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Abstra
t

The 
lass of Sto
hasti
 Well Formed Colored Nets (SWN) was de�ned as a synta
ti
 restri
-

tion of Sto
hasti
 High-Level Nets. The interest of the introdu
tion of restri
tions in the model

de�nition is the possibility of exploiting the Symboli
 Rea
hability Graph (SRG) to redu
e the


omplexity of Markovian performan
e evaluation with respe
t to 
lassi
al Petri net te
hniques. It

turns out that SWNs allow the representation of any 
olor fun
tion in a stru
tured form, so that any

un
onstrained high-level net 
an be transformed into a well formed net. Moreover, most 
onstru
ts

useful for the modeling of distributed 
omputer systems and ar
hite
tures dire
tly mat
h the \well

form" restri
tion, without any need of transformation. A non trivial example of the usefulness of

the te
hnique in the performan
e modeling and evaluation of multipro
essor ar
hite
tures is in-


luded.
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1 Introdu
tion

Sto
hasti
 Petri nets have been proposed in the literature as a good modeling tool for the study and

performan
e evaluation of multipro
essor 
omputer ar
hite
tures [1, 2, 3℄. The te
hnique is easier

to use than more 
lassi
al Markovian modeling te
hniques, but still leads to models whose size is

too large when modeling realisti
 systems. Te
hniques for the development of \
ompa
t" or \folded"

models [4, 5℄ have been proposed, but they had not been used by many resear
hers outside the

restri
ted group that developed them. This is due to the deep knowledge required by the modeler of

the behavioral 
hara
teristi
s and symmetries of the system under study. High level Petri net models

have been proposed from time to time as a more adequate tool (see, e.g., [6, 7℄) for the modeling

of 
omplex multipro
essor systems. Although easier to use even by inexperien
ed modelers be
ause

of their higher level of abstra
tion, 
lassi
al high-level Petri nets do not alleviate the need for a

thorough understanding of the symmetries of the system in order to allow the performan
e evaluation

of reasonably large systems.

Regular Nets (RN) have been proposed in [8℄ as a restri
tion of Colored Petri Nets (CPN) [9℄.

The interest in introdu
ing su
h a restri
tion on the 
olor domains and on the ar
 fun
tions was that


omplete algorithms have been proposed for the 
omputation of 
ows, redu
tions, and the de�nition of

a Symboli
 Rea
hability Graph (SRG) in this 
ase. Re
ently, sto
hasti
 models based on RNs 
alled

Regular Sto
hasti
 Petri Nets (RSPN) have been introdu
ed for performan
e evaluation purposes

[10, 11℄. The steady-state performan
e of an RSPN model 
an be obtained by numeri
ally solving

a Markov 
hain (MC) 
orresponding to the SRG generated by the RSPN. The 
omplexity in the


omputation of this solution is polynomial in the number of symboli
 markings of the SRG, whi
h


an be mu
h less than the number of ordinary markings generated by the Pla
e/Transition net (P/T)

resulting from the unfolding of the RN.

Some kinds of symboli
 marking representations to exploit the symmetries of the rea
hability

graph (RG) have already been proposed for general CPNs [12, 13, 7, 14℄ as well, but in all these


ases heuristi
s were needed to de
ide the type of aggregations. These heuristi
s were based on an

expli
it knowledge by the modeler of the symmetries present in a parti
ular model. Thus none of these

methods 
ould be implemented in a general algorithmi
 form. From this point of view, the superiority

of RNs was due to the availability of a generi
 symboli
 �ring rule whi
h allows the 
omputation of

the SRG without any a
tual instantiation of 
olors and without expli
it knowledge of the symmetry

of the model.

This use of the SRG for performan
e evaluation purposes is the main motivation that led us to

the proposal of the extended SRG 
omputation for more general 
lasses of CPNs 
alled \well-formed"


olored nets (WN) [15℄. The original RNs and their related SRG generation algorithm 
an be used to

model many interesting systems, but unfortunately the strong restri
tions imposed on the de�nition
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of the ar
 labeling fun
tions, the 
olor sets, and the initial marking, prevent their use in general 
ases.

In this paper we present the new 
lass of sto
hasti
 well-formed 
olored nets (SWN) as extensions

of RSPNs together with an extended SRG 
onstru
tion algorithm that allows an optimized Markovian

analysis exploiting the system symmetries. We assume that our SWNs are always bounded in order to

de�ne a �nite state spa
e. The SRG de�ned for this 
lass of models allows the same kind of performan
e

evaluation presented in [11℄ in the 
ase of general models. Moreover, this extended algorithm has the

same advantages as the one originally proposed for RN, i.e.: 1) it uses a symboli
 �ring rule, so that

both its time and spa
e 
omplexities depend only on the size of the SRG, and not on the size of the

a
tual RG; 2) it does not require any parti
ular heuristi
s to expli
itly de�ne the symmetries of the

model; 3) it exploits the information that is impli
it in the well stru
tured fun
tion and 
olor domain

de�nitions.

From the modeling power point of view any general CPN model 
an be translated into an equivalent

WN model with the same underlying stru
ture; only the expression of the 
olor fun
tions and of the


omposition of 
olor 
lasses is re-written in a more expli
it (and parametri
) form, in terms of the basi



onstru
ts provided by the WN formalism. Moreover, in pra
ti
al modeling this formalism translation

is hardly needed: most (if not all) CPN models published in the literature 
an be dire
tly represented

as WNs, even without exploiting the power of predi
ate guards on the ar
 labeling fun
tions.

We also present a 
omplete modeling example taken from the literature on multipro
essor 
omputer

ar
hite
ture. The example shows how the te
hnique 
an be exploited even by non expert modelers to

obtain good performan
e models of 
omplex systems. The symmetries of the system are automati
ally

taken into a

ount by the proposed algorithm without any expli
it intervention of the modeler. The

time and spa
e 
omplexity of the analysis is however equal to the one of the best model devised by

an expert modeler.

The balan
e of the paper is as follows. Se
tions 2 presents the WN formalism, and Se
tion 3

presents the SRG, a sket
h of the SRG 
onstru
tion algorithm with some examples, and some relevant

mathemati
al properties of the graph. Se
tion 4 
ontains the de�nition of SWNs, and the performan
e

evaluation te
hnique. Se
tion 5 presents a non trivial example of the appli
ation of SWNs to the per-

forman
e evaluation of a well known multipro
essor 
omputer ar
hite
ture. Finally, Se
tion 6 
ontains

some 
on
luding remarks and perspe
tives of this work. The formal notation has been somewhat sa
-

ri�
ed, and the presentation has been based mainly on examples to provide easier 
omprehension for

the non expert. A more rigorous notation and the formal proofs of many results 
an be found in [15℄

or in [16℄.
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2 Well-Formed Nets: an introdu
tion

We assume the reader is already familiar with the Petri net notation both un
olored [17℄ and 
ol-

ored [18℄ versions. We also assume the reader to be familiar with the GSPN formalism [19℄ and its

multipro
essor appli
ations [4℄.

2.1 Notation and basi
 de�nitions

We start by giving some basi
 de�nition and a short outline of the notation used in the paper.

De�nition 2.1 A multiset a over a non-empty set A is a mapping a 2 [A! IN ℄, we use the notation

Bag(A) to denote a multiset over A. Intuitively, a multi-set is a set that 
an 
ontain several o

ur-

ren
es of the same element. It 
an be represented by a formal sum: a =

P

x2A

a(x) x.

The 
oeÆ
ient a(x) is 
alled multipli
ity of x in a.

A multiset a

2

is 
ontained into the multiset a

1

, denoted a

2

� a

1

i� 8x 2 A; a

2

(x) � a

1

(x).

De�nition 2.2 The summation, subtra
tion and s
alar multipli
ation of multisets are de�ned as

follows:

� a

1

+ a

2

=

P

x2A

(a

1

(x) + a

2

(x))x

� a

1

� a

2

=

P

x2A

(a

1

(x)� a

2

(x))x provided that a

2

� a

1

� n a =

P

x2A

(n a(x))x

Given a family of sets fA

i

; i = 1; : : : ; ng we denote A

1

; : : : ; A

n

a new set obtained by Cartesian

produ
t of the sets in the family; an element in this new set is denoted < e

1

; : : : ; e

n

> where e

i

2 A

i

.

By generalization, if a

i

is a multiset over A

i

, we denote < a

1

; : : : ; a

n

> the multiset over A

1

; : : : ; A

n

obtained by Cartesian produ
t of the 
omponent multisets a

i

. The multipli
ity of the elements in the

resulting multiset is de�ned as follows:

8 < e

1

; : : : ; e

n

>2 A

1

; : : : ; A

n

; < a

1

; : : : ; a

n

> (< e

1

; : : : ; e

n

>) = a

1

(e

1

) � a

2

(e

2

) � : : : � a

n

(e

n

)

2.2 WN informal de�nition

The introdu
tion of Colored Petri Nets (CPN) as well as other High Level Petri Nets formalisms (e.g.,

Pr/T nets) was 
ru
ial from the point of view of the expressive power of this 
lass of formalisms.

The possibility of asso
iating information with tokens and of parameterizing transition �ring made

it possible to represent very 
on
isely systems that would have required huge un
olored nets to be

des
ribed.

Well Formed Colored Nets (WNs) are substantially identi
al to CPNs from the expressive power

point of view (see [20℄ for a proof of this statement). However the synta
ti
 de�nition of WNs leads
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to new, more eÆ
ient analysis algorithms based on the original 
on
ept of symboli
 marking. In the

sequel of this se
tion we give an informal des
ription of the WN formalism. The syntax used in the

explanation and in the examples is the one a

epted by the WN design and analysis tool prototype

that has been developed at the Computer S
ien
e Dept of the University of Torino [21℄ and that will

be soon integrated in the pa
kage GreatSPN [22℄.

As in PNs, pla
es of WNs together with their marking play the role of des
ribing the system state

while transitions represent events that 
ause the state 
hanges. In WNs a token 
an in
orporate some

information, indeed a token 
an be regarded as an instan
e of a data stru
ture with a 
ertain number

of �elds whose semanti
s depend on the pla
e the token belongs to. The de�nition of the \data type"

asso
iated with ea
h pla
e is 
alled pla
e 
olor domain and is similar to a C stru
ture de
laration. The

�elds data types are sele
ted from a set of basi
 types 
alled basi
 
olor 
lasses

1

. The spe
i�
ation of

the basi
 
olor 
lasses is part of the net de�nition. In our tool basi
 
olor 
lasses have always �nite


ardinality and are de�ned by enumeration of the elements

2

.

