
Synthesis of Impartial Deadlock-free Programs for
Concurrent Systems

J. EZPELETA(*) S. HADDAD(+)

(*) Centro Politecnico Superior. Univ. Zaragoza

C/ Maria de Luna 3. 50015-Zaragoza. Spain

Tel: ++34 76 517274 Fax: ++34 76 512932

e-mail: ezpeleta@etsii.unizar.es

(+) Université P. & M. Curie

Laboratoire MASI -C.N.R.S.

4, Place Jussieu

Paris 75252 CEDEX 05. France

Tel: ++33 1 44277104 Fax: ++33 1 44276286

e-mail: haddad@masi.ibp.fr

Abstract

This paper provides an algorithm for parallel program synthesis. We study the particular but frequent case of

sequential processes cooperation via shared resources. Given such a set of these processes (which may be non

deterministic ones) , the algorithm outputs a parallel program which ensures safeness, liveness and fairness.

The algorithm is divided in three parts: first it computes for each process some sets of unavoidable local states,

thus if possible it selects one of these sets for each process - the selected sets must fulfill some constraints of

consistency - at last it builds the program by adding new conditions on the local evolution of each process. The

advantages of this algorithm are numerous: there is no centralized mechanism, the communication is organized

through a virtual ring, and at last the algorithm is incremental (i.e. some parts of the algorithm do not need to be

computed again if another process is added).

This work has been done while J. Ezpeleta was a researcher at the laboratory MASI under grant of the

"Programa Nacional de becas de folmacion de Personal investigador en el Extranjero" of the "Ministerio de

Educacion y Ciencia" of Spain.It was partially supported by the DEMON Esprit Basic Research Action 3148

and the PRONTIC-O358/89

1 INTRODUCTION

It is well-known that the different verification technics for parallel programs all suffer serious drawbacks (e.g.

time and space complexity for methods based on reachability graph or incomplete validation for inference

methods). So an interesting alternative to these methods is the synthesis of a program starting from a

specification. Such a method would simultaneously solve two problems: the conception and the verification of

the program.

Developing a theory of program synthesis involves four steps: the choice of the specification and the program

models, the choice of a common semantics for these two models, the design of a transformation algorithm and

the proof of soundness (and sometimes completeness) of this algorithm.

The choice of the specification model is closely related to the properties one should express about programs;

for parallel programs a good candidate could be some class of temporal logics formulae (LTL, CTL, CTL*,...)

[Sis85] since they enable to state safety, liveness and fairness properties. The program model should offer the

parallel mechanisms that the real program will include (e.g. message passing and/or shared variables and/or

semaphores, ...). The common semantics of these models must at least include reachable states and transition

sequences in order to give sense to the formulae of the specifications. In order to present the objectives that the

transformation algorithms should attain, let us discuss two existing methods.

In the first method [Old85], the specification model is a class of formulae with a variable for the sequence

which leads to the current state and another variable for the set of actions enabled in this state. Some attributes

and operators enable for instance to project sequences, to compare sequences, etc. The program model is

T.C.S.P. [Br084] a theoretical version of C.S.P. [Hoa78] where the main parallel operator is the

synchronization between processes for some subset of actions. The semantics of this model is a set of tuples

composed by a sequence and a set of actions (with the same meaning as above). In case of the specification, it

is the set of behaviors which fulfill the formula whilst in case of the program, it is the set of all possible

behaviors of this program. A program satisfies a formula if its set of behaviors is included in the one of the

formula. The transformation algorithm is based on a model including the specification and the program model

with the same semantics and a set of rules which transform some part of that formula into a piece of program.

The method works at the syntactical level, so the rules are very efficient. Moreover modularity of the method is

ensured by a meta-rule which establishes that every transformation can be inserted in any context. However this

method suffers some drawbacks: some rules can not be automatized, moreover some transformations do not

obey any rule but are only justified and even when some program satisfies the formula, the rules may not find

any program (incompleteness).

