Stochastic Well-Formed Colored Nets and Symmetric Modeling

Applications

Giovanni Chiola * Claude Dutheillet
Dip. Informatica, Universita di Torino Lab. MASI, Université Paris 6
Giuliana Franceschinis Serge Haddad
Dip. Informatica, Universita di Torino Lab. MASI, Université Paris 6
Abstract

The class of Stochastic Well Formed Colored Nets (SWN) was defined as a syntactic restric-
tion of Stochastic High-Level Nets. The interest of the introduction of restrictions in the model
definition is the possibility of exploiting the Symbolic Reachability Graph (SRG) to reduce the
complexity of Markovian performance evaluation with respect to classical Petri net techniques. It
turns out that SWNs allow the representation of any color function in a structured form, so that any
unconstrained high-level net can be transformed into a well formed net. Moreover, most constructs
useful for the modeling of distributed computer systems and architectures directly match the “well
form” restriction, without any need of transformation. A non trivial example of the usefulness of

the technique in the performance modeling and evaluation of multiprocessor architectures is in-

cluded.

*This work has been done while G. Chiola was visiting researcher at the Lab. MASI of the University of Paris 6, with
the financial support of a NATO-CNR annual research grant. The work has been partially supported by the CNR project
“Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”, grant 91.00879.PF69 and by an international cooperation

grant from the University of Torino.

High-Level Petri nets
model symmetry

symbolic reachability graph
performance evaluation
computational complexity
Markov chains

lumpability condition
multiprocessor systems

bus and memory contention

Stochastic Petri nets have been proposed in the literature as a good modeling tool for the study and
performance evaluation of multiprocessor computer architectures [1, 2, 3]. The technique is easier
to use than more classical Markovian modeling techniques, but still leads to models whose size is
too large when modeling realistic systems. Techniques for the development of “compact” or “folded”
models [4, 5] have been proposed, but they had not been used by many researchers outside the
restricted group that developed them. This is due to the deep knowledge required by the modeler of
the behavioral characteristics and symmetries of the system under study. High level Petri net models
have been proposed from time to time as a more adequate tool (see, e.g., [6, 7]) for the modeling
of complex multiprocessor systems. Although easier to use even by inexperienced modelers because
of their higher level of abstraction, classical high-level Petri nets do not alleviate the need for a
thorough understanding of the symmetries of the system in order to allow the performance evaluation
of reasonably large systems.

Regular Nets (RN) have been proposed in [8] as a restriction of Colored Petri Nets (CPN) [9].
The interest in introducing such a restriction on the color domains and on the arc functions was that
complete algorithms have been proposed for the computation of flows, reductions, and the definition of
a Symbolic Reachability Graph (SRG) in this case. Recently, stochastic models based on RNs called
Regular Stochastic Petri Nets (RSPN) have been introduced for performance evaluation purposes
[10, 11]. The steady-state performance of an RSPN model can be obtained by numerically solving
a Markov chain (MC) corresponding to the SRG generated by the RSPN. The complexity in the
computation of this solution is polynomial in the number of symbolic markings of the SRG, which
can be much less than the number of ordinary markings generated by the Place/Transition net (P/T)
resulting from the unfolding of the RN.

Some kinds of symbolic marking representations to exploit the symmetries of the reachability
graph (RG) have already been proposed for general CPNs [12, 13, 7, 14] as well, but in all these
cases heuristics were needed to decide the type of aggregations. These heuristics were based on an
explicit knowledge by the modeler of the symmetries present in a particular model. Thus none of these
methods could be implemented in a general algorithmic form. From this point of view, the superiority
of RNs was due to the availability of a generic symbolic firing rule which allows the computation of
the SRG without any actual instantiation of colors and without explicit knowledge of the symmetry
of the model.