Often it may be useful to partition a basi
 
olor 
lass into disjoint sub
lasses of obje
ts with some


ommon property. For example the 
lass of pro
esses 
ould be partitioned into two sub
lasses: the

low priority pro
esses sub
lass and the high priority pro
esses one. In the WN terminology these are


alled stati
 sub
lasses (as opposite to dynami
 sub
lasses that will be introdu
ed to de�ne symboli


markings). A basi
 
lass may be ordered so that a su

essor fun
tion is de�ned on its elements. The

ordering is assumed to be 
ir
ular, so that the su

essor fun
tion applied to the last element returns

the �rst one. Here is the grammar for the de�nition of basi
 
olor 
lasses and their stati
 sub
lasses

within our tool. The syntax is depi
ted in Figure 1, where \stat sb
 id" is simply a string denoting a

Basi
 
lass grammar


lass ! 
lasstype stati
list

stati
list ! stat sb
 id j stati
list , stat sb
 id


lasstype ! O j U

Examples

Msgs = UData msgs;A
k msg

Stati
 sub
lass grammar

stati
 ! STRING[NUM-NUM℄ j

[ obje
tlist ℄

obje
tlist ! STRING j obje
tlist , STRING

Examples

Data msgs = m[1� 3℄

A
k msg = [a
k℄

Figure 1: Class de�nition syntax

stati
 sub
lass identi�er;

1

The �elds are not named. Their identi�
ation is positional.

2

Short
uts are allowed to make the de�nition more 
on
ise: for example the set Sites = fs

1

; : : : ; s

10

g 
an be spe
i�ed

using the syntax s[1� 10℄.
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In the example in the same �gure the basi
 
lass Msgs of possible messages is an unordered (U) 
lass

split in two stati
 sub
lasses Data msgs and A
k msg of 
ardinality 3 and 1 respe
tively.

The 
olor domain of pla
e p is denoted C(p) and the syntax for its de�nition is shown in Figure 2

where \
lass id" is simply a string denoting a previously de�ned basi
 
olor 
lass.

Pla
e 
olor domain grammar

Pla
edomain! 
lasslist j �


lasslist ! 
lass id j 
lasslist, 
lass id

Examples

C(T:Message buffer) = Sites; Sites;Msgs

C(Idle sites) = Sites

Figure 2: Pla
e 
olour de�nition syntax

In WNs a pla
e 
an be used to represent the value of a variable of given type provided that it

never 
ontains more than one token (the empty pla
e 
ould represent either an uninitialized variable

or some �xed default value in the variable domain) and the pla
e 
olor domain is equal to the variable

data type. Another use of pla
es in WN models is for the representation of the state of a (multi)set of

possibly distinguishable obje
ts. The notation M(p) denotes the marking of pla
e p i.e., the multiset

of C(p) 
ontained in p a

ording to marking M .

The transitions in WNs 
an be 
onsidered as pro
edures with formal parameters. The formal

parameters are 
alled transition 
olor domain; their de
laration is part of the net des
ription and

the type asso
iated with ea
h parameter must be a basi
 
olor 
lass. A transition 
olor domain is

de�ned in the same way as a pla
e 
olor domain. The list of 
lasses in the 
olor domain de�nes the

type asso
iated with the transition parameters. The 
olor domain of a transition t (denoted C(t)) is


onstrained by the 
olor domains of its input, inhibitor and output pla
es. We shall see later on that

the relation between transition and pla
e 
olor domains is de�ned through the ar
 expressions.

A transition whose formal parameters have been instan
ed to a
tual values is 
alled transition

instan
e. We use the notation [t; 
℄ for an instan
e of transition t, where 
 represents the assignment

of a
tual values to the transition parameters. Observe that an assignment 
 is a
tually an element of

the set C(t) and for this reason it is often referred to as a \
olor instan
e" of t.

In order to �re a transition, it is ne
essary to spe
ify a
tual values for its formal parameters (it is

similar to the exe
ution of a pro
edure 
all ), i.e., we 
an only �re transition instan
es. The enabling


he
k of a transition instan
e and the state 
hange 
aused by its �ring depend (again) on the ar


expressions that label the ar
s 
onne
ted to the transition. Observe that many instan
es of the same

transition 
an be 
on
urrently enabled. They are 
onsidered as independent, 
on
urrently o

urring

events (unless they are in 
on
i
t one with the other).

The ar
 expressions are (formal) sums of tuples; ea
h element of a tuple in turn is a weighted

sum of terms denoting multisets of the basi
 
olor 
lasses. The ar
 expressions syntax is des
ribed in

Figure 3.
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The ar
 expressions are stru
tured a

ording to the 
orresponding pla
e 
olor domain. If the pla
e


olor domain 
ontains k basi
 
olor 
lasses (i.e., k \�elds"), then the 
orresponding ar
 expression is

a weighted sum of k-tuples. The whole expression denotes a multiset in the Cartesian produ
t of the

basi
 
olor 
lasses 
omposing the 
orresponding pla
e 
olor domain.

The j

th

element in ea
h k-tuple is an expression denoting a multiset of C

j

, where C

j

is the \type" of

the j

th

\�eld" in the pla
e 
olor domain. This element is a weighted sum of three types of terms: (1)

variable (e.g. rightfork); (2) su

essor fun
tion applied to a variable (e.g.

L

rightfork ); (3) basi



lass/stati
 sub
lass identi�ers (e.g. S

Msgs

or S

Data msgs

).

The �rst two terms denote an obje
t in C

j

and the su

essor of an obje
t in C

j

respe
tively, S


lass name

or simply S denotes the set 
lass name (C

j

in this 
ase), S

sub
lass name

denotes the stati
 sub
lass

sub
lass name.

An ar
 expression that 
ontains variables 
an be interpreted as a pattern standing for any multiset

that 
an be obtained binding the variables to a
tual elements in the proper basi
 
olor 
lass. We 
all

assignment a 
olle
tion of variable bindings.

For example let us 
onsider the tuple < sr
; dest;msg;

L


nt >, and let us assume that the


orresponding pla
e 
olor domain is Sites; Sites;Msgs;MsgNumbers. The variables sr
, dest, msg

and 
nt stand for any obje
t in the 
orresponding basi
 
olor 
lass, so that the ar
 expression is a

pattern for any set of 
ardinality one whose only element is a four-tuple of elements from the pla
e


olor domain. The expression < rightfork > + <

L

rightfork >, where variable rightfork is of

type Philosophers, stands for a set of 
ardinality two 
ontaining any element of Philosophers and its

su

essor. The expression < broad
ast msg; S

Sites

> denotes a set of 
ardinality jSitesj of pairs. The

set is obtained by applying the Cartesian produ
t operator to any 
ardinality one subset of basi
 
lass

Ar
 expression grammar

ar
 expr ! �j sum tuples

sum tuples ! 
oe� optional predi
ate <expr list> j

sum tuples plusop 
oe�

optional predi
ate <expr list>

expr list ! expr kernel j expr kernel, expr list

expr kernel ! term j expr kernel plusop term

term ! sub
lass term j 
lass term j

var term j su

 term

sub
lass term ! 
oe� S stati
name


lass term ! 
oe� S j 
oe� S 
lassname

var term ! 
oe� STRING

su

 term ! 
oe�

L

STRING


oe� ! NUM j VBAR stati
name VBAR j

VBAR 
lassname VBAR j �

plusop ! + j �

Examples

< pro
essor;memory >

< broad
ast msg; S

Sites

>

jSitesj < S

A
k Msg

>

< sr
; dest;msg;

L


nt >

< rightfork > + <

L

rightfork >

< phonenum1 + phonenum2; 
hannel >

< S � sour
e >

Figure 3: Ar
 expression de�nition syntax
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<dest><source>

[source<>dest]

<source,dest,msg>

[D(msg)=Data_msg]

<source,dest,msg>

Idle sites

End sendStart send

T.Message buf

R.Message buf

Transmit

Sites Sites = {s[1-k]}
Msgs = Data_msgs, Ack_msg
Data_msgs = {m1,m2,m3}
Ack_msg = {ack}

think

waiting

start eat

eating

end eat

forks

<rightfork> + <leftfork>

<phil>

<phil>

<phil>

<phil>

<phil>

<rightfork> + <leftfork><phil>

Philosophers = {ph[1-5]}
+phi = ph((i+1) mod 5)

<source,dest,S Data_msg>

<dest,source,S Ack_msg>

<source,dest,S Ack_msg>
Receive

<source,dest,S Data_msg>

(a) (b)

[phil = rightfork]
rightfork] & [leftfork = +

[phil = rightfork]
rightfork] & [leftfork = +

Figure 4: Examples of WNs

Msgs, the type of variable broad
ast msg, and the set Sites. Finally expression jSitesj < S

A
k Msg

>

is a multiset 
ontaining jSitesj elements all with the same 
olor < a
k >.

The set of variables appearing in all ar
 expressions related to a single transition are its formal

parameters. For example, in the net of Figure 4.(a) the parameters of transition Start send are sour
e

and dest, both ranging over 
lass Sites. The parameters of transition Transmit are sour
e, dest,

and msg. Variables sour
e and dest represent obje
ts from the basi
 
lass Sites while variable msg

represents an obje
t from 
lass Msgs.

Observe that when the same variable appears in many ar
 expressions related to the same transition,

the di�erent o

urren
es a
tually denote the same obje
t, while when the same variable is used within

several ar
 expressions ea
h related to a di�erent transition, there is no relation between the obje
ts

represented by the di�erent variable o

urren
es.

Optionally a transition may have an asso
iated predi
ate: a boolean expression of 
onditions on

the transition formal parameters as de�ned by the grammar depi
ted in Figure 5, where D(variable)

denotes the stati
 sub
lass of the obje
t assigned to variable.

The enabling of a transition instan
e [t; 
℄ is determined by evaluating the transition predi
ate

and the ar
 expressions of all input and inhibitor pla
es with respe
t to the assignment 
. Noti
e

that in this 
ase an ar
 expression 
an be seen as a fun
tion, whose arguments are the variables ap-

pearing in the expression itself. A transition instan
e [t; 
℄ is enabled i� the predi
ate evaluates to

true, ea
h input pla
e 
ontains the multiset resulting from the evaluation of the 
orresponding ar


expression and for ea
h inhibitor pla
e, ea
h tuple 
ontained in it has a smaller multipli
ity than

the same tuple in the multiset resulting from the evaluation of the 
orresponding ar
 expression. An

enabled transition instan
e [t; 
℄ 
an �re. The state 
hange 
aused by the �ring amounts to subtra
t-

ing/adding from/to ea
h input/output pla
e p the multiset resulting by evaluating the 
orresponding

9



ar
 expression through the assignment 
.

In order to �nd all the enabled instan
es of a transition t it is possible to use either a \brute

for
e" approa
h, i.e., generate all possible assignments and 
he
k for enabling, or a more sophisti
ated

approa
h that takes into a

ount the 
ontents of input and inhibitor pla
es to generate dire
tly the

subset of assignments that 
orrespond to enabled instan
es.