- 2 -

The second method [Eme83] is based on the algorithm of satisfiability for the class of temporal logic formulae

CTL. The specification model enables to state local properties of a process (mainly its possible behavior) and

global properties (critical section, fairness, ...). Then if this specification is satisfiable, the algorithm produces a

finite state graph which is the reachability graph of the program. Thus in order to obtain the program, this state

graph is "folded" by adding global variables and defining conditions on the evolution of each process.

Consequently the program model is based on processes which share global variables.

This algorithm always finds a program if such one exists. But the drawbacks of this method are fourfold : the

algorithm works at the semantic level (state graph of the model) so the complexity of the method can prevent

its use, the method is not modular as the evolution of some process may explicitly depend of the state of

another one, the method is not incremental: adding a new process even with the same specification as an old

one requires to redo the whole algorithm; moreover the new program may be very different from the old one

and at last the use of shared variables prohibits its application in distributed systems. There is also a method for

linear temporal logic [Man82] which presents similar features as the preceeding one.

As the main problem with parallel programs is the sharing of resources, we show here how to obtain a good

algorithm of program synthesis in this case. The inputs of our algorithm are a set of processes defined by their

automata. To each state of an automata is associated a multiset of resources required to execute the internal

steps of the process during this state. Thus we give the semantics of a parallel program for these processes (a

tree of the possible computations) and we define the three requirements for the program: absence of deadlock,

impartiality of the processes execution and independance of the processes local choices.

In order to obtain an impartial program, we compute for each automata its set of control points subsets (a

minimal set with some cut property). We show then how to build an impartial program with a very simple

mechanism based on the control points. However this program is not deadlock free, so we restrict the states

transitions of a process by adding "a resources test and set instruction" to every transition. More precisely we

avoid the deadlock by ensuring that some particular scheduling of processes is always possible. This

mechanism is similar to the banker algorithm [Hab69] but without banker and without any knowledge given by

a process to another one! Moreover the parallel program that we build preserves of the independance of local

choices.

The balance of the paper is as follows. In the second paragraph, we define the specification of the processes, the

semantics of a parallel program composed by these processes and the properties required for the parallel

programs. In the third paragraph, we give the impartial program. In the forth paragraph, we give our final

program, we prove that it fulfills the requirements. In the last paragraph, we discuss the advantages and the

drawbacks of our method and we give some perspectives to this work.

-3 -

2 SPECIFICATION AND PROPERTIES OF A PARALLEL PROGRAM

Definitions and notations

N denotes the set of positive integers.

Let A be a finite set , then Bag(A) is the set of multisets on A defined by :
Bag(A) = {v | v is a mapping A → N}
Let v ∈ Bag(A) , then one denotes v = � v(a).a
 a ∈ A

Let v, v' ∈ Bag(A) , then
-v ≥ v' ⇔∀ a ∈ A, v(a) ≥ v'(a)
-v + v' = � (v(a)+v'(a)).a

 a ∈ A

-Sup(v,v') = � Sup(v(a),v'(a)).a
 a ∈ A

-if v ≥ v' then v–v' = � (v(a) -v'(a)).a
 a ∈ A

2.1 SPECIFICATION OF A SYSTEM OF PROCESSES

First of all we need to specify the features of every process appearing in the parallel program. Let us

suppose a system composed by n processes Pi (i ∈ I={l,...,n}) sharing a set R of ressources, every one of

them belonging to the set ot types of resources RS={R1,...,Rm}. Since it may have multiple copies of the

same resource, R will be a multiset over the set RS. In the following, R is the multi-set of system resources:
 m
R =� rj.Rj

 j=l

Id est, there are rj copies of the resource Rj

Every process is specified by means of its automata; the automata is a graph for which every node is a pair

(s,R(s)), where s represents a possible state of the process and R(s) is the multiset of resources used in this

state. Given a process Pi, we will denote by Si the set of its states. If, in this automata, there exists an arc

from a state s to another s' we will say that s' is a successor of s. If E is a set of states of a process P,

R(E) = sup{ R(s) | s ∈ E}(i.e. the minimal multiset of resources such that ∀ s ∈ E R(E) ≥ R(s)). In the

present paper, we will suppose that every automata is strongly connected.