This use of the SRG for performance evaluation purposes is the main motivation that led us to
the proposal of the extended SRG computation for more general classes of CPNs called “well-formed”
colored nets (WN) [15]. The original RNs and their related SRG generation algorithm can be used to

model many interesting systems, but unfortunately the strong restrictions imposed on the definition

In this paper we present the new class of stochastic well-formed colored nets (SWN) as extensions
of RSPNs together with an extended SRG construction algorithm that allows an optimized Markovian
analysis exploiting the system symmetries. We assume that our SWNs are always bounded in order to
define a finite state space. The SRG defined for this class of models allows the same kind of performance
evaluation presented in [11] in the case of general models. Moreover, this extended algorithm has the
same advantages as the one originally proposed for RN, i.e.: 1) it uses a symbolic firing rule, so that
both its time and space complexities depend only on the size of the SRG, and not on the size of the
actual RG; 2) it does not require any particular heuristics to explicitly define the symmetries of the
model; 3) it exploits the information that is implicit in the well structured function and color domain
definitions.

From the modeling power point of view any general CPN model can be translated into an equivalent
WN model with the same underlying structure; only the expression of the color functions and of the
composition of color classes is re-written in a more explicit (and parametric) form, in terms of the basic
constructs provided by the WN formalism. Moreover, in practical modeling this formalism translation
is hardly needed: most (if not all) CPN models published in the literature can be directly represented
as WNs, even without exploiting the power of predicate guards on the arc labeling functions.

We also present a complete modeling example taken from the literature on multiprocessor computer
architecture. The example shows how the technique can be exploited even by non expert modelers to
obtain good performance models of complex systems. The symmetries of the system are automatically
taken into account by the proposed algorithm without any explicit intervention of the modeler. The
time and space complexity of the analysis is however equal to the one of the best model devised by
an expert modeler.

The balance of the paper is as follows. Sections 2 presents the WN formalism, and Section 3
presents the SRG, a sketch of the SRG construction algorithm with some examples, and some relevant
mathematical properties of the graph. Section 4 contains the definition of SWNs, and the performance
evaluation technique. Section 5 presents a non trivial example of the application of SWNs to the per-
formance evaluation of a well known multiprocessor computer architecture. Finally, Section 6 contains
some concluding remarks and perspectives of this work. The formal notation has been somewhat sac-
rificed, and the presentation has been based mainly on examples to provide easier comprehension for
the non expert. A more rigorous notation and the formal proofs of many results can be found in [15]

or in [16].

We assume the reader is already familiar with the Petri net notation both uncolored [17] and col-
ored [18] versions. We also assume the reader to be familiar with the GSPN formalism [19] and its

multiprocessor applications [4].

2.1 Notation and basic definitions

We start by giving some basic definition and a short outline of the notation used in the paper.

Definition 2.1 A multiset a over a non-empty set A is a mapping a € [A — IN], we use the notation
Bag(A) to denote a multiset over A. Intuitively, a multi-set is a set that can contain several occur-
rences of the same element. It can be represented by a formal sum: a =73 ,c,a(z) .

The coefficient a(x) is called multiplicity of = in a.

A multiset as is contained into the multiset a1, denoted ay < a1 iff Vo € A, as(z) < ay(x).

Definition 2.2 The summation, subtraction and scalar multiplication of multisets are defined as

follows:
o a1+ az = Yealar(z) +ax(z))z
o a1 —ax =) ,calai(z) —as(x))z provided that as < a;
o na=Saealn a(z))s

Given a family of sets {4;, i = 1,...,n} we denote Ai,..., A, a new set obtained by Cartesian
product of the sets in the family; an element in this new set is denoted < ey, ..., e, > where ¢; € A;.
By generalization, if a; is a multiset over A;, we denote < ag,...,a, > the multiset over Ay,..., A,
obtained by Cartesian product of the component multisets a;. The multiplicity of the elements in the

resulting multiset is defined as follows:

V<er,...,en >€ A1, .. A, <ap,...,ap > (<ep,...,e, >) = ai(er) -ag(e) ... ap(en)

2.2 WN informal definition

The introduction of Colored Petri Nets (CPN) as well as other High Level Petri Nets formalisms (e.g.,
Pr/T nets) was crucial from the point of view of the expressive power of this class of formalisms.
The possibility of associating information with tokens and of parameterizing transition firing made
it possible to represent very concisely systems that would have required huge uncolored nets to be
described.