In the se
ond approa
h we 
onsider ea
h ar
 expression as a pattern for a multiset of 
olors. A

mat
h pro
edure 
an then be de�ned that is used to mat
h the pattern spe
i�ed by an ar
 expression

with the marking of the 
orresponding input or inhibitor pla
e. The mat
h operation may fail or

su

eed; if it su

eeds it returns a set of possible lo
al assignments. The assignments obtained from

all the input and inhibitor pla
es must then be 
ombined to form a set of proper global assignments,

taking also into a

ount the 
onstraints due to the transition predi
ate. If a variable appears only on

the output ar
 expressions, any assignment that satis�es the predi
ate 
onstraints is valid.

Let us illustrate on some examples the enabling test and the �ring. The net in Figure 4.(a)

represents a 
ommuni
ation system in whi
h a site sends a message to a distant site. This message

is split into three pa
kets and ea
h pa
ket is transmitted separately over the network. On
e the

three pa
kets have been re
eived by the distant site, the latter sends an a
knowledgement to the

site that originated the 
ommuni
ation. On re
eption of this a
knowledgement, the 
ommuni
ation

ends and the sender be
omes idle again. There are two basi
 
lasses in this model: the 
lass of sites

Sites = fs1; : : : ; skg, and the 
lass of messages, partitioned into two stati
 sub
lasses: the sub
lass


ontaining the (three) data messages and the sub
lass 
ontaining the (single) a
knowledge message

Msgs = Data msgs [A
k msg = fm1;m2;m3g [ fa
kg

Transition Start send �ring is triggered by the presen
e of an element in pla
e Idle sites to be

mat
hed with the variable sour
e. The assignment to variable dest does not depend on any input

pla
e, however it must satisfy the predi
ate [sour
e 6= dest℄. Therefore, given a marking M all

assignments of sour
e and dest su
h that the site sour
e is in Idle sites and dest is di�erent from

Predi
ate grammar

predi
ate ! predi
ate OR pterm j pterm

pterm ! term AND pfatt j pfatt

pfatt ! (predi
ate) j

D(STRING) eqop doperand j

STRING eqop stroperand

doperand ! D (STRING) j stati
name

stati
name! STRING

stati
index! NUM

stroperand! STRING j

L

STRING

eqop ! = j <>

Examples

(leftfork =

L

rightfork)

D(msg1) = D(msg2)

sour
e <> destination

D(msg) = A
k Msg

Figure 5: Predi
ate de�nition syntax
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sour
e 
orrespond to enabled instan
es of transition Start send.

Thus if the instan
e

3

[Start send; (sour
e = s1; dest = s4)℄ is �red the multiset f<s1>g is subtra
ted

from pla
e Idle sites while the multiset f<s1,s4,m1>, <s1,s4,m2>, <s1,s4,m3>g is added to pla
e

T.Message bu�er.

Let us 
onsider transition Re
eive. It is triggered by the presen
e in pla
e R.Message buf of a set

of three-tuples mat
hing the pattern < sour
e; dest;m1>, < sour
e; dest;m2>, < sour
e; dest;m3>

(the boldfa
e strings denote obje
ts from basi
 
lasses), meaning that site dest has re
eived all the

three messages sent by sour
e. In this 
ase the assignment of proper values to the variables to �nd

an enabled instan
e of Re
eive depends only on the input pla
e marking. When �ring the instan
e

[Re
eive; (sour
e =si; dest =sj)℄, the set f<si,sj,m1>, <si,sj,m2>, <si,sj,m3>g is subtra
ted from

R.Message buf, and the set f<sj, si, a
k>g, representing the a
knowledge sent by sj to si, is added

to T.Message bu�er.

Observe that the mat
hing pro
edure may be 
omputationally expensive if the ar
 expressions

are 
omplex (in parti
ular the ar
 expressions may 
ontain predi
ates and in that 
ase the mat
h

operation 
omplexity may in
rease signi�
antly). Our experien
e is that usually in big models only

few ar
 expressions are 
omplex, while many of them are very simple (e.g. identity fun
tions) so that

the more eÆ
ient pro
edure for generation of enabled instan
es 
an be applied to most transitions in

the net.

2.3 WN formal de�nition

In this se
tion we give the de�nition of WNs and formalize the enabling and �ring of a transition

instan
e.

De�nition 2.3 (WN) A well formed net WN = hP; T;C; J;W

�

;W

+

;W

h

;�; �;M

0

i is made of:

P the �nite set of pla
es;

T the �nite set of transitions, P \ T = ;, P [ T 6= ;;

C the family of basi
 
lasses: C = fC

1

; : : : ; C

n

g, with C

i

\ C

j

= ; (we denote I = f1; : : : ; ng the

ordered set of indexes); C

i

is possibly partitioned in stati
 sub
lasses: C

i

=

S

n

i

q=1

D

i;q

;

J : P [ T ! Bag(I), where Bag(I) is the multiset on I. C(r) = C

J(r)

denotes the 
olor domain of

node r;

W

�

;W

+

;W

h

: W

�

(p; t);W

+

(p; t);W

h

(p; t) 2 [C

J(t)

! Bag(C

J(p)

)℄ the input, output, and inhibition

fun
tions are ar
 expressions;

3

We use the notations (var

1

= value

1

; : : : ; var

k

= value

k

) and < value

1

; : : : ; value

k

> inter
hangeably to des
ribe

an assignment 
 2 C(t).

11



�(t) : C

J(t)

! fTrue; Falseg is a standard predi
ate asso
iated with the transition t. By default we

will assume 8t 2 T the standard predi
ate �(t) = True;

� : T ! IN the priority fun
tion. By default we will assume 8t 2 T the value �(t) = 0;

M

0

: M

0

(p) 2 Bag(C(p)) is the initial marking of p.

De�nition 2.4 (Firing rule) A transition instan
e [t; 
℄ (where 
 2 C(t)) is enabled in a marking

M i�:

i) 8p 2 P , W

�

(p; t)(
) �M(p) ^W

h

(p; t)(
) > M(p), and �(t)(
)

whi
h is the expression of the �ring rule in a net without priorities,

ii) 8t

0

with �(t

0

) > �(t), 8


0

2 C(t

0

), 9p 2 P su
h that either W

�

(p; t

0

)(


0

) > M(p) _W

h

(p; t)(
) �

M(p) or :�(t

0

)(


0

)

whi
h means that no higher priority transition is enabled.

The �ring of transition instan
e [t; 
℄ leads to a new marking M

0

=M [t; 
i de�ned by:

8p 2 P; M

0

(p) =M(p) +W

+

(p; t)(
) �W

�

(p; t)(
)

2.4 Basi
 Properties of WN

A major interest of WNs is that they provide a modeling framework in whi
h symmetries appear

naturally as a way of redu
ing the size and 
omplexity of the representation. Another fortunate

property of WNs is their modeling power equivalent to un
onstrained 
olored nets. The two next

propositions of WN illustrate this situation.

Proposition 2.1 Any CPN 
an be transformed into a WN with the same basi
 stru
ture, same 
olor

domains (possibly partitioned in stati
 sub
lasses), equivalent ar
 labeling. See [20℄ for a proof.

De�nition 2.5 (Color permutation) Let � = f s = hs

1

; : : : ; s

h

; s

h+1

; : : : ; s

n

i g be a subgroup of

the permutations on C

1

; : : : ; C

n

su
h that:

� 80 < i � h s

i

is a permutation on C

i

su
h that 8D

i;q

, s

i

(D

i;q

) = D

i;q

;

� 8h < i � n s

i

is a rotation on C

i

su
h that 8D

i;q

, s

i

(D

i;q

) = D

i;q

. Note that this 
ondition

implies that if the number of stati
 sub
lasses of C

i

; n

i

> 1 then the only allowed rotation s

i

is

the identity.

Let C

J

be a 
olor domain and < 


1

; : : : ; 


k

>2 C

J

, s 2 �. Then s(< 


1

; : : : ; 


k

>) is de�ned by :

s(< 


1

; : : : ; 


k

>) =< s

(1)

(


1

); : : : ; s

(k)

(


k

) > where s

(i)

is the permutation asso
iated with the i

th

basi



lass in 
olor domain C

J

.
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De�nition 2.6 (Marking permutation) Let M be a marking, and s 2 � a permutation.

Then M

0

= s:M is a marking de�ned by: 8p 2 P; 8
 2 C(p); s:M(p; s(
)) =M(p; 
).

For instan
e, if C(p) = C

J

, then M

0

= s:M is de�ned on p by:

8 < 


1

; : : : ; 


k

>2 C

J

; M

0

(p;< s

(1)

(


1

); : : : ; s

(k)

(


k

) >) =M(p;< 


1

; : : : ; 


k

>)

Proposition 2.2 The �ring property is preserved by applying a permutation both on the markings

and the transition instantiation. 8M ordinary marking, 8t 2 T , 8
 2 C(t), 8s 2 �,

M [t; 
iM

0

() s:M [t; s(
)is:M

0

De�nition 2.7 (Symboli
 marking) Let Eq be the equivalen
e relation de�ned by:

M Eq M

0

() 9s 2 �; M

0

= s:M

An equivalen
e 
lass of Eq is 
alled a symboli
 marking, denoted with M.

Rather than 
onsidering a single initial marking M

0

, we allow a WN to be initially marked by a

symboli
 marking M

0

. In this 
ase, the WN no longer represents a single net, but a set of nets, ea
h

being initially marked by one of the markings 
ontained in the equivalen
e 
lass M

0

.

3 SRG

The symboli
 rea
hability graph of a well-formed net is based on the idea of symmetry of obje
ts of

the basi
 
olor 
lasses. It 
onsists of a symboli
 representation of all possible states of the model and

the possibility of transition from one to the other. Of 
ourse its 
onstru
tion be
omes algorithmi
ally

e�e
tive only in 
ase of �nite state spa
e (bounded models).

In WNs it is possible to identify two basi
 kinds of symmetry: rotation, and general permutation

inside subsets. Combinations of the two basi
 symmetry kinds 
an be found in a
tual models. The

idea is to substitute the a
tual state representation with a symboli
 representation that a

ounts for

the symmetry properties holding in the model state spa
e. A symboli
 marking thus represents an

equivalen
e 
lass on the state spa
e of the WN model, and the equivalen
e is in terms of the possible

basi
 
olor permutations that yield the same behavior. In this se
tion we �rst present an eÆ
ient

algorithm for the 
omputation of the SRG, whose appli
ation does not require any a-priori knowledge

on the symmetries of the system modeled by the WN (i.e., the algorithm is based only on the syntax

of the WN representation, and not on any sort of semanti
s of the spe
i�
 model). Then we analyze

the properties of the SRG that are relevant for the Markovian analysis of performan
e models based

on SWNs.
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ChoiceLine0
N

Lines1

Serv1Serv0 Make_choice

<line> <line>

Figure 6: Model of two servers in tandem.