Example Let us suppose a system composed of three processes sharing three copies of the same resource
R0. In this case RS={R0} , R = 3.R0 and the processes, named P1, P2 and P3 are represented by the
following automatas.

- 4 -

In the following, we will denote si,j the state i of process j. In this example, for instance, R(s1,1) = R0. If

E={s1,1, s1,2} then R(E)=2.R0. We conclude this paragraph by summarizing in a definition what preceeds.

Definition 2.1 A system of processes SP = <RS , R , P , R > is defined by :

-RS ={Rl,...,Rrn} a set of resources
-R a multiset on RS
-P = {Pl,...,Pn } a set of strongly connected automatas (or processes)

where Pi = { Si ,→i } and Si is the set of nodes of Pi with | Si | > 1
and →i the successor relation.

- R is a function from ∪ Si to Bag(RS)

2.2 PARALLEL PROGRAMS FOR A SYSTEM OF PROCESSES

In this section we define the possible parallel programs for a given system. Whatever the definition of the

parallel program may be, a state of this program must include a local state and a multiset of resources for each

process. Moreover if this program is consistent with the specification, the multiset of resources must be greater

or equal than the one associated to the local set and the sum of the busied resources may not exceed the

resources of the system. This leads to the next definition.

Definition 2.2 (Sound state) Let SP = <RS , R , P , R > be a system of processes. A (global) sound

state of this system is a tuple (sl,...,sn,rl,...,rn) , si ∈ Pi , ri ∈ Bag(RS) verifying:

 n
∀ i , ri ≥R(si) and � rj ≤ R.
 j=l

In the following we will denote by SS the set of Sound States. Given two sound states (s,r) and (s',r') of a

system SP, we will say that (s',r') is a (global) successor of (s,r) if and only if ∃ k ∈ I such that if i≠k then si = si'

else sk' is a successor of sk in the process Pk. By analogy with the successor relation of the processes, this fact

will be denoted by means of (s,r) →k (s',r').

- 5 -

Example In the previous example, (s1,0,s2,1,s3,1,0,R0,R0) and (s1,1,s2,1,s3,1,R0,R0,R0) are sound states and

 (s1,0,s2,1,s3,1,0,R0,R0) →1 (s1,1,s2,1,s3,1,R0,R0,R0) while (s1,1,s2,1,s3,1,R0,R0,2.R0) is not a sound state.

We can now associate to a system of processes, a set of "programs". A program can be seen as a
control structure for the system. As we want to consider any kind of program, we just define the
domain of the program as the set of possible states (not necessarily reachable) with an initial one and
a successor relation. We associate to each state of the program a sound state of the system and we
require that the successor relations are compatible.

Definition 2.3 (Program) Let SP = <RS , R , P , R > be a system. A (parallel) program of this system is a 4-

tuple P = <D,do,F,SR> where:

- D is a set, called the domain of the program

- do ∈ D is the initial state

- F is a function from V to SS

- SR ⊂ V×V is the successor relation and verifies that, if d and d' are elements of V such that d SR d' then

 ∃ i ∈ I such that F(d) →i F(d')

A simple example is a program with no more control than the resource management of the system.

Example A non-controlled program for a system S is P= <D,do,F,SR> where:

- D = { (sl,...,sn,R(sl),...,R(sn)) ∈ S1 × … × Sn × Bag(Rs)n | �i=1,…,n R(si) ≤ R}
- do ∈ D
- F is the identity function
- d SR d' if and only if d' is a global successor of d

Remark If D (defined in the example) is empty then no parallel program can be defined.

2.3 PROPERTIES OF PARALLEL PROGRAMS

We now express the semantics of a program by means of a computation tree.

Definition 2.4 (Computation Tree) Let SP be a system and let P= <D,do,F,SR> be a program for this
system. A computation tree (CT) of this program is a tree such that do is the root of the tree and d' is a son
of d if and only if d SR d'.

