [Eat, X]
R3 [Eat, X] � [Forks, X + X++1] ∧ [Think, X]

X + X++1

X

X++1

X

X

X

X

X

X

Think

Wait

Eat

Forks

Fig. 3: The dining philosophers

with forks taken separately.

MR2 is applicable on R1 and the rules become:

R2 [Forks, X] � [Eat, X]
R3 [Eat, X] � [Forks, X + X++1] ∧ [Think, X]



MR4 is applicable on the circuit (Forks, Eat). As X* is X and (X + X++1)* is
C.All, the rules become:

R2 [Forks,X]�[Forks,C.all]∧ [Eat,C.all] ∧ [Think,C.all]
R3 [Eat,X] � [Eat,C.all]∧[Forks,C.all] ∧ [Think,C.all]

The net in Figure 4 graphically describes the two rules. At instruction 7,
To_examine contains R2, so we extract it and try to apply it.

 However, as Removed.forks is empty, no assignment is possible and A is empty
(instruction 10). Thus we exit from the main loop and return success with the
following deadlock:

[Eat, C.all] ∧ [Forks, C.all] ∧ [Think, C.all]
This deadlock contains all the forks. Is there a deadlock that contains a strict

subset of forks ? To answer this question, we initialize Pexc = [Wait, C(Wait)] ∪
[Forks, c] and Pinc = ∅ where c is an arbitrary color. All the steps until instruction

10 are identical to the former ones.

We find now that rule R2 is applicable for c and its application updates Removed
to PC. Then instructions 15-16 delete all places and rules. The algorithm finishes
with an empty deadlock, hence returning failure.

It must be noted that the most efficient implementation of Algorithm 2 would
have required 2.n (n is the number of philosophers) applications of rules, whereas
Algorithm 3 requires only one application !

For a last illustration of Algorithm 3, we test if our first deadlock contains traps.

C.all

C.all

C.all

C.all

X

X++1

C.all
X

X

Forks

Eat

Think

C.all

Fig. 4: Transformed net after

one application of MR1, MR2 and MR4



So we start our algorithm with the reversed net and with Pexc = [Wait, C(Wait)]

and Pinc = ∅. The model is presented in Figure 5. The rules become:

R1 [Wait, X] � [Think, X] ∧ [Forks, X++1]
R2 [Eat, X] � [Wait, X] ∧ [Forks, X]
R3 [Forks, X + X++1] ∧ [Think, X] � [Eat, X]

The circuits are the reverse of the preceding circuits. To_Examine is initialized
with R1. Let us look at the application of the meta-rules: MR1 deletes Wait and the
rules become:

R1 True � [Think, X] ∧ [Forks, X++1]
R2 [Eat, X] � [Forks, X]
R3 [Forks, X + X++1] ∧ [Think, X] � [Eat, X]
Now MR3 is applicable on rule R1, the decomposition of the domain is a

particular case C = {ε} x C and is detected as variable X appears in the conclusion
and does not appear in the hypothesis. Thus the rules become:

R1 True � [Think, C.all] ∧ [Forks, C.all]
R2 [Eat, X] �  [Forks, X]
R3 [Forks, X + X++1] ∧ [Think, X] � [Eat, X]

The loop is executed once with an application of R1; Removed is updated with
[Think, C] and [Forks, C], so we test the application of the meta-rules. MR1 deletes
places Think and Forks; MR2 deletes rules R1 and R2; MR3 transforms rule R3 in:

R3 True � [Eat, C.all]

The second execution of the loop applies rule R3 which updates Removed to PC.
The application of meta-rules is detected again and place Eat and rule R3 are
deleted. Then the algorithm exits from the loop and returns failure since Deadlock is
empty. Hence, the deadlock excluding place Wait we had obtained does not contain
a trap.