3.1 SRG Computation

We start by de�ning the representation of symboli
 markings that, together with a symboli
 �ring

rule, allows the 
onstru
tion of the symboli
 rea
hability graph in an eÆ
ient algorithmi
 way.

3.1.1 Symboli
 Marking

Equivalen
e 
lasses of markings and �ring instan
es The 
hoi
e of a good representation of

the data is always the �rst problem in the de�nition of an algorithm. Let us �rst present informally

the idea of symboli
 marking by 
onsidering the simple example of �gure 6. It represents a 
losed

system with two servi
e stations in tandem. The �rst one is a single server station ( pla
e Line0

transition Serv0 ), the se
ond is a multiple server station (pla
e Lines1, transition Serv1(line)) with

four servers, ea
h with a separate waiting line (basi
 
olor 
lass Lines = l[1� 4℄ ). When a 
ustomer

leaves the �rst station, it randomly 
hooses whi
h line to join in the multiserver (pla
e Choi
e and

transition Make 
hoi
e(line)). Consider the following marking:

Line0(1)Choi
e(1)Line1(2 < l

1

>;< l

2

>)


orresponding to the state with 1 
ustomer in servi
e on the �rst servi
e station, 1 
ustomer making

the 
hoi
e of a line to join in the multiserver 2 
ustomers in the �rst line and 1 in the se
ond line of

the multiserver station. By looking at the possible behavior of the model the reader 
an 
he
k that

a permutation symmetry exists in this 
ase between the di�erent obje
ts of the basi
 
olor 
lass. We


an take an arbitrary permutation of the obje
ts in basi
 
olor 
lass Lines and obtain another legal

state of the model with the same 
hara
teristi
s su
h as, e.g.

Line0(1)Choi
e(1)Line1(2 < l

4

>;< l

3

>)

The only relevant 
ommon 
hara
teristi
s of the two markings above is that one token is in pla
e

Line0, one token is in pla
e Choi
e, while in Line1 there is an element with multipli
ity 2 and a

di�erent element with multipli
ity 1. From both these states only transition Make 
hoi
e(line) 
an

14



�re produ
ing one out of three possible results: a) the 
ustomer represented by the token in pla
e

Choi
e 
hooses to join the line where two 
ustomers are already waiting, or b) the line where one


ustomer is waiting, or 
) one of the two remaining empty lines. Hen
e, also after the transition �ring

we 
an re
ognize a permutation symmetry, in whi
h any permutation of obje
ts in a given marking

produ
es another valid marking with similar 
hara
teristi
s.

From the above informal reasoning it appears 
onvenient to dire
tly represent with an appropriate

data stru
ture the equivalen
e 
lasses of markings based on the permutation and symmetry property

of WN rather then the individual markings as usual in Petri nets. This 
an be a
hieved by abstra
ting

from the a
tual identity of obje
ts and retaining only enough information so that it is still possible to

make an equality 
omparison between the new \symboli
 obje
ts."

Our �rst proposed abstra
tion 
onsists of substituting obje
t identi�ers with variables. For example

the \symboli
 basi
 
lass" Lines would be de�ned

4

as fz

1

; : : : ; z

4

g. An example of symboli
 marking

would thus be the following:

M = Line0(1)Choi
e(1)Line1(2 < z

1

>;< z

2

>)

To de�ne the semanti
s of this symboli
 marking we need the de�nition of valid assignment. An

assignment of obje
ts from a basi
 
lass to variables z

i

is said to be valid i� the following three


onditions are veri�ed: 1) every variable is assigned an obje
t; 2) the same obje
t is not assigned

to more than one variable; 3) if the 
lass is ordered, adja
ent obje
ts are assigned to subsequently

numbered variables.

The symboli
 markingM 
ould thus represent the set of all ordinary markings that 
an be obtained

from valid assignments of obje
ts to the variables z

i

. Observe that the symboli
 marking

M

0

= Line0(1)Choi
e(1)Line1(2 < z

2

>;< z

4

>)

represents the same set of ordinary markings represented by M. This fa
t indi
ates the need for


riteria that lead to a unique representation i.e., a 
anoni
al representation. We ignore this problem

for the moment (we shall solve it later on) and we just 
onsider M and M

0

as the same symboli


marking.

This symboli
 marking a
tually implements the kind of abstra
tion that we were looking for, indeed

the set of markings represented by the symboli
 markings as de�ned above are exa
tly the equivalen
e


lasses identi�ed by the equivalen
e relation Eq of De�nition 2.7. Observe that it is rather natural to

de�ne a symboli
 �ring rule for this kind of symboli
 marking sin
e the variables play the same role

that obje
ts played in ordinary marking. Hen
e from marking M it is possible to �re the symboli


transition instan
e [Make
hoi
e; (line = z

2

)℄ from whi
h the new symboli
 marking

M

00

= Line0(1)Line1(2 < z

1

>; 2 < z

2

>) (1)

4

A separate set of variables should be de�ned for ea
h stati
 sub
lass
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is rea
hed. The symboli
 �ring instan
e stands for all the ordinary instan
es that 
an be obtained

by valid assignments of obje
ts to variables. In Figure 7 a pi
torial representation of the grouping

indu
ed by the symboli
 marking and symboli
 �ring 
on
ept is shown.

λ1 λ1
λ2 λ2

λ1 λ1
λ2 λ2 λ1+λ2

M

0

M

0

M M

Figure 7: Grouping of ordinary markings and ar
s

There is however a further step we 
an take to better exploit the grouping indu
ed by the symboli


�ring. It stems from the observation that �ring either one of the two symboli
 instan
es [Make
hoi
e,

(line = z

3

)℄ and [Make
hoi
e, (line = z

4

)℄ form markingM we rea
h the same new symboli
 marking

(provided we use a 
anoni
al representation). In Figure 7 this situation is depi
ted by many ar
s

departing from the same ordinary marking within a symboli
 marking and going to a group of ordinary

markings all belonging to the same symboli
 marking. It is possible to know in advan
e whi
h are the

symboli
 instan
es that lead to the same new symboli
 marking: indeed all those variables that have

the same distribution of tokens in the pla
es 
an be used inter
hangeably in a transition instan
e.

We then introdu
e the 
on
ept of dynami
 sub
lasses, representing sets of obje
ts that are not

identi�ed individually but that are known to be permutable one with the other in any �ring instan
e

to produ
e markings that belong to the same equivalen
e 
lass. A dynami
 sub
lass is 
hara
terized by

its 
ardinality (i.e., the number of di�erent obje
ts represented by the dynami
 sub
lass), and by the

stati
 sub
lass to whi
h the represented obje
ts belong (i.e., we 
an only group variables belonging to

the same stati
 sub
lass). In 
ase of ordered basi
 
lasses, only 
ontiguous obje
ts 
an be represented

by the same dynami
 sub
lass and the ordering relation among obje
ts is re
e
ted by the ordering of

the indexes of the dynami
 sub
lasses.

Representation of symboli
 markings: formal de�nition. The dynami
 sub
lass 
on
ept af-

fe
ts both the symboli
 marking representation and the symboli
 �ring. Using dynami
 sub
lasses

instead of variables in the marking representation allows a mu
h more 
ompa
t des
ription of the

marking itself. Moreover symboli
 �ring instan
es based on dynami
 sub
lasses allow one to group

many ar
s 
onne
ting the same two symboli
 markings.

Let us 
onsider the marking M

00

de�ned in (1); the two variables z

1

and z

2

have the same distri-
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bution of tokens in the pla
es (they both appear only in pla
e Line1 with multipli
ity 2), so that they


an be grouped in the dynami
 sub
lass Z

1

Lines

of 
ardinality 2. Also the two remaining variables, z

3

and z

4

have the same distribution sin
e they do not appear in any pla
e, so that we 
an group them

in the 
ardinality two dynami
 sub
lass Z

2

Lines

. The new symboli
 marking representation 
an thus

be written as

M

00

= Line0(1)Line1(2Z

1

Lines

); jZ

1

Lines

j = jZ

2

Lines

j = 2

More formally, the representation of the syntax and semanti
s of a symboli
 marking 
an be

de�ned as follows. Synta
ti
allly, a representation R of a symboli
 marking M is a 4-tuple R =

hm; 
ard; d; marki, where

� m : I ! IN

+

, su
h that m(i) (whi
h will be also denoted m

i

) is the number of dynami


sub
lasses of C

i

in M.

� The set of dynami
 sub
lasses of C

i

is denoted:

^

C

i

= fZ

j

i

j 0 < j � m

i

g. We'll use the extended

notation

^

C(r); r 2 P [ T , to denote the set of all possible tuples of dynami
 sub
lasses in a

pla
e/transition 
olor domain.

� 
ard :

�

S

i2I

^

C

i

�

! IN , su
h that 8i,

P

m

i

j=1


ard(Z

j

i

) = jC

i

j; i.e., the set of dynami
 sub
lasses

^

C

i

forms a partition of C

i

� d :

�

S

i2I

^

C

i

�

! IN su
h that 8Z

j

i

, d(Z

j

i

) = q 2 [1::n

i

℄ and 80 < i � n, 80 < j < k � m

i

,

d(Z

j

i

) � d(Z

k

i

)

� 8p 2 P , mark(p) :

^

C(p)! IN

The asso
iated semanti
s 
an be stated as:

�

^

C

i

is a non-instantiated partition of the basi
 
lass C

i

� Z

j

i

represents any subset C

i;j

of C

i

su
h that jC

i;j

j = 
ard(Z

j

i

)

in 
ase C

i

is ordered (i > h), the elements of C

i;j

are 
ontiguous

� 8M 2 R; 8i 2 I; 9�

i

: C

i

!

^

C

i

(�

i

is a valid assignment of subsets of C

i

to dynami
 sub
lasses Z

j

i

);

� �

i

: C

i

!

^

C

i

preserves

- stati
 sub
lass partitioning (fun
tion d)

- 
ardinality (fun
tion 
ard)

- marking (fun
tion mark)

- ordering relation in 
ase of ordered 
lasses (i.e. if i > h)
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� �

�1

i

(Z

j

i

) = C

i;j

is the set of all possible instantiations (i.e., valid assignments) of a dynami


sub
lass that de�nes the set of markings fM :M 2 Rg

When no ambiguity 
an arise, we denote the 
omponents of a representation simply by m, 
ard, d,

and mark. When referring to more than one representation, we remove the ambiguity by pre�xing a

proper representation identi�er (e.g. R

1

:m).

Note that using the above representation without further 
onstraints, one 
an �nd many represen-

tations for a given symboli
 markingM, as it happened with the former representation; we thus need

to de�ne a unique representation for a given symboli
 marking.

Canoni
al representation of symboli
 markings The �rst step in devising an eÆ
ient algo-

rithm for the enumeration of the symboli
 rea
hability graph of a WN is the de�nition of a unique

representation for ea
h symboli
 marking M. In order to obtain a unique representation we need a


riteria to de
ide: 1) how to partition the stati
 sub
lasses (and hen
e the basi
 
olor 
lasses) into

dynami
 sub
lasses of a given 
ardinality; 2) how to name properly the dynami
 sub
lasses.