If d' is a son of d , then ∃ i ∈ I such that F(d) →i F(d'), what will be denoted by d →i d'.

What is relevant in the computation tree is the tree structure , the states of processes and the resources
they own. So we can substitute to the nodes their image by F. Doing this, only the way the control is done
is lost in the new tree. But this is irrelevant for the properties of the parallel program.

Definition 2.5 (Observational Computation Tree) Let P= <D,do,F,SR> be a program for a system SP.

An observational computation tree for this program is the mapping by F of the computation tree of P

- 6 -

Notation A (finite, infinite) computation of a program is a (finite, infinite) path in the computation tree of

this program.

We introduce the properties that we want obtain for our program. These behavioral properties are defined

over a computational tree of a given program. In the following, we will suppose that SP is a system, P is a

program for this system and that CT is a computation tree for the program.

Definition 2.6 (Impartiality) A program P is impartial if for every infinite computation (d0,...,dk,...) ∀ i ∈ I
∀ j ∈ N, ∃ k ≥ j such that dk →i dk+l

In other words, every process is infinitely executed in every infinite computation.

Definition 2.7 (Liveness) A program P is live if every finite computation is the prefix of an infinite
computation.

In other words, every node in the computation tree has a successor

Definition 2.8 Let d be a node of the observational computation tree, then the i-choice of d, denoted by

ID(d,i) is defined by : ID(d,i) = { si | d →i (sl,...,sn, rl,.. ,rn) }

In other words, the i-choice of d is the possible successors states of Pi by an action of the process Pi.

Definition 2.9 (Independance) A program P ensures independance of processes of SP if for every i ∈ I and

every node d of the observational computation tree one has :

If there is a computation d →j1 d1 →j2 . . dk-l →jk dk with ∀ 1 ≤ t ≤ k jt ≠ i

then there is a computation dk →jk+1 .. du-l →ju d' with ∀ k < t ≤ u jt ≠ i

and with ID(d',i) ⊃ ID(d,i)

In other words if a process has, in some state, a possible choice of successors states then whatever the other

processes can do, it is always possible for the process to have again this choice (without any move of it).

3 BUILDING OF AN IMPARTIAL PROGRAM

In order to impose impartiality to a program, it is necessary to avoid that a subset of processes take the

monopoly of a computation at some stage of some computation

Example If we take d0 =(s1,0, s2,0, s3,0, 0, 0, 0) for the non controlled program of the previous example we

obtain a non-impartial program, because in its CT there are computations that never execute some

processes, as shown in the figure 2. Indeed one can execute infinitely many times the process P1 from

point A, and so, this program is not impartial.

- 7 -

So, we need to limit the number of successive actions of the same process in a computation. It is clear that if in

a computation σ a process acts infinitely many times, there exists at least a cycle in its automata such that σ
passes infinitely many times over it. We can choose a set of states such that it contains at least a state of every

cycle.

Definition 3.1 A set of control points of a process P is a minimal set of states such that it contains one state of
every cycle of the process.

Remark Finding the set of control points subsets is a NP-complete problem [Kar72]. However for some simple

kinds of automatas (which is often the case for those defined by a process) , one can show that the complexity

of this search is polynomial.

We are ready to build an impartial program. In the sequel of the paper, we will suppose that Ei is a set of control

points of the process Pi. At first, one organizes the processes on a virtual ring following their numbering and

one associates a local variable for each process initialized to any number greater than zero. Each time a process

leaves a control point it decreases its own variable and it increases the variable of its successor on the ring. A

process can not leave a control point if its variable is equal to zero

Notations
Let (v1,...,vn) be a vector (of states, resources or integers) indexed by I, then one denotes (v1,...,vn) by v.
Let i ∈ I , then i ⊕ 1 is defined by : i ⊕ 1 = if i<n then i+1 else 1

- 8 -

Definition 3.2 Let SP be a system of processes and {Ei}i ∈ I be a family of control points then