Well Formed Colored Nets (WNs) are substantially identical to CPNs from the expressive power

point of view (see [20] for a proof of this statement). However the syntactic definition of WNs leads

sequel of this section we give an informal description of the WN formalism. The syntax used in the
explanation and in the examples is the one accepted by the WN design and analysis tool prototype
that has been developed at the Computer Science Dept of the University of Torino [21] and that will
be soon integrated in the package GreatSPN [22].

As in PNs, places of WNs together with their marking play the role of describing the system state
while transitions represent events that cause the state changes. In WNs a token can incorporate some
information, indeed a token can be regarded as an instance of a data structure with a certain number
of fields whose semantics depend on the place the token belongs to. The definition of the “data type”
associated with each place is called place color domain and is similar to a C'structure declaration. The
fields data types are selected from a set of basic types called basic color classes'. The specification of
the basic color classes is part of the net definition. In our tool basic color classes have always finite
cardinality and are defined by enumeration of the elements?.

Often it may be useful to partition a basic color class into disjoint subclasses of objects with some
common property. For example the class of processes could be partitioned into two subclasses: the
low priority processes subclass and the high priority processes one. In the WN terminology these are
called static subclasses (as opposite to dynamic subclasses that will be introduced to define symbolic
markings). A basic class may be ordered so that a successor function is defined on its elements. The
ordering is assumed to be circular, so that the successor function applied to the last element returns
the first one. Here is the grammar for the definition of basic color classes and their static subclasses

within our tool. The syntax is depicted in Figure 1, where “stat_sbc_id” is simply a string denoting a

Basic class grammar Examples

class — classtype staticlist Msgs = UData_msgs, Ack_msg
staticlist — stat_sbc_id | staticlist , stat_sbc_id
classtype — O | U

Static subclass grammar Examples
static — STRING[NUM-NUM] | Data_msgs = m[l — 3]
[objectlist | Ack-msg = [ack]

objectlist — STRING | objectlist , STRING

Figure 1: Class definition syntax

static subclass identifier;

!The fields are not named. Their identification is positional.
Shortcuts are allowed to make the definition more concise: for example the set Sites = {s1,...,s10} can be specified

using the syntax s[1 — 10].

split in two static subclasses Data-msgs and Ack_msg of cardinality 3 and 1 respectively.
The color domain of place p is denoted C(p) and the syntax for its definition is shown in Figure 2

where “class_id” is simply a string denoting a previously defined basic color class.

Place color domain grammar Examples
Placedomain — classlist | € C(T.Message buf fer) = Sites, Sites, M sgs
classlist — class.id | classlist, class_id C(Idle sites) = Sites

Figure 2: Place colour definition syntax

In WNs a place can be used to represent the value of a variable of given type provided that it
never contains more than one token (the empty place could represent either an uninitialized variable
or some fixed default value in the variable domain) and the place color domain is equal to the variable
data type. Another use of places in WN models is for the representation of the state of a (multi)set of
possibly distinguishable objects. The notation M (p) denotes the marking of place p i.e., the multiset
of C(p) contained in p according to marking M.

The transitions in WNs can be considered as procedures with formal parameters. The formal
parameters are called transition color domain; their declaration is part of the net description and
the type associated with each parameter must be a basic color class. A transition color domain is
defined in the same way as a place color domain. The list of classes in the color domain defines the
type associated with the transition parameters. The color domain of a transition ¢ (denoted C(t)) is
constrained by the color domains of its input, inhibitor and output places. We shall see later on that
the relation between transition and place color domains is defined through the arc expressions.

A transition whose formal parameters have been instanced to actual values is called transition

instance. We use the notation [t, c| for an instance of transition ¢, where ¢ represents the assignment
of actual values to the transition parameters. Observe that an assignment c is actually an element of
the set C'(t) and for this reason it is often referred to as a “color instance” of ¢.
In order to fire a transition, it is necessary to specify actual values for its formal parameters (it is
similar to the execution of a procedure call), i.e., we can only fire transition instances. The enabling
check of a transition instance and the state change caused by its firing depend (again) on the arc
expressions that label the arcs connected to the transition. Observe that many instances of the same
transition can be concurrently enabled. They are considered as independent, concurrently occurring
events (unless they are in conflict one with the other).