X + X++1

X

X++1

X
X

X

X

Think

Eat

Forks

Fig. 5: Search for traps, Wait excluded



It must be noted that the most efficient implementation of Algorithm 2 would
have required 2.n (n being the number of philosophers) applications of rules,
whereas Algorithm 3 requires only two applications !

4.3  Comparison Between Algorithms 2 and 3

The efficiency of Algorithm 3 compared with Algorithm 2 depends on the
number of applications of meta-rules MR3 and MR4 along its execution. So it is
difficult to give any theoretical measure of the complexity. In the worst case, the
overhead time added to Algorithm 3 is negligible compared with the assignment of
the rules, and thus the complexity is in the same order.

However, to estimate the average complexity, we can observe that MR3 becomes
applicable as soon as a place conditioning the assignment of a transition disappears,
and this happens frequently when the algorithm is applied to colored nets modelling
real systems. Moreover MR4 is based on the existence of circuits, which are
numerous in the skeleton of a colored net, especially when liveness and boundedness
are required. The additional constraints are usually not fulfilled initially.
Nevertheless the deletion of places increases the possibility of satisfying the
structural condition (no external input places) and the transformation of the color
domains by meta-rule MR3 yields the occurrence of the functional condition
(existence of identities).

One application of MR3 followed by the application of the transformed rule
corresponds to n applications of the initial rule where n is the size of the vanishing
color domain. One application of MR4 followed by the application of the
transformed rule corresponds to at least one application of all the rules of the circuit.
In fact as soon as the output functions of the circuit are different from identity, the
reduction factor is proportional to the product of a color domain by the length of the
circuit.

We point out that in many cases the computation is parameterized: it remains
valid for a family of models where only the size of the color classes changes. Thus
the deadlock characterization we perform on the model of the philosophers is
independent of the number of philosophers. Such a characterization would have
been impossible with Algorithm 2. We now plan to develop a parameterized version
of Algorithm 3 for well-formed nets [20].

Last but not least, the results are easier to interpret. Their expression is only a
function of the high-level description, and thus uses the same notations that have
been given by the designer to describe the model. Unlike our algorithm, Algorithm 2
provides an extensive representation of deadlocks.

All the results can be easily transposed for the detection of traps, as we have
shown in the example of the philosophers.



5 Conclusions

In this paper we have presented an efficient algorithm for finding deadlocks and
traps in colored nets. The algorithm exploits both the structure of the net and the
structure of the color functions. We have shown on an example how the meta-rules
speed up the computation of colored deadlocks. The efficiency of the algorithm
strongly depends on the number of times meta-rules can be applied. The first
experiments have shown that in most cases, the conditions of application are
fulfilled. We are now working on the integration of the algorithm in the CASE AMI
[21] in order to obtain statistical results on the efficiency of the algorithm.

A forthcoming work is the specialization of this algorithm for syntactically well
defined nets, with a complexity almost independent of the size of the color domains.
After characterizing classes of colored nets for which some structural property is a
necessary or sufficient liveness condition, this algorithm will allow us to decide
liveness for such nets.

References

[1] W.Reisig: Place-Transition Systems. In Petri Nets: Central models and their
properties, W.Brauer, W.Reisig and G.Rozenberg eds., LNCS n° 254,
Springer- Verlag, 1987, pp 117-141.

[2] E.W. Mayr: An Algorithm for the General Petri Net Reachability Problem. In
SIAM. Journal of Computing n° 13, 1984.

[3] E. Best: Structure Theory of Petri Nets: the Free Choice Hiatus. In Petri Nets:
Central models and their properties, W.Brauer, W.Reisig and G.Rozenberg
eds., LNCS n° 254, Springer- Verlag, 1986, pp 168-205.

[4] J. Martinez, M. Silva: A Simple and Fast Algorithm to Obtain all Invariants of
a Generalized Petri Net. In Informatik Fachberichte n° 52, C.Girault and
W.Reisig eds., Springer-Verlag, 1982, pp 301-310.