The �rst problem is solved by de�ning a minimality property to be veri�ed on the marking. The

rationale behind the minimality requirement goes beyond the mere ne
essity of a 
anoni
al represen-

tation: indeed it also involves the maximization of both marking and �ring instan
es grouping.

The se
ond problem is solved by introdu
ing the 
on
ept of ordered representation. The ordering


riterion has to be de�ned in su
h a way that it is uniquely determined on some invariant 
hara
teristi


of all possible minimal representations. We use lexi
ographi
 ordering of the minimal representation

as su
h an invariant 
hara
teristi
s.

Both minimality and ordering de�nitions require the introdu
tion of the marking proje
tion fun
-

tion mark

sp

.

Fun
tion mark

sp

This fun
tion is de�ned on the set of all possible tuples of dynami
 sub
lasses from the Cartesian prod-

u
t of any subset of

^

C (without repetitions of the same basi
 
olor 
lass). For 
omputing minimality

the fun
tion is applied to single sub
lasses (i.e., tuples with arity one ) while for 
omputing ordering it

is applied to tuples from

^

C

I

. The formal de�nition of mark

sp

is rather 
umbersome and not in
luded

here (it 
an be found in [15℄ or in [16℄). Its meaning 
an be intuitively explained as follows. Given

a symboli
 marking M, and a tuple of dynami
 sub
lasses (possibly of arity one), fun
tion mark

sp

returns a ve
tor of jP j natural numbers en
oding the distribution of the tuple in the marking.

Considering the symboli
 marking M

00

used in the previous example,

mark

sp

(Z

1

1

)[Line0℄ = 1;mark

sp

(Z

1

1

)(Choi
e) = 0;mark

sp

(Z

1

1

)(Line1) = 2; (mark

sp

(Z

1

1

) =< 1; 0; 2 >)

mark

sp

(Z

2

1

)(Line0) = 1;mark

sp

(Z

2

1

)(Choi
e) = 0;mark

sp

(Z

2

1

)(Line1) = 0; (mark

sp

(Z

2

1

=< 1; 0; 0 >)
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Minimality

The minimality requirement refers to the number of dynami
 sub
lasses in ea
h basi
 
lass; intuitively

we want to have the smallest possible number of dynami
 sub
lasses sin
e this maximizes the e
onomy

of both the marking representation and the number of possible �ring instan
es.

De�nition 3.1 (Minimality) Let M be a symboli
 marking. A representation R is minimal i�:

8i � h; 8j; k; j 6= k =)

�

mark

sp

(Z

j

i

) 6= mark

sp

(Z

k

i

)

�

_

�

d(Z

j

i

) 6= d(Z

k

i

)

�

8i > h; 8j; k; k = �j =)

�

mark

sp

(Z

j

i

) 6=mark

sp

(Z

k

i

)

�

_

�

d(Z

j

i

) 6= d(Z

k

i

)

�

So the representation of M

00

is minimal sin
e mark

sp

(Z

1

1

)(Line1) 6= mark

sp

(Z

2

1

)(Line1).

Ordering

By properly ordering a minimal representation we 
an obtain a 
anoni
al representation. The re-

ordering of a minimal symboli
 marking representation 
onsists of readjusting the dynami
 sub
lasses

indexes a

ording to some univo
al 
riteria.

Observe that if we restri
t fun
tion mark

sp

to range over

^

C

I

, we 
an represent mark

sp

as a n-

dimensional matrix (one dimension for ea
h basi
 
lass C

i

with as many elements as j

^

C

i

j). Hen
e,

given a minimal symboli
 marking, we 
an translate it into a matrix of this kind where the element

(i

1

; : : : ; i

n

) 
ontains the pla
e indexed ve
tor returned bymark

sp

(Z

i

1

1

; : : : ; Z

i

n

n

) (note that of 
ourse also

the inverse translation is possible). Di�erent minimal representations of the same symboli
 marking

translate to matri
es that are identi
al up to a permutation of their elements. It is easy to de�ne

a 
anoni
al representation by 
hosing among all equivalent minimal representations, the one that


orresponds to a matrix that is lexi
ographi
ally ordered with respe
t to the following reading order

of the matrix elements:

(1; 1; : : : ; 1); (2; 1; : : : ; 1); : : : ; (m(1); 1; : : : ; 1); (1; 2; 1; : : : ; 1); : : : (2)

The 
omplete algorithm for the 
omputation of the 
anoni
al representation is des
ribed in [15℄

or in [16℄. Intuitively the task a

omplished by the algorithm is the following: it re
eives in input the

matrix mark

sp


orresponding of a minimal representation R of a symboli
 marking M and returns a

set S of symboli
 permutations

5

. The matrix obtained by appli
ation of any symboli
 permutation in

the set S is lexi
ographi
ally ordered.

The algorithm 
an be informally des
ribed as follows: it exe
utes a loop of at most j

^

C

1

j : : : j

^

C

n

j

steps: let (i

1

; : : : ; i

n

) be the index of a generi
 step (the indexes enumeration follows the order de�ned

5

Symboli
 permutations are de�ned as 
olor permutations with dynami
 sub
lasses repla
ing basi
 
lass obje
ts
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S :=

^

�; (* The set

^

� of all possible symboli
 permutations is initially assigned to S *)

(* restri
t S *)

< i

1

; : : : ; i

n

>=< 1; : : : ; 1 >; (* initialize the loop *)

while < i

1

; : : : ; i

n

>6=< R:m(1); : : : ;R:m(n) > and jSj > 1 do

min value = min

s2S

mark

sp

(s

1

(i

1

); : : : ; s

n

(i

n

))

S = fs 2 Sjmark

sp

(s

1

(i

1

); : : : ; s

n

(i

n

)) = min valueg

if jSj > 1

then < i

1

; : : : ; i

n

>= next(< i

1

; : : : ; i

n

>);

(* in
rement < i

1

; : : : ; i

n

> a

ording to the order de�ned in eq. (2) *)

fi

od

K(M) := jSj

Figure 8: Sket
h of the 
anoni
al representation 
omputation algorithm

in 2); the result a
hieved in the generi
 step is the 
hoi
e of the possible elements f (j

1

; : : : ; j

n

) g of the

input matrix that may end up in position (i

1

; : : : ; i

n

) in the ordered matrix. In other words this step


onstrains the possible values of (s

1

(i

1

); : : : s

n

(i

n

)) to range over the set f (j

1

; : : : ; j

n

) g. Obviously

the 
hoi
e at step (i

1

; : : : ; i

n

) is in turn 
onstrained by the 
hoi
es performed in all the previous steps.

A sket
h of the algorithm is given in Figure 8.

Note that if the representation ofM input to the algorithm is minimal, then the 
ardinalityK(M)

of the set S depends on the symboli
 marking, but not on the 
hosen representation.

The 
omputation of the 
anoni
al representation is one of the most 
riti
al parts of the SRG

generation algorithm from a 
omplexity point of view. Of 
ourse the a
tual 
omplexity of a 
anoni
al-

ization operation depends on \how far" the input representation is from the 
anoni
al representation.

The experiments we have done show that usually the representation obtained after �ring a transition

instan
e from a 
anoni
al representation is rather 
lose to the ordered representation, so that the


omputational 
ost of 
anoni
alization is often less than the worst 
ase 
ost. The 
anoni
alization of

the initial marking M

0

may instead have the highest 
ost sin
e the initial representation R

0

is given

by the modeler.

3.1.2 Symboli
 �ring rule

In order to build the SRG dire
tly starting from a symboli
 initial markingM

0

(i.e., without building

the RG and then grouping markings into equivalen
e 
lasses, whi
h would be mu
h easier but too


ostly), we �rst de�ne a symboli
 �ring rule on the symboli
 marking representations.

In a symboli
 �ring instan
e dynami
 sub
lasses are assigned to the transition parameters instead

of obje
ts. The meaning is that any obje
t in the sub
lass 
an be assigned to the parameter. When

several type C

i

parameters of t are assigned the same dynami
 sub
lass Z

j

i

we also need to spe
ify
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whether the parameters are instan
ed to the same obje
t or to di�erent obje
ts

6

of Z

j

i

. So if we denote

param

x

i

the x

th

parameter of type C

i

, in C(t), then the parameter instan
e 
an be spe
i�ed by a pair

h�

i

(x); �

i

(x)i = hj; ki meaning that the parameter represents the k

th

(arbitrarily 
hosen) element of

Z

j

i

. Of 
ourse k must be less than jZ

j

i

j. Moreover if there are m parameters instan
ed to Z

j

i

, k 
annot

be greater than m. More formally,

De�nition 3.2 (Symboli
 instan
e) Let t be a transition with C(t) = C

(1)

; : : : ; C

(k)

; let e

i

be the

number of o

urren
es of C

i

in C(t) (i.e., the number of parameters of t whose type is C

i

). Let R be

a symboli
 representation. A symboli
 instan
e of t, denoted [�; �℄ is an instantiation of

^

C(t) for R

de�ned by:

� = f�

i

: f1; : : : ; e

i

g ! IN

+

g, � = f�

i

: f1; : : : ; e

i

g ! IN

+

g, su
h that 8i 2 I, 80 < x � e

i

,

� �

i

(x) � R:m(i),

� �

i

(x) � R:
ard(R:Z

�

i

(x)

i

)

� if i � h then 80 < k < �

i

(x); 9x

0

< x su
h that �

i

(x

0

) = �

i

(x) ^ �

i

(x

0

) = k.

�

i

(x) is used to 
hoose the sub
lasses of

^

C

i

to be instantiated. In 
ase of non ordered 
lasses C

i

,

�

i

(x) is used to distinguish already instantiated elements from the other elements within the sub
lass

sele
ted by �

i

(x). The additional 
onditions on �

i

(x) guarantee that the fun
tions � and � de�ne a

partition of the ordinary ar
s of the rea
hability graph in symboli
 ar
s (an ordinary ar
 
annot satisfy

two di�erent pairs [�; �℄ simultaneously).

We denote �

j

i

= sup(�

i

(x) j �

i

(x) = j) the number of di�erent instantiations in the dynami
 sub
lass

Z

j

i

. For any Z

j

i

that is not instantiated (i.e. su
h that 6 9x : �

i

(x) = j), then by de�nition �

j

i

= 0.

We now introdu
e the notion of split symboli
 marking. As mentioned before, when we assign a

dynami
 sub
lass to a transition parameter we mean that any obje
t of the sub
lass may be sele
ted

for assignment to the parameter. It doesn't a
tually matter whi
h obje
t is 
hosen sin
e they all

behave the same way. Now in order to de�ne the symboli
 enabling and �ring rules, a splitting is

made in ea
h sub
lass between the (arbitrarily 
hosen) obje
ts that will be sele
ted for the �ring and

the other obje
ts. For ordered 
lasses we always split the instan
ed dynami
 sub
lasses into a set of

new 
ardinality 1 dynami
 sub
lasses.