The arc expressions are (formal) sums of tuples; each element of a tuple in turn is a weighted
sum of terms denoting multisets of the basic color classes. The arc expressions syntax is described in

Figure 3.

color domain contains k basic color classes (i.e., k& “fields”), then the corresponding arc expression is
a weighted sum of k-tuples. The whole expression denotes a multiset in the Cartesian product of the
basic color classes composing the corresponding place color domain.

The j** element in each k-tuple is an expression denoting a multiset of C;, where Cj is the “type” of
the j “field” in the place color domain. This element is a weighted sum of three types of terms: (1)
variable (e.g. rightfork); (2) successor function applied to a variable (e.g. @ rightfork); (3) basic
class/static subclass identifiers (e.g. Sirsgs Or SData_msgs)-

The first two terms denote an object in C; and the successor of an object in C; respectively, Sciqss_name
or simply S denotes the set class_name (C; in this case), Ssupciass_name denotes the static subclass
subclass_name.

An arc expression that contains variables can be interpreted as a pattern standing for any multiset
that can be obtained binding the variables to actual elements in the proper basic color class. We call
assignment a collection of variable bindings.

For example let us consider the tuple < src,dest,msg,P cnt >, and let us assume that the
corresponding place color domain is Sites, Sites, M sgs, M sgNumbers. The variables src, dest, msg
and cnt stand for any object in the corresponding basic color class, so that the arc expression is a
pattern for any set of cardinality one whose only element is a four-tuple of elements from the place
color domain. The expression < rightfork > + < @rightfork >, where variable rightfork is of
type Philosophers, stands for a set of cardinality two containing any element of Philosophers and its
successor. The expression < broadcast_msg, Ssites > denotes a set of cardinality |Sites| of pairs. The

set is obtained by applying the Cartesian product operator to any cardinality one subset of basic class

Arc expression grammar Examples
arc_expr — €| sum_tuples < processor, memory >
sum_tuples — coeff optional predicate <expr.list> | < broadcast-msg, Ssites >

sum_tuples plusop coeff |Sites| < Sack_msg >

optional_predicate <expr_list> < sre,dest, msg, @ cnt >

expr_list — expr_kernel | expr_kernel, expr_list < rightfork > + < @rightfork >
exprkernel ~— term | expr_kernel plusop term < phonenuml + phonenum?, channel >
term — subclass_term | class_term | < S — source >

var_term | succ_term

subclass_term — coeff S staticname

class_term — coeff S | coeff S classname

var_term — coeff STRING

succ_term — coeff @ STRING

coeff — NUM | VBAR staticname VBAR |
VBAR classname VBAR | €

plusop - 4| -

Figure 3: Arc expression definition syntax

<phi | >
think Philosophers = {ph[1-5]}

Idle sites .
Sites = {s[1-k]}) ®phi = ph((i+1) nod 5)
Msgs = Data_nsgs, Ack_nsg <phi | >

Data_nsgs = {nil, n2, nB}

<source> <dest > Ack_msg = {ack} wai ting
Start send End send)
[sour ce<>dest] |] [] <phi 1> <rightfork> + <leftfork>

<source, dest, S msg” start eat

9 e R Message buf [leftfork = @rightfork] &
ceiv

[phil = rightfork

forks ()

[leftfork = @rightfork] &

<source, dest, Spy o| g™

<phi | >

<dest, source, Sy g™ <source, dest, Spyi 5 g™

T. Message buf eating

[X(msg) =Dat a_nsg] <phi | >

end eat [phil = rightfork
<sour ce, dest, nsg> <sour ce, dest, nsg> <phi 1> <rightforks + <leftfork>
(a) Transm t (b)

Figure 4: Examples of WNs

M sgs, the type of variable broadcast-msg, and the set Sites. Finally expression |Sites| < Sack_Msg >
is a multiset containing |Sites| elements all with the same color < ack >.