PI(SP) = <D,do,F,SR> is the program defined by :

- D = { (sl,...,sn,R(sl),...,R(sn),el,...,en) ∈ S1 × … × Sn × Bag(Rs)n × Nn | �i=1,…,n R(si) ≤ R}

- F(sl,...,sn,rl,...,rn,el,...,en) = (sl,...,sn,rl,...,rn)

- do = (s0, r0, e0) such that ∀ i∈ I, ei,0 ≠0 ∀ i ∈ I, s i,0 ∈ Ei

- Let d=(s,r,e) and d'=(s',r',e') be two items of D then d SR d' if and only if:

(i) ∃ i ∈ I , (s,r) →i (s',r')

(ii) si ∈ Ei, ei > 0, ei' = ei -1, e'i⊕l = e'i⊕1 +1 and ∀j ≠ i and j ≠ i⊕1 , ej' = ej

OR

si ∉ Ei, ∀ j ∈ I, ej' = ej

Remark The incrementation of the variable of the successor can be replaced by the sending of a message (in the

case of a safe medium). On reception of the message the process increases its local variable. The behaviour of

the new program will be the same as the old one but with more intermediate states (when the messages are in

transit). Doing this way, the control is distributed.

Proposition 3.1 PI(SP) is an impartial program.

Proof

Let σ = (d0,...,dm,...) be an infinite computation of PI(SP). Let J be the subset of processes infinitely executed in

σ. Let i0 ∈ I\ J , and dm be a state of the computation from where the process Pi0 is no more executed. Thus the

variable ei0⊕l is no more incremented from dm.

If i0⊕l ∈ J then the computation must leave an infinite number of times a control point of the process Pi0⊕l

(because of the cut property of control points). Hence the variable ei0⊕l is infinitely decremented. It is

contradictory with the control associated to PI(SP). So i0⊕1 ∈ I\ J.

Thus either J = I or J = ∅ but as σ is an infinite computation J = I ���

Example In the impartial program, for our example starting from the initial element

d0=(s1,0,s2,0,s3,0,0,0,0,2,2,2) and taking Ei= {si,0} i ∈ {1,2,3}, figure 3 shows where the unfair

computation of figure 2 is cut.

- 9 -

Figure 3: A CT for the Program PI(SP) of the example

4. BUILDING OF A DEADLOCK-FREE PROGRAM

Introducing impartiality in the preceeding section does not solve the deadlock problem as shown in the example

below. However the program that we are going to build adds control to the impartial program. Hence no new

infinite computations are created and then impartiality is preserved.

Example In the previous impartial program we can reach the node (s1,1,s2,1,s3,1,R0,R0,R0,l,l,l) which is a

deadlock (i.e. the program has no successor from this node).

Our next program is based on two main ideas :

-Let us consider control points of the process as equivalent to "idle" states. We require prior to the

building of our program that when all the processes except one are idle, the "active" process can move freely

from one state to another one.

-Under this assumption, a trivial way to avoid deadlock should be that a process, leaving a control

point, takes all the resources needed to reach any of the closest control points. However this solution would be

a hidden sequentialization of the processes. A sufficient and much less restrictive condition is that "in order to

do its next move the process requires the resources needed to reach the closest control points to be free but

doing this move, it just takes the resources needed for its next state".

-10

We now introduce our basic hypothesis:

Basic Hypothesis

∀ i ∈ I, ∀ si ∈ Ei, R(Si) + �j≠i R(Ej) ≤ R

Discussion It is easy to show that this condition is fulfilled by almost all the typical systems of processes.

Indeed for a repetitive process, the initial state is a cut and moreover in this state the process does not own

any resource. Hence the inequality becomes R(Si) ≤ R which must be fulfilled otherwise a state of Si requires

more resources of some kind than the system owns and thus Pi is an inconsistent specification.