[5] K.Lautenbach: Linear Algebraic Techniques for Place / Transition Nets. In
Petri Nets: Central models and their properties, W.Brauer, W.Reisig and
G.Rozenberg eds., LNCS n° 254, Springer- Verlag, 1986, pp 142-167.

[6] F. Commoner: Deadlocks in Petri nets. In Applied Data Res. Inc., Wakefield,
MA, 1972.

[7] J. Esparza, M. Silva: A Polynomial-Time Algorithm to Decide Liveness of
Bounded Free-Choice Nets. Hildesheimer Informatikberichte 12/90, Institut
für Informatik, Univ. Hildesheim.

[8] K.Lautenbach: Linear Algebraic Calculation of Deadlocks and Traps. In
Concurrency and Nets, K.Voss, H.Genrich and G.Rozenberg eds., Springer
Verlag, 1987, pp 315-336.

[9] K.Barkaoui, M.Minoux: A Polynomial-Time Graph Algorithm to Decide
Liveness of Some Basic Classes of Bounded Petri Nets. In Application and
Theory of Petri Nets 92, Proc. of the 13th Conference, K. Jensen ed., LNCS n°
616, Springer-Verlag, Sheffield, UK, 1992, pp 62-74.



[10]H.J. Genrich: Predicate / Transition Nets. In High-level Petri Nets. Theory and
Application, K. Jensen and G. Rozenberg eds., Springer-Verlag, 1991, pp 3-
43.

[11]K. Jensen: Coloured Petri Nets: A High Level Language for System Design and
Analysis. In High-level Petri Nets. Theory and Application, K. Jensen and G.
Rozenberg eds., Springer-Verlag, 1991, pp 44-119.

[12] J. Ezpeleta, J.M. Couvreur: A New Technique for Finding a Generating Family
of Siphons, Traps and ST-Components. Application to Colored Petri Nets. In
proc. of the 12th International Conference on Application and Theory of Petri
Nets, Gjern, Denmark, June 1991, pp 145-164.

[13] J.M. Couvreur, S. Haddad, J.F. Peyre: Computation of Generative Families of
Positive Flows in Coloured Nets. In proc. of the 12th International Conference
on Application and Theory of Petri Nets, Gjern, Denmark, June 1991.

[14] J.F. Peyre: Résolution Paramétrée de Systèmes Linéaires. Application au
Calcul d'Invariants et à la Génération de Code Parallèle. Thèse de
l'Université Paris 6, March 1993 (in French).

[15]M. Minoux, K. Barkaoui: Deadlocks and Traps in Petri Nets as Horn-
Satisfiability Solutions and some Related Polynomially Solvable Problems.
Discrete Applied Mathematics n° 29, 1990.

[16] J. Vautherin: Parallel Systems Specifications with Coloured Petri Nets and
Algebraic Specifications. In Advances in Petri Nets 1987, Springer-Verlag,
1987, pp 293-308.

[17]G. Findlow: Obtaining Deadlock-Preserving Skeletons for Coloured Nets, in
Application and Theory of Petri Nets 92, Proc. of the 13th Conference, K.
Jensen ed., LNCS n° 616, Springer-Verlag, Sheffield, UK, 1992, pp 173-192.

[18]D.B. Johnson: Finding all Elementary Circuits of a Directed Graph, SIAM
J.Computer, vol.4, n° 1, 1975.

[19]S. Haddad: A Reduction Theory for Coloured Nets. In High-level Petri Nets.
Theory and Application, K. Jensen and G. Rozenberg eds., Springer-Verlag,
1991, pp 399-425.

[20]G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad: Stochastic Well-Formed
Nets and Symmetric Modeling Applications, to appear in IEEE Transactions
on Computers.

[21] J.M. Bernard, J.L. Mounier, N. Beldiceanu, S. Haddad: AMI an Extensible
Petri Net Interactive Workshop, Proc. of the 9th European Workshop on
Application and Theory of Petri Nets, Venice, Italy, June 1988.