The set of variables appearing in all arc expressions related to a single transition are its formal

parameters. For example, in the net of Figure 4.(a) the parameters of transition Start send are source
and dest, both ranging over class Sites. The parameters of transition T'ransmit are source, dest,
and msg. Variables source and dest represent objects from the basic class Sites while variable msg
represents an object from class M sgs.
Observe that when the same variable appears in many arc expressions related to the same transition,
the different occurrences actually denote the same object, while when the same variable is used within
several arc expressions each related to a different transition, there is no relation between the objects
represented by the different variable occurrences.

Optionally a transition may have an associated predicate: a boolean expression of conditions on
the transition formal parameters as defined by the grammar depicted in Figure 5, where D(variable)
denotes the static subclass of the object assigned to variable.

The enabling of a transition instance [¢,c| is determined by evaluating the transition predicate
and the arc expressions of all input and inhibitor places with respect to the assignment c¢. Notice
that in this case an arc expression can be seen as a function, whose arguments are the variables ap-
pearing in the expression itself. A transition instance [t,c| is enabled iff the predicate evaluates to
true, each input place contains the multiset resulting from the evaluation of the corresponding arc
expression and for each inhibitor place, each tuple contained in it has a smaller multiplicity than
the same tuple in the multiset resulting from the evaluation of the corresponding arc expression. An
enabled transition instance [¢,c] can fire. The state change caused by the firing amounts to subtract-

ing/adding from/to each input/output place p the multiset resulting by evaluating the corresponding

In order to find all the enabled instances of a transition ¢ it is possible to use either a “brute
force” approach, i.e., generate all possible assignments and check for enabling, or a more sophisticated
approach that takes into account the contents of input and inhibitor places to generate directly the
subset of assignments that correspond to enabled instances.

In the second approach we consider each arc expression as a pattern for a multiset of colors. A
match procedure can then be defined that is used to match the pattern specified by an arc expression
with the marking of the corresponding input or inhibitor place. The match operation may fail or
succeed; if it succeeds it returns a set of possible local assignments. The assignments obtained from
all the input and inhibitor places must then be combined to form a set of proper global assignments,
taking also into account the constraints due to the transition predicate. If a variable appears only on
the output arc expressions, any assignment that satisfies the predicate constraints is valid.

Let us illustrate on some examples the enabling test and the firing. The net in Figure 4.(a)
represents a communication system in which a site sends a message to a distant site. This message
is split into three packets and each packet is transmitted separately over the network. Once the
three packets have been received by the distant site, the latter sends an acknowledgement to the
site that originated the communication. On reception of this acknowledgement, the communication
ends and the sender becomes idle again. There are two basic classes in this model: the class of sites
Sites = {s1,...,sk}, and the class of messages, partitioned into two static subclasses: the subclass
containing the (three) data messages and the subclass containing the (single) acknowledge message
Msgs = Data-msgs U Ack-msg = {m1,m2,m3} U {ack}

Transition Start send firing is triggered by the presence of an element in place Idle sites to be
matched with the variable source. The assignment to variable dest does not depend on any input
place, however it must satisfy the predicate [source # dest]. Therefore, given a marking M all

assignments of source and dest such that the site source is in Idle sites and dest is different from

Predicate grammar Examples
predicate — predicate OR pterm | pterm (leftfork = @rightfork)
pterm — term AND pfatt | pfatt D(msgl) = D(msg2)
pfatt — (predicate) | source <> destination

D(STRING) eqop doperand | D(msg) = Ack_Msg

STRING eqop stroperand
doperand — D (STRING) | staticname
staticname— STRING
staticindex— NUM
stroperand— STRING | @ STRING
eqop - =] <>

Figure 5: Predicate definition syntax

10

Thus if the instance® [Start send, (source = s1,dest = s4)] is fired the multiset {<s1>} is subtracted
from place Idle sites while the multiset {<s1,s4,m1>, <s1,s4,m2>, <s1,s4,m3>} is added to place
T.Message buffer.