Definition 4.1 Let si be a state of Si , then the set of extended neighours of si (relatively to Ei), denoted si
+ , is

defined by :

si
+ = { s | ∃ v0 .v1 … vn a (possibly empty) path of Pi

with v0 = si , vn = s and ∀ 0 < k < n vk ∉ Ej }

Informally, si
+ is the set of states reachable from si without crossing a state of Ei .

Notation We will denote by R+(s) the function defined by R(s+)

Fact 4.1 Let si' be a successor of si in Pi with si' ∉ Ei then R+(si') ≤ R+(si). Obvious
since si'

+⊂ si
+.

In our next program a state needs a little bit more resources than the ones in the specification, i.e. we

require that a process always keeps the resources needed at its control points. As already stated, this

condition collapses in "standard" processes systems.

Definition 4.2 Let R be the resource function of a systeme process, then is the "extra-resource" function

(relatively to Ei) defined by :

∀ s ∈ Ei (s)=Sup(R(s),R(Ei))

We are ready to present our deadlock-free program.

-11 -

Definition 4.3 Let SP be a system of processes and {Ei}i ∈ I be a family of control points, then
Pdf(SP) = <D,d0,F,SR> is the program defined by :

-- D = {(sl,...,sn, (sl),..., (sn),el,...,en) ∈ S1 × … × Sn × Bag(Rs)n × Nn | �i=1,…,n (si) ≤ R}
- F(sl,...,sn,rl,...,rn,el,...,en) = (sl,...,sn,rl,...,rn)

- do = (s0, r0, e0) such that ∀ i∈ I, ei,0 ≠0 ∀ i ∈ I, s i,0 ∈ Ei

- Let d=(s,r,e) and d'=(s',r',e') be two items of D then d SR d' if and only if:

(i) ∃ i ∈ I , (s,r) →i (s',r')

(ii) si ∈ Ei, ei > 0, ei' = ei -1, e'i⊕l = e'i⊕1 + 1 and ∀j ≠ i and j ≠ i⊕1 , ej' = ej

OR

si ∉ Ei, ∀ j ∈ I, ej' = ej

(iii) If si' ∉ Ei then �j≠i rj + +(si') ≤ R

It is important to notice here that the policy imposed by the program Pdf(SP) in condition (iii) can be

implemented just with the local knowledge and the knowledge of the multiset of non-engaged

resources. Indeed if we denote Rs this multiset then:

(iii) ⇔ +(si') ≤ Sup(Rs, (si))

At first we characterize two inductive invariants of Pdf(SP).

Lemma 4.1 Let SP be a system of processes and Pdf(SP) its associated program, let (s,r,e) be a

reachable state of Pdf(SP), then: �i ∈ I ei = �i ∈ I ei,0 (> 0 by definition)

Proof

By induction: initially it is a tautology and in a state transition either all the ei's are unchanged or one

of them is decremented and another one is incremented. ���

In order to prove our next invariant, we need some new definitions.

Definition 4.4 Let SP be a system of processes and Pdf(SP) its associated program,

let σ = d0 →i1 d1 →i2 … →ik dk be a computation sequence, with dk = (sk,rk,ek) then we
partition the set I in two sets :

-I1,k = {j | sk,j ∈ Ej}, I2,k = I \ I1,k

Moreover we order I2,k by "the more recent move" in σ :

- Let l,m ∈ I2,k then l <k m ⇔ max {j | ij = l} < max {j | ij = m}.

Now we present the key lemma for deadlock freeness of the program Pdf(SP).

-12 -

Lemma 4.2 Let SP be a system of processes and Pdf(SP) its associated program,

let σ = d0 →i1 d1 →i2 … →ik dk be a computation sequence, with dk = (sk,rk,ek) then:

(x) ∀ l ∈ I2,k �j ∈ I1,k (Ej) + �j ∈ I2,k & j<k l rj,k + +(sl,k) + �j ∈ I2,k & l<k j (Ej) ≤ R

Proof By induction, in the initial state all processes are "in" Ei, so I2,k = ∅ and there is nothing to prove.