De�nition 3.3 (Splitting) Let R be a representation of a symboli
 marking M. Then R

s

= R[�; �℄

is de�ned by the following transformations on R: R

s

:

^

C

i

= fZ

j;k

i

g with Z

j;k

i

de�ned as follows:

Case 1: Non-ordered Class C

i

; i � h

For ea
h Z

j

i

s.t. 9x : �

i

(x) = j do

6

Observe that we 
an instan
e at most as many di�erent obje
ts as the 
ardinality of the dynami
 sub
lass

21



split sub
lasses = fZ

j;k

i

j9x : h�

i

(x); �

i

(x)i = kg (sele
ted obje
ts sub
lasses)

if �

j

i

< R:
ard(Z

j

i

)

then split sub
lasses = split sub
lasses [ fZ

j;0

i

g (sub
lass of remaining obje
ts)

R

s

:

^

C

i

= R:

^

C

i

� fZ

j

i

g [ split sub
lasses

R

s

:
ard(Z

j;k

i

) = if k > 0 then 1 else (R:
ard(Z

j

i

)� �

j

i

)

od

Case 2: Ordered Class C

i

; i > h

For ea
h Z

j

i

s.t. 9x : �

i

(x) = j do

split sub
lasses = fZ

j;k

i

; 0 < k < R:
ard(Z

j

i

) g

R

s

:
ard(Z

j;k

i

) = 1

od

Con
erning the fourth 
omponent of R

s

i.e., R

s

:mark, it 
an naturally derived from R:mark: observe

that using the sum and Cartesian produ
t operations on multisets de�ned in 2.1 we 
an write:

Z

j

i

= Z

j;0

i

+ Z

j;1

i

+ : : :+ Z

j;k

i

i

so that the tuple < Z

2

1

; Z

3

2

> after the splitting of Z

2

1

into Z

2;0

1

+ Z

2;1

1

+ Z

2;2

1

and the splitting of Z

3

2

into Z

3;1

2

+ Z

3;2

2


an be rewritten as

< Z

2;0

1

+ Z

2;1

1

+ Z

2;2

1

; Z

3;1

2

+ Z

3;2

2

>

Sin
e the notation < a; b > (where a and b are multisets) denotes the Cartesian produ
t of a and b,

the above tuple 
an be transformed into

< Z

2;0

1

; Z

3;1

2

> + < Z

2;1

1

; Z

3;1

2

> + < Z

2;2

1

; Z

3;1

2

> + < Z

2;0

1

; Z

3;2

2

> + < Z

2;1

1

; Z

3;2

2

> + < Z

2;2

1

; Z

3;2

2

>

Proposition 3.1 Let R be a representation of the symboli
 marking M. Then R

s

= R[�; �℄ is

another representation of M.

With su
h a de�nition of the split marking, sub
lasses 
an substitute obje
ts in the transition �ring.

The evaluation of ar
 expressions and predi
ates does not 
hange when dynami
 sub
lasses of


ardinality one repla
e obje
ts in variable assignments. We use the notation

^

W and

^

�(t) to indi
ate

the symboli
 ar
 expressions and transition predi
ates respe
tively.

The four step symboli
 �ring. The 
anoni
al representation of the symboli
 marking obtained by

�ring (t; �; �) in M (i.e., M

0

=M[t; �; �i) is 
omputed in four steps, that use di�erent intermediate

(non 
anoni
al) representations.

1. Splitting M with respe
t to [�; �℄

let R

s

= R[�; �℄ be the split representation of M in whi
h (t; �; �) is enabled;
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2. A
tual Firing M

0

=M[t; �; �i

De�ne R

f

by 
opying the 
omponents m, 
ard, and d from R

s

, and 
omputing R

f

:mark by

applying the in
iden
e fun
tions on R

s

:mark.

8p 2 P; R

f

:mark(p) = R

s

:mark(p)�

^

W

�

(p; t)(�; �) +

^

W

+

(p; t)(�; �)

R

f

is a (possibly non 
anoni
al) representation of M

0

;

3. Grouping M

0

Compute a minimal representation R

m

of M

0

by grouping dynami
 sub
lasses of R

f

;

4. Ordering M

0

Compute the 
anoni
al representation ofM

0

by transformingR

m

into an ordered representation.

This is obtained by applying one of the permutations in S to the dynami
 sub
lasses of R

m

.

Let us make a �nal remark on the splitting of ordered 
lasses. The 
omplete splitting into dynami


sub
lasses of 
ardinality 1 is not stri
tly ne
essary, but it is 
onvenient sin
e it allows a homogeneous

treatment of the di�erent 
ases that arise 
onsidering all the di�erent positions o

upied by the sele
ted

element in the instantiated dynami
 sub
lass. The reason for 
onsidering ea
h 
ase separately is due

to the need to maintain the ordering among the dynami
 sub
lasses of an ordered 
lass throughout

the algorithm.

Example of Symboli
 Firing. Let us 
onsider a very simple arti�
ial example in order to illustrate

the four steps of the symboli
 �ring rule. The di�erent steps are illustrated in graphi
al form in Figure

9. The WN 
onsidered in this example has no parti
ular meaning. The top-left portion of the �gure

depi
ts the 
anoni
al representation of an arbitrary marking M. The other portions represent the

four steps of the symboli
 �ring of transition t for hZ

2

1

; Z

1

2

i (whi
h is enabled in M, as the reader 
an


he
k).

The Symboli
 �ring rule 
an be easily 
ast into the usual algorithm stru
ture for the 
omputation

of the Rea
hability Graph of a Petri net provided that the Symboli
 
anoni
al representation is used

to store the markings of the rea
hability set.

3.2 SRG relevant properties

We present now the most interesting properties of the symboli
 rea
hability graph that 
an be exploited

for a performan
e evaluation of WN models. Other interesting properties 
an be shown 
on
erning

the qualitative behavior of WN models based on the analysis of the SRG, but they are not reported

here for the sake of 
on
iseness.

The �rst two properties that we 
onsider establish the equivalen
e between the RG and the SRG

from the point of view of the rea
hability of markings.
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1
+

Z
1

1

Z
1

2
Z

2

2
+2.

Z
1

1

t[λ,µ]
<x> Z

2,1

1

<x> Z
2,1

1

<y> Z
1

2

3<y> 3Z
1

2

(1)=1µ2

(1)=1µ1

(1)=2λ1

(1)=1λ2

card( )=3Z
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all other 
subclasses have
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MARKING
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REPRESENTATION
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MARKING
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card( )=1Z
2,1

1
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1
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1
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Z
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Z
2

1

Z
1

1

+3.2.Z
1

2
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NB: if the splitting of Z
j

i

results in a single subclass Z
j,k

i

Figure 9: An example of symboli
 �ring
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Property 3.1 Equivalen
e between symboli
 and ordinary rea
hability.

Let M

0

be a symboli
 marking, and [M

0

i be the set of symboli
 markings rea
hable from M

0

. Then

[

M

0

2M

0

[M

0

i = [M

0

i

Property 3.2 Cardinality of a symboli
 marking.

LetM be a symboli
 marking and jMj be the number of ordinary markings belonging to the equivalen
e


lass of M.

Let K(M) be the number of permutations 
omputed during the ordering phase of the symboli
 �ring

algorithm. Then

jMj =

1

K(M)

0

�

h

Y

i=1

n

i

Y

q=1

jD

i;q

j!

Q

d(M:Z

j

i

)=q


ard(M:Z

j

i

)!

1

A

n

Y

i=h+1

�(i)

where �(i) = if (M:m(i) > 1 ^ n

i

= 1) then jC

i

j else 1.

The above properties ensure that no information on rea
hability is lost by analyzing the SRG

instead of the RG. However, in order to derive an improved te
hnique for performan
e evaluation

based on the SRG instead of the RG, we still need to know how to test the ergodi
ity of the Markov


hain and how to 
ompute its transition rates. These additional requirements lead to the formulation

of the following additional propositions

7

.

Property 3.3 Ne
essary 
ondition for ergodi
ity.

Strong 
onne
tion of RG =) Strong 
onne
tion of SRG, but not vi
e-versa.

In [15℄ an example is given in whi
h the SRG is strongly 
onne
ted while the underlying RG is not.

Property 3.4 A suÆ
ient 
ondition for ergodi
ity.

Strong 
onne
tion of SRG

^ 80 < i � h, 9M

0

2SRG su
h that (M

0

:m(i) = n

i

)

^ 8h < i � n, ((n

i

> 1) _ (9M

0

2SRG su
h that (M

0

:m(i) = 1) )

=) Strong 
onne
tion of RG

The above property is an extension of a property already proven in [8℄ for the restri
ted 
ase of Regular

nets

8

. On the other hand, the 
ondition is not ne
essary in order for the RG to be strongly 
onne
ted,

even in the simpler 
ase of RNs. Indeed, in [15℄ an example of WN is given in whi
h the SRG is

strongly 
onne
ted, dynami
 sub
lasses are never 
ompletely grouped, and yet the RG is strongly


onne
ted.

7

Remember that a �nite, 
ontinuous time Markov 
hain is ergodi
 i� its graph representation is strongly 
onne
ted.

8

Indeed, the additional 
ondition on the dynami
 sub
lass partition is always satis�ed by the (symmetri
) initial

marking in an RN.
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Property 3.5 Equivalen
e between symboli
 �ring and ordinary �ring.

Let M and M

0

be two symboli
 markings of the SRG, and M 2M be an ordinary marking of the RG.

Let A

M;M

0

be the set of ar
s of the RG 
onne
ting M to any marking M

0

2 M

0

, and A

M;M

0

be the

set of symboli
 ar
s of the SRG 
onne
ting M to M

0

.

Then there exists a mapping ! from A

M;M

0

onto A

M;M

0

su
h that:

� if the label of an ar
 a 2 A

M;M

0

is [t; < 


j

1

i

1

; : : : ; 


j

k

i

k

>℄ then the label of !(a) is [t; �; �℄ with




j

i

2 D

i;q

()M:d(Z

�

i

(j)

i

) = q

� if the label of a symboli
 ar
 a 2 A

M;M

0

is [t; �; �℄ then the 
ardinality of the re
ipro
al image of

a denoted j!

�1

(a)j is

h

Y

i=1

m

i

Y

j=1


ard(Z

j

i

)!