Let us consider transition Receive. It is triggered by the presence in place R.Message buf of a set
of three-tuples matching the pattern < source,dest,m1>, < source,dest,m2>, < source, dest,m3>
(the boldface strings denote objects from basic classes), meaning that site dest has received all the
three messages sent by source. In this case the assignment of proper values to the variables to find
an enabled instance of Receive depends only on the input place marking. When firing the instance
[Receive, (source =si, dest =sj)], the set {<si,sj,ml>, <si,sjm2> <sissjm3>} is subtracted from
R.Message buf, and the set {<sj, si, ack>}, representing the acknowledge sent by sj to si, is added
to T.Message buffer.

Observe that the matching procedure may be computationally expensive if the arc expressions
are complex (in particular the arc expressions may contain predicates and in that case the match
operation complexity may increase significantly). Our experience is that usually in big models only
few arc expressions are complex, while many of them are very simple (e.g. identity functions) so that
the more efficient procedure for generation of enabled instances can be applied to most transitions in

the net.

2.3 WN formal definition

In this section we give the definition of WNs and formalize the enabling and firing of a transition

nstance.

Definition 2.3 (WN) A well formed net WN = (P,T,C,J, W~ , W+ W" & m My) is made of:
P the finite set of places;
T the finite set of transitions, PNT =0, PUT # ();

C the family of basic classes: C = {Ci,...,Cp}, with C;NC; = 0 (we denote I = {1,...,n} the

ordered set of indexes); C; is possibly partitioned in static subclasses: C; = Ugizl D; 4;

J : PUT — Bag(I), where Bag(I) is the multiset on I. C(r) = Cj(,y denotes the color domain of

node T;

W=, Wt Wh : W=(p,t), Wt (p,t), Wh(p,t) € [Cyty = Bag(Cyp))] the input, output, and inhibition

functions are arc expressions;

3We use the notations (var, = valuey,...,vary = valuey) and < value,...,value, > interchangeably to describe

an assignment ¢ € C(t).

11

will assume Yt € T the standard predicate ®(t) = True;
7w o T — IN the priority function. By default we will assume Yt € T the value w(t) = 0;

My : My(p) € Bag(C(p)) is the initial marking of p.

Definition 2.4 (Firing rule) A transition instance [t,c] (where ¢ € C(t)) is enabled in a marking
M iff:
i) Vp€ P, W (p,t)(c) < M(p) AW"(p,)(c) > M(p), and &(¢)(c)

which s the expression of the firing rule in a net without priorities,

ii) V¢ with w(t') > n(t), V' € C(t'), Ip € P such that either W~ (p,t')(c') > M(p) v W"(p,t)(c) <
M (p) or =®(t)(c)

which means that no higher priority transition is enabled.

The firing of transition instance [t, c] leads to a new marking M' = M[t,c) defined by:
VpeP, M'(p)=M(p)+WT(pt)(c) - W (p,t)(c)

2.4 Basic Properties of WN

A major interest of WNs is that they provide a modeling framework in which symmetries appear
naturally as a way of reducing the size and complexity of the representation. Another fortunate
property of WNs is their modeling power equivalent to unconstrained colored nets. The two next

propositions of WN illustrate this situation.

Proposition 2.1 Any CPN can be transformed into a WN with the same basic structure, same color

domains (possibly partitioned in static subclasses), equivalent arc labeling. See [20] for a proof.

Definition 2.5 (Color permutation) Let { = { s = (S1,...,8h, Shil,---, Sn) } be a subgroup of

the permutations on Cy,...,Cy such that:
o V0 < i < h s; is a permutation on C; such that VD; 4, si(D;q) = D;j 4;

o Vh < i < n s;is a rotation on C; such that YD; 4, si(D;,) = D;q. Note that this condition
wmplies that if the number of static subclasses of Cy, n; > 1 then the only allowed rotation s; s

the identity.

Let Cj be a color domain and < ci,...,¢c,; >€ Cy, s € £&. Then s(< cy,...,c, >) is defined by :
s(<ery.ay00 >) =<suyler), -, 8y (ck) > where sy is the permutation associated with the it basic

class in color domain C'}j.