Now let us suppose that this invariant relation is verified for a path of length k, and that dk →i dk+l.
We will distinguish different cases. Recall that:
dk = (s1,k,...,sn,k,r1,k,...,rn,k,el,k,...,en,k)
and dk+l =(s1,k+1,...,sn,k+1,r1,k+1,...,rn,k+1,el,k+1,...,en,k+1)

Case 1 i ∈ I1,k , si,k+l ∈ Ei (i.e. Pi leaves one of its control point for another one)
It implies that I1,k+1 = I1,k and I2,k+1 = I2,k and the order of I2,k+1 is like the one of I2,k .Moreover all the
inequalities (x) are unchanged.

Case 2 i ∈ I1,k , si,k+l ∉ Ei (i.e. Pi leaves one of its control point for a state which is not a control point)

It implies that I1,k+1 = I1,k \ {i} and I2,k+1 = I2,k ∪ {i} and the order of I2,k+1 is extended from the one of I2,k

with j<k+l i for all j≠i belonging to I2,k+1 . Let us have a look on the new inequalities:

-∀ j≠i ∈ I2,k+1 ,we get the new inequality by deleting in the first sum the ith term (Ei) but adding

this term to the last sum (as j <k+l i). Then the new inequality is unchanged.
-For i , we have to establish the new inequality defined by :

(y) �j ∈ I1,k+1 (Ej) + �j ∈ I2,k+1 & j≠i rj,k + +(si,k+1) ≤ R
But taking into account the SR relation and the domain D of the program Pdf(SP), we have:

∀ j ∈ I1,k+1, (Ej) = rj,k since I1,k+1 ⊂ I1,k ,

∀ j ∈ I2,k+1, , j ≠ i: , rj,k+1 = rj,k since the process j has not moved during this step.

Thus (y) becomes :
	j≠i rj,k + +(si,k+1) ≤ R
which is exactly the condition (iii) of Pdf(SP).

Case 3 i ∈ I2,k , si,k+l ∈ Ei (i.e. Pi reaches one of its control point from a state which is not a control point)
It implies that I1,k+1 = I1,k ∪ {i} and I2,k+1 = I2,k \ {i} and the order of I2,k+1 is the restriction of the one of I2,k.
Let us examine the new inequalities (x) :
∀ j ∈ I2,k+1, , j <k i : the new inequality is obtained from the old one by substituting the term

(Ei) of the last sum by the same term in the first sum. Hence nothing is changed.

∀ j ∈ I2,k+1, , i <k j : the new inequality is obtained from the old one by substituting the term ri,k

of the second sum by the term (Ei) in the first sum. But by definition of D:
ri,k = (si,k) = Sup (R(si,k), R(Ei)) ≥ R(Ei) = (Ei)
Hence the left term of the inequality is decreased and the inequality remains true.

-13 -

Case 4 i ∈ I2,k , si,k+l ∈ Ei (i.e. Pi moves from one state to another one, neither are control points) It implies
that I1,k+1 = I1,k and I2,k+1 = I2,k and the order of I2,k+1 is unchanged for items different from i and j <k+l i for all
j≠i belonging to I2,k+1.Let us examine the new inequalities (x) :

- ∀ j E I2,k+1 and j <k i the new inequality is the same as the old one.

- ∀ j E I2,k+1 and i <k j the new inequality is obtained from the old one by substituting the term ri,k of the

second sum by the term (Ei) in the third sum. As in case 3, the left term of the inequality is

decreased and the inequality remains true.
- Since j <k+1 i for all j≠i belonging to I2,k+1 , the new inequality (x) for i is defined by :

(y)
j ∈ I1,k+1 (Ej) +
j ∈ I2,k+1 & j≠i rj,k + +(si,k+1) ≤ R

As in case 2 , one can reduce this inequality to the condition (iii) of Pdf(SP).

���

Proposition 4.1 Pdf(SP) is an impartial and live program and ensures independance of processes of SP.