(
ard(Z

j

i

)� �

j

i

)!

where �

k

i

= sup

x : �

i

(x)=k

�

i

(x)

4 Sto
hasti
 WNs and lumped Markov 
hains

Sto
hasti
 Regular nets where already de�ned in [10℄. The basi
 prin
iple for timing a 
olored Petri

net is to asso
iate a fun
tion from the markings to positive real numbers to ea
h ar
 of the rea
hability

graph. In this way a dis
rete-state semi-Markov pro
ess is de�ned whose state spa
e is 
orresponding

to the rea
hability set of the 
olored net. In this se
tion, after a formal de�nition of sto
hasti
 well-

formed 
olored nets (SWN), we prove that an aggregate Markovian pro
ess 
an be de�ned based on the

SRG in order to 
ompute the same performan
e estimates with a lower 
omputational 
ost 
ompared

to the usual te
hnique based on the RG.

4.1 Sto
hasti
 well-formed nets

In WNs a priority stru
ture is de�ned on transitions. This priority is re
e
ted in the timing semanti
s

of SWNs in the same way as was originally de�ned for GSPNs [19℄. Transitions with priority level 0

are 
alled timed transitions, and they �re at the instant of the elapsing of a delay from the instant of

the transition enabling. The delay is determined for ea
h instantiation of the enabling of a transition

a

ording to a random pro
ess with negative exponential probability distribution. Transitions with

priority level greater than 0 are 
alled immediate transitions, and they �re in zero time at the instant

of their enabling. In 
ase of 
on
i
ting immediate transitions a �ring probability is assigned to ea
h


on
i
ting transition, proportionally to a weight. The probability is 
omputed by normalizing the

weights of all 
on
i
ting transitions enabled in the same marking.

In order to guarantee the presen
e of symmetry not only from a logi
al but also from a sto
hasti


point of view, we restri
t the possibility of marking dependen
y for the mean values of transition
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�ring delays. The average �ring rate of a transition instan
e 
an be a fun
tion of the stati
 sub
lass

that the obje
ts assigned to the transition parameters belong to, and not a fun
tion of the assigned

obje
ts themselves. In this way all obje
ts of a given stati
 sub
lass determine the same transition

�ring delay. This 
an be formalized by introdu
ing the notation

~

C

i

= f D

i;1

; : : : ;D

i;q

g

In analogy with the notation introdu
ed for the representation of symboli
 markings and dynami


sub
lasses, given a transition t with 
olor domain C(t) = C

J(t)

we de�ne

~

C(t) = f< D

i

1

;j

1

; : : : ;D

i

k

;j

k

> j 0 < j

l

� n

i

l

g

For any 
 =< 


j

1

i

1

; : : : ; 


j

k

i

k

> 2 C(t) we also de�ne ~
 =< ~


j

1

i

1

; : : : ; ~


j

k

i

k

>

~

C(t) su
h that ~


j

i

= D

i;q

i�




j

i

2 D

i;q

. Finally we de�ne the stati
 partition of a markingM denoted

~

M(p) 2 Bag(

~

C(p)) as follows:

~

M(p)(~
) =

X




0

: ~


0

=~


M(p)(


0

)

The stati
 partition of a marking represents, for ea
h pla
e and for ea
h Cartesian produ
t of stati


sub
lasses, the number of tuples in the pla
e that belong to the same Cartesian produ
t of stati


sub
lasses.

Property 4.1 Stati
 partition of symboli
 markings.

8M; M

0

2M; 8p 2 P;

~

M(p) =

~

M

0

(p)

Hen
e we 
an de�ne the stati
 partition of a symboli
 marking as well and denote it

~

M.

De�nition 4.1 (SWN) A sto
hasti
 well-formed 
olored net is a pair SWN = hWN; �i su
h that

WN is a well-formed 
olored Petri net

� is a fun
tion de�ned on the set of transitions T su
h that

�(t) :

~

C(t)� Bag(

~

C(p

1

))�Bag(

~

C(p

2

))� : : : Bag(

~

C(p

jP j

)) �! IR

+

For any timed transition t, the fun
tion �(t)(~
;

~

M ) represents the average �ring rate for any instan
e

of transition [t; 
℄ enabled in marking M . In 
ase of immediate transitions, the same fun
tion is

interpreted as the weight to be normalized within a 
on
i
t set in order to obtain the �ring probability:

�(t)(~
;

~

M)

P

M [t

0

;


0

i

�(t

0

)(~


0

;

~

M)
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4.2 SRG based lumped pro
ess

We present now an algorithm that exploits the partition in equivalen
e 
lasses of markings impli
itly

determined by the 
omputation of the SRG of an SWN in order to redu
e the 
ost of the numeri
al

Markovian analysis.

We denote by SRS the set of all rea
hable symboli
 markings M

i

of the WN. An a
tual marking

of the equivalen
e 
lass de�ned byM

i

is denoted here with a double indexM

i;k

, where k represents an

internal ordering within the equivalen
e 
lass. The weight fun
tion � is extended to symboli
 sub
lasses

as follows: 8M, 8[�; �℄, 8M 2 M, 8t 2 T , 8
 2 C(t) su
h that �

i

(


j

i

) = Z

�

i

(j)

i

, �(t)(�; �;

~

M) =

�(t)(~
;

~

M ).

The performan
e evaluation algorithm 
an thus be outlined as follows:

1. Constru
tion of the aggregate state spa
e des
ription

� 
onstru
tion of the SRG of the WN

� elimination of self-loop ar
s (

^

W

+

(p; t)(�; �) �

^

W

�

(p; t)(�; �) = 0)

� for ea
h ar
 of the SRG, 
omputation of �(t)(�; �;

~

M)

2. Constru
tion of the square matrix Q = [q

i;j

℄ of dimension N

0

= jSRSj with q

i;i

= �

P

j 6=i

q

i;j

and 8j : i 6= j; q

i;j

=

P

[t;�;�℄ : M

i

[t;�;�iM

j

�(t)(�; �;

~

M

i

):j�

�1

(t; �; �)j

P

[t

0

;�

0

;�

0

℄ : M

i

[t

0

;�

0

;�

0

i

�(t

0

)(�

0

; �

0

;

~

M

i

):j�

�1

(t

0

; �

0

; �

0

)j

3. Numeri
al solution of the Semi-Markov pro
ess des
ribed byQ, (the solution is unique if the SRG


ontains a single strongly 
onne
ted 
omponent) and 
omputation of the steady-state probability

distribution 	for tangible symboli
 markings.

From the probability distribution 	 of the tangible symboli
 markings it is always possible, if needed,

to 
ompute the probability distribution  of the tangible a
tual markings of the SWN as:

8M

j

2M

i

;  

j

=

	

i

jM

i

j

Note that usually the a
tual marking distribution is not needed for the 
omputation of performan
e

indexes de�ned at the net level and that in any 
ase the 
omplexity of the above outlined numeri
al

analysis is polynomial in the 
ardinality of the SRG instead of the 
ardinality of the RG. Thus, the

proposed te
hniques exploits at its greatest extent the 
olor stru
ture of the model in order to redu
e

the size of the state spa
e of the sto
hasti
 pro
ess to be analyzed.

The prove that the analysis of the sto
hasti
 pro
ess de�ned on the SRG yields the same steady-

state solution that 
an be 
omputed from the general te
hnique based on the RG is divided in three

steps.
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1. The embedded Markov 
hain is lumpable. Hen
e it is possible to derive a redu
ed linear system

whose variables are the symboli
 marking probabilities.

2. The 
oeÆ
ients of the redu
ed linear system 
an be 
omputed dire
tly from the SRG.

3. All a
tual markings within a symboli
 marking have the same probability.

See [20℄ for an outline of the formal proof.

5 A Complex Appli
ation to Multipro
essor Ar
hite
tures

In this se
tion we apply the WN formalism to the modeling and performan
e evaluation of a mul-

tipro
essor system already studied in [23, 2, 5℄. The reasons for re
onsidering this almost 
lassi


ar
hite
ture are many. First, it is intrinsi
ally more 
omplex and more realisti
 than other systems

already studied by 
olored or high-level Petri nets, su
h as, e.g., [7, 11℄. Se
ond, the solutions based

on Markov or Sto
hasti
 Petri net te
hniques presented in [23, 2℄ are not satisfa
tory due to their

inherent 
omplexity in terms of in
reasing of the number of states as a fun
tion of the number of

pro
essors 
onsidered in the system, that limited the availability of results to very few pro
essors

(� 3). Third, the solution based on folded GSPN model presented in [5℄, although mu
h better from

the 
omputational 
omplexity point of view was still not satisfa
tory from a modeling point of view

due to the 
omplexity of the GSPN model itself, whose 
onstru
tion required a great deal of ingenuity

and a deep understanding of the behavioral symmetries of the system.

The aim of this example is twofold. On one hand we show the 
onsiderable di�eren
e in size of

the (aggregated) Markov 
hain dire
tly obtained from the SRG with respe
t to the size of the Markov


hain obtained from the detailed RG, whi
h is equivalent to those presented in [23, 2℄. On the other

hand we 
ompare the aggregations automati
ally performed in the SRG generation phase with those

devised in [5℄ at the pri
e of a thorough (human) analysis of the system behavior and �nd that the

same level of lumping is now a
hieved without any e�ort on the part of the modeler. Indeed the gain

in spa
e enlarges the 
lass of numeri
ally solvable models.

The multipro
essor ar
hite
ture analyzed in this example is 
omposed by a set of pro
essors 
on-

ne
ted through a bus. Ea
h pro
essor p

i

is asso
iated with a lo
al memory 
omposed of two se
tions,

a private one (PM

i

) and a 
ommon one (CM

i

). Private memory areas (PM) 
an be a

essed only

by the 
orresponding pro
essor through its private bus (PB); private memory a

esses never generate


ontention. Common memory areas (CM) are a

essible to all the pro
essors in the system. A

esses

to the lo
al module of the CM are performed through the private bus plus the lo
al bus (LB), while

a

esses to non lo
al CM modules are performed using the global bus (GB) plus the lo
al bus of the

destination CM module.
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Figure 10: An intuitive WN model of the multipro
essor ar
hite
ture

Contention arises in the use of GB as well as of the lo
al busses (and the CM modules). A pro
essor

is delayed when some of the resour
es it is trying to a

ess are busy. We assume however that external

a

ess requests to CM modules have priority over the lo
al CM a

esses and 
ause their preemption.

The overall behavior of the system 
an be des
ribed as follows: pro
essors alternate periods of

pro
essing requiring only a

ess to the private memory (we 
all these periods CPU bursts), with pe-

riods of CM modules a

esses. For simpli
ity we assume that the system is made up of n identi
al

pro
essor-memory modules. In order to build the WN model of the system it 
an be useful to 
lassify

the possible states of a pro
essor as follows:

A
tive: Pro
essor exe
uting in its private memory;

A

essing lo
al CM: Pro
essor performing a lo
al CM module a

ess;

A

essing remote CM: Pro
essor performing an external CM module a

ess;

Queued: Waiting for the GB to be
ome available;

Blo
ked: Waiting to 
ontinue a lo
al CM a

ess preempted by an external a

ess.