12

Then M' = s.M is a marking defined by: ¥p € P, Ve € C(p), s.M(p,s(c)) = M(p,c).
For instance, if C(p) = Cy, then M' = s.M is defined on p by:
V<er,...,cp >€ Oy, Ml(p, < 8(1)(61), R ,s(k)(ck) >)=M(p,<cry...,ck >)

Proposition 2.2 The firing property is preserved by applying a permutation both on the markings
and the transition instantiation. VM ordinary marking, Vt € T, Ve € C(t), Vs € &,

M[t,o)M' <= s.M[t,s(c))s.M’

Definition 2.7 (Symbolic marking) Let Eq be the equivalence relation defined by:
MEqM <+ 3Iscé& M =s.M

An equivalence class of Eq is called a symbolic marking, denoted with M.

Rather than considering a single initial marking My, we allow a WN to be initially marked by a
symbolic marking Mj. In this case, the WN no longer represents a single net, but a set of nets, each

being initially marked by one of the markings contained in the equivalence class M.

3 SRG

The symbolic reachability graph of a well-formed net is based on the idea of symmetry of objects of
the basic color classes. It consists of a symbolic representation of all possible states of the model and
the possibility of transition from one to the other. Of course its construction becomes algorithmically
effective only in case of finite state space (bounded models).

In WNs it is possible to identify two basic kinds of symmetry: rotation, and general permutation
inside subsets. Combinations of the two basic symmetry kinds can be found in actual models. The
idea is to substitute the actual state representation with a symbolic representation that accounts for
the symmetry properties holding in the model state space. A symbolic marking thus represents an
equivalence class on the state space of the WN model, and the equivalence is in terms of the possible
basic color permutations that yield the same behavior. In this section we first present an efficient
algorithm for the computation of the SRG, whose application does not require any a-priori knowledge
on the symmetries of the system modeled by the WN (i.e., the algorithm is based only on the syntax
of the WN representation, and not on any sort of semantics of the specific model). Then we analyze
the properties of the SRG that are relevant for the Markovian analysis of performance models based

on SWNs.

13

Serv0 Make_choice Servl

I) I <line> _ <line>
N gl) ~_J
Line0 Choice Linesl

Figure 6: Model of two servers in tandem.

3.1 SRG Computation

We start by defining the representation of symbolic markings that, together with a symbolic firing

rule, allows the construction of the symbolic reachability graph in an efficient algorithmic way.

3.1.1 Symbolic Marking

Equivalence classes of markings and firing instances The choice of a good representation of
the data is always the first problem in the definition of an algorithm. Let us first present informally
the idea of symbolic marking by considering the simple example of figure 6. It represents a closed
system with two service stations in tandem. The first one is a single server station (place Line0
transition Serv0), the second is a multiple server station (place Lines!, transition Servi(line)) with
four servers, each with a separate waiting line (basic color class Lines = I[1 — 4]). When a customer
leaves the first station, it randomly chooses which line to join in the multiserver (place Choice and

transition Make choice(line)). Consider the following marking:
Line0(1)Choice(1)Linel(2 < Iy >,< Iy >)

corresponding to the state with 1 customer in service on the first service station, 1 customer making
the choice of a line to join in the multiserver 2 customers in the first line and 1 in the second line of
the multiserver station. By looking at the possible behavior of the model the reader can check that
a permutation symmetry exists in this case between the different objects of the basic color class. We
can take an arbitrary permutation of the objects in basic color class Lines and obtain another legal

state of the model with the same characteristics such as, e.g.
Line0(1)Choice(1)Linel(2 < Iy >,< I3 >)

The only relevant common characteristics of the two markings above is that one token is in place
Line0, one token is in place C'hoice, while in Linel there is an element with multiplicity 2 and a

different element with multiplicity 1. From both these states only transition Make choice(line) can

14

Choice chooses to join the line where two customers are already waiting, or b) the line where one
customer is waiting, or ¢) one of the two remaining empty lines. Hence, also after the transition firing
we can recognize a permutation symmetry, in which any permutation of objects in a given marking
produces another valid marking with similar characteristics.

From the above informal reasoning it appears convenient to directly represent with an appropriate
data structure the equivalence classes of markings based on the permutation and symmetry property
of WN rather then the individual markings as usual in Petri nets. This can be achieved by abstracting
from the actual identity of objects and retaining only enough information so that it is still possible to
make an equality comparison between the new “symbolic objects.”