Proof
.Impartiality: As every computation of Pdf(SP) is a computation of PI(SP) , using proposition 3.1 , we can
conclude.
.Liveness: Let dk = (sk,rk,ek) be a reachable state of Pdf(SP). We have to prove that dk has a successor for
the SR relation of Pdf(SP) .Two cases happen:
- I2,k ≠ ∅, let i be the maximal item of I2,k for the <k relation. The inequality (x) for i is defined by :
�j ∈ I1,k (Ej) + �j ∈ I2,k & j≠i rj,k + +(si,k) ≤ R
which is equivalent to
�j≠i rj,k + +(si,k) ≤ R
Let s' be a successor of si,k in Pi (there is at last one since Pi is strongly connected and |Si| >1).
either s' ∉ Ei , thus from the fact 4.1

+(s') ≤ +(si,k), implying �j≠i rj,k + +(s') ≤ R
and hence (sl,k,...,s',...,sn,k,rl,k ,.., (s'),...,rn,k,el,k,...,en,k) is a successor of dk.

or s' ∈ Ei , since (s') = (Ei) ≤ (si,k) and again

(sl,k,...,s',...,sn,k,rl,k ,.., (s'),...,rn,k,el,k,...,en,k) is a successor of dk.
I2,k = ∅, by lemma 4.1 there is some ei,k > 0
Let s be any successor of ei,k in Pi

R(s) ≤ (s) ≤ +(s) ≤ R(Si) . So using the basic hypothesis, s provides a successor of dk for SR.

. Independance : left to the final paper.
���

5 CONCLUSION

We have presented an algorithm which takes as input a set of automatas specifying processes with

resources requirement and which produces a fair and live program for these processes. Let us point out

some features of our method.

-14 -

It just handles a particular but frequent case of specification. However the specification language is much

expressive than the other ones for this problem (e.g. try to describe in a concise way a multiset of resources

requirement with propositional temporal logic !). If the basic hypothesis (a very weak condition) is fulfilled

then it always produces a program.

Moreover the program is parametrized, i.e. the initial values of the ei's determine the degree of parallelism

between processes one wants to allow. With the assumption of an existing resource allocation mechanism, the

program can be easily distributed since the communication of a process is limited to sending messages to a

"successor" process and asking resources to the resource management. This resource management does not

need to include an algorithm for deadlock prevention since the local policy of processes is enough. At last if a

new process wants to be added, the only thing to do is to test the basic hypothesis and to insert the new process

when all the old processes come back to a control point.

Possible extensions of this work should be to relax the constraint about the strong connexion of automatas or to

enlarge the specification with other problems than the resource management as for instance processes

cooperation via messages.

REFERENCES

[Bro84] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe "A theory of communicating sequential processes".
JACM 31 560-599. 1984.

[Eme83] A. Emerson, E. Clarke "Using Branching Time Temporal Logic to Synthesize Synchronization
Skeletons", Science of Computer Programming 2 p.241-266. 1983.

[Hab69] A.N Haberman "Prevention of System Deadlocks". Communications of the ACM, Vol. 12 (7)
p.373-377 and 385. July 1969.

[Hoa78] C. A. R. Hoare "Communicating Sequential Processes". Communications of the ACM, Vol.
21(8) : p. 666-677 and 385. August 1978

[Kar72] R. M. Karp "Reducibility among combinatorial problems" in Complexity of Computer
Computations edited by R.E. Miller and J.W. Tatcher. p.85-104 Plenum Press, New York. 1972

[Man82] Z. Manna, P. Wolper " Verification of communication processes from temporal logic

specifications" Proceedings of workshop on Logics of Programs, Yorktowns Heights, New-York, May 1981

Springer-Verlag L.N.C.S Vol. 31 1982.

[Old85] E. R. Olderog "Specification-oriented programming in TCSP". in Logics and Models of
Concurrent Systems. edited by K. R. Apt NATO ASI Series. Series F , Vol. 13. Springer-Verlag 1985.

[Sis85] A. P. Sistla , E.M. Clarke "Complexity of propositional temporal logic" JACM 32(3) , 1985 pp
733-749

-15 -