The behavior of the system is des
ribed in a straightforward manner by the WN model in Figure

10. Let us note that there is an additional guard [x 6= y℄ on the transition `req ext a

'. Pla
es

represent the possible states of ea
h pro
essor as follows. `Run' 
ontains tokens whose 
olor represent

the identity of pro
essors in the \A
tive" state. Similarly, pla
es `ExtMemA

' and `Queue' represent

pro
essors in the \remote a

ess" and in the \Queued" states, respe
tively. Pla
e `OwnMemA

' 
an

represent either state \lo
al a

ess" or \Blo
ked", depending on the fa
t that a token of the same 
olor

is or is not present in pla
e `Memory'. A probabilisti
 
hoi
e among private, lo
al, or external memory

a

ess is modeled by the three 
on
i
ting immediate transitions `req priv mem', `begin own a

', and

`req ext a

'. In the latter 
ase, the 
hoi
e of the external memory is represented by the 
hoi
e of

the se
ond 
omponent (y) of the 
olor domain of transition `req ext mem' (whi
h is enabled for any

y 6= x).

This WN representation of the system, although 
orre
t and quite easy to understand, is not the

simplest one 
an draw. For example, the three 
on
i
ting immediate transitions 
an be \agglomerated"

into their pre
eding timed transition `mem req' by applying a well known net redu
tion rule that
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Figure 11: A more 
ompa
t WN model of the multipro
essor ar
hite
ture

preserve all behavioral properties of the net [24℄ as well as the timing semanti
s of the model [25℄.

Moreover, the timed transition resulting from the fusion of transitions `mem req' and `req priv mem'

in the WN in Figure 10 
an be deleted sin
e its �ring determines no 
hange in the marking of the

net. Finally, the WN representation 
an be further simpli�ed by \delaying" the 
hoi
e of the external

memory to be a

essed until the global bus is available: indeed, the information about the identity of

the memory module to be a

essed is useless before the GB a

ess is granted to the pro
essor.

By applying all the above dis
ussed simpli�
ations, one 
an �nally draw the more 
ompa
t WN

model depi
ted in Figure 11. Let us note that there is an additional guard [x 6= y℄ on the transition

`begin ext a

'. The Basi
 
olour 
lass P is introdu
ed to represent module identities (both pro
es-

sor and asso
iated lo
al CM identities). For example pla
e A
tive with 
olour domain P 
ontains

tokens representing the a
tive pro
essors; pla
e ExtMemA

 with 
olour domain P; P 
ontains pairs

hpro
essor; CMmodulei representing the external a

esses 
urrently going on

9

; pla
e Memory with

domain P 
ontains tokens 
orresponding to the CM modules not used by any external pro
essor; pla
e

OwnMemA

 with domain P 
ontains both pro
essors in Blo
ked and in A

ess lo
al CM states, the

former (latter) being 
hara
terized by the absen
e (presen
e) of the 
orresponding 
oloured token in

pla
e Memory; pla
e ExtBus has no asso
iated 
olour domain (has neutral domain) and des
ribes the

GB state: empty for GB busy, �lled with one token for GB idle.

Transitions begin own a

, end own a

, and req ext a

, have 
olour domain P . Transition be-

gin ext a

 has domain P; P and has an asso
iated predi
ate.

10

Transition begin ext a

 is immediate be
ause we assume that both arbitration and release time of

busses are negligible (and thus set to zero). Furthermore we have assumed that both CPU bursts and

CM a

ess periods are independent, exponentially distributed, random variables. Finally, external

a

ess requests from ea
h pro
essor are dire
ted to any non lo
al CM module with probability

1

n�1

;

this is represented in the model by stating that all possible (
on
i
ting) instantiations of transition

9

Of 
ourse, due to the availability of a single GB, there 
annot exist more than one token at a time in this pla
e.

10

This transition represents the beginning of an external a

ess of pro
essor x to the CM module y. Be
ause of the

predi
ate only �ring instan
es with x 6= y are enabled. Indeed x = y would represent a lo
al a

ess. The sele
tion of a

request from the external a

ess queue has been modeled assuming a random order queueing dis
ipline.
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n # tang. SRG # tang. RG E(AP )=n U(GB)

2 6 10 0.6752411 0.27009645

3 13 62 0.6600941 0.39605642

4 23 340 0.642929 0.51434340

5 36 1652 0.6227463 0.62274684

6 52 7354 0.5991253 0.71895120

7 71 30746 0.5719982 0.80079870

8 93 122728 0.5417373 0.86678098

9 118 472904 0.5092124 0.91658070

10 146 1772494 0.475696106 0.95139024

Table 1: Results

begin ext a

 have equal probability. The parameters of our model are the number n of pro
essor-

memory modules, the average CPU burst length (1=�), and the average external a

esses duration

(1=�). As in [23, 2, 5℄, we de�ne the system load fa
tor � as the ratio �=�. Some performan
e �gures

that 
an be obtained from our model are: the average number of a
tive pro
essors (E[AP ℄); the GB

utilization (U [GB℄). These performan
e �gures 
an be 
omputed from the steady state probability of

the symboli
 markings using the following formulas:

� E[AP ℄ =

P

M2tang(SRG)

	(M) #A
tive

where 	(M) is the steady state probability of the symboli
 marking M, while #A
tive is the

number of elements in pla
e `A
tive' de�ned as #A
tive =

P

<Z

j

1

>2M(A
tive)


ard(Z

j

1

)

� U [GB℄ =

P

M2tang(SRG):M(GB)=0

	(M)

In Table 1 the performan
e �gures 
omputed for di�erent values of the number of pro
essors assuming

a load fa
tor � = 0:2 are shown. The mean number of a
tive pro
essors is here divided by n in order

to obtain a normalized version of this �gure.

In Table 1 the size of the aggregate and 
omplete Markov 
hains are also reported for di�erent

values of n, to give a 
avor of the 
onsiderable gain that 
an be a
hieved with this method.

Now let us 
ompare the automati
 aggregations performed by the SRG generation algorithm

with those devised in [5℄. In that paper a non 
olored GSPN model was built having already in

mind the aggregated state information required. That is, the redundant information of the original

(mu
h simpler and easy to build) model was dis
overed by 
arefully studying the system behavior and

eliminated by 
hanging the kind of state en
oding at the net level. It is interesting to observe that the

same redundan
ies are automati
ally dete
ted on the WN model by the SRG generation algorithm as


an be observed 
omparing the tangible SRG of the WN model and the tangible RG of the un
olored
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Figure 12: SRG of the multipro
essor WN

model shown in Figure 12. Noti
e that the 
onstru
tion of the WN des
ription, as 
ompared to the

folded GSPN model originally presented in [5℄, although equivalent from the point of view of eÆ
ien
y

of the analysis requires a substantially smaller intelle
tual e�ort to be understood and to be devised

starting from the des
ription of the system behaviour.

6 Con
lusions

Sto
hasti
 Petri nets were introdu
ed some time ago as a good modeling tool for the performan
e

evaluation of multipro
essor 
omputer systems. They o�ered a mu
h higher level tool than previously

used Markov 
hains, but they su�ered from the same large dimension problem that often hampers the

possibility of obtaining results for realisti
 size systems. High-level Petri net formalisms have already

been employed to further redu
e the 
ost of the model de�nition and validation, and sometimes also to

perform lumpings of the underlying Markovian models in order to redu
e the 
ost of the performan
e

evaluation for larger system 
on�gurations. So far, however, it was the total responsibility of the

modeler to identify su
h system 
hara
teristi
s as symmetry in behavior, in order to exploit the


hara
teristi
s to obtain models that are less 
omplex to analyze.

For the �rst time a 
ompletely algorithmi
 approa
h is proposed that allows the exploitation of

these model 
hara
teristi
s for the 
onstru
tion of lumped Markov 
hains. The user need not be aware

of the lumping te
hnique, as long as he spe
i�es the behavior of the system in terms of well-formed


olored nets. The intrinsi
 symmetries are automati
ally dete
ted and used at their greatest extent by

means of the 
onstru
tion of the symboli
 rea
hability graph. The te
hnique presented in this paper is

a dire
t extension of that already proposed for a restri
ted 
lass of \regular nets". The novelty of the

result presented here is that, with the extension of the SRG te
hnique to well-formed 
olored nets,

the te
hnique is now appli
able to any 
olored model.
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Of 
ourse the SRG algorithm presented here fails in produ
ing a smaller des
ription than the

usual RG if the model does not exhibit useful symmetries as de�ned in se
tion 3. This situation may

happen in two 
ases: if the system to be modelled does not 
ontain any symmetry, or if the model

does not take the intrinsi
 symmetries of the system into a

ount properly. It is interesting to note

that the syntax for the de�nition of SWN models en
ourages the modeller to group obje
ts into basi



olour 
lasses and to avoid splitting them in stati
 sub
lasses if this is not ne
essary, sin
e this way

the textual part of the model des
ription is smaller and faster to produ
e. Thus models that take all

symmetries into a

ount are more likely to be produ
ed than equivalent models that do not. In this

sense the modeller impli
itly gives to the SRG 
onstru
tion algorithm the best of his knowledge about

system symmetries by simply trying to redu
e his model des
ription e�ort.

We have presented an example of use of sto
hasti
 well-formed nets for the study of a non trivial

multipro
essor ar
hite
ture. Another 
omplex example of modelling a 
on
urrent algorithm using this

formalism 
an be found in [26℄. These examples show how the te
hnique over
omes the diÆ
ulties

found in the use of other performan
e modeling te
hniques. On the one hand the model is easier to

devise in terms of the WN formalism, and fairly easy to understand even by non Petri net experts. On

the other hand, the exploitation of the SRG 
onstru
tion algorithm allows an evaluation whose 
ost

is 
omparable to the analysis 
ost of thoroughly designed GSPN models where all 
ru
ial behavioral

symmetries of the system have been fully identi�ed by the modeler himself.

In 
on
lusion we noti
e that the performan
e analysis by 
onstru
tion of a Markov 
hain from the

RG of a Petri net model is in pra
ti
e most often hampered by the large size of the graph 
aused

by two di�erent reasons. The �rst reason is the representation of the parallelism in terms of all

possible interleavings that 
an be observed on the global state of the model. The se
ond reason is the

possible presen
e of intrinsi
 symmetries of the model that produ
e many di�erent portions of a graph

representing essentially the same behavior. In this paper we have addressed and solved the se
ond

problem. The �rst problem is inherent to the state-spa
e representation, and in our opinion 
an be

avoided only by using non state-spa
e based analysis te
hniques.

The initial simpli�
ation of the WN model in Figure 10 in order to obtain the one in Figure 11


ould be an example of use of formal net stru
tural redu
tion te
hniques for the redu
tion of the


ardinality of the state spa
e. Work is 
urrently in progress in order to formalize these redu
tion

te
hniques in the performan
e evaluation framework provided by SWNs.
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