Our first proposed abstraction consists of substituting object identifiers with variables. For example
the “symbolic basic class” Lines would be defined* as {z1,...,24}. An example of symbolic marking

would thus be the following:
M = Line0(1)Choice(1)Linel(2 < z1 >, < 23 >)

To define the semantics of this symbolic marking we need the definition of wvalid assignment. An
assignment of objects from a basic class to variables z; is said to be valid iff the following three
conditions are verified: 1) every variable is assigned an object; 2) the same object is not assigned
to more than one variable;) if the class is ordered, adjacent objects are assigned to subsequently
numbered variables.

The symbolic marking M could thus represent the set of all ordinary markings that can be obtained

from valid assignments of objects to the variables z;. Observe that the symbolic marking
M'" = Line0(1)Choice(1)Linel(2 < zo >, < z4 >)

represents the same set of ordinary markings represented by M. This fact indicates the need for
criteria that lead to a unique representation i.e., a canonical representation. We ignore this problem
for the moment (we shall solve it later on) and we just consider M and M’ as the same symbolic
marking.

This symbolic marking actually implements the kind of abstraction that we were looking for, indeed
the set of markings represented by the symbolic markings as defined above are exactly the equivalence
classes identified by the equivalence relation Eq¢ of Definition 2.7. Observe that it is rather natural to
define a symbolic firing rule for this kind of symbolic marking since the variables play the same role
that objects played in ordinary marking. Hence from marking M it is possible to fire the symbolic

transition instance [Makechoice, (line = z;)] from which the new symbolic marking

M" = Line0(1)Linel(2 < z; >,2 < 23 >) (1)

1A separate set of variables should be defined for each static subclass

15

by valid assignments of objects to variables. In Figure 7 a pictorial representation of the grouping

induced by the symbolic marking and symbolic firing concept is shown.

(QRP - - Q D)
(e v e)

Figure 7: Grouping of ordinary markings and arcs

There is however a further step we can take to better exploit the grouping induced by the symbolic
firing. It stems from the observation that firing either one of the two symbolic instances [Makechoice,
(line = z3)] and [M akechoice, (line = z4)] form marking M we reach the same new symbolic marking
(provided we use a canonical representation). In Figure 7 this situation is depicted by many arcs
departing from the same ordinary marking within a symbolic marking and going to a group of ordinary
markings all belonging to the same symbolic marking. It is possible to know in advance which are the
symbolic instances that lead to the same new symbolic marking: indeed all those variables that have
the same distribution of tokens in the places can be used interchangeably in a transition instance.

We then introduce the concept of dynamic subclasses, representing sets of objects that are not
identified individually but that are known to be permutable one with the other in any firing instance
to produce markings that belong to the same equivalence class. A dynamic subclass is characterized by
its cardinality (i.e., the number of different objects represented by the dynamic subclass), and by the
static subclass to which the represented objects belong (i.e., we can only group variables belonging to
the same static subclass). In case of ordered basic classes, only contiguous objects can be represented
by the same dynamic subclass and the ordering relation among objects is reflected by the ordering of

the indexes of the dynamic subclasses.

Representation of symbolic markings: formal definition. The dynamic subclass concept af-
fects both the symbolic marking representation and the symbolic firing. Using dynamic subclasses
instead of variables in the marking representation allows a much more compact description of the
marking itself. Moreover symbolic firing instances based on dynamic subclasses allow one to group
many arcs connecting the same two symbolic markings.

Let us consider the marking M" defined in (1); the two variables z; and z2 have the same distri-

16

can be grouped in the dynamic subclass Z} of cardinality 2. Also the two remaining variables, z3

ines
and z4 have the same distribution since they do not appear in any place, so that we can group them
in the cardinality two dynamic subclass Z%ines' The new symbolic marking representation can thus

be written as

M" = Lineo(l)Linel(2le,ines); |Zl%ines| = |Zl%ines| =2

More formally, the representation of the syntax and semantics of a symbolic marking can be
defined as follows. Syntacticallly, a representation R of a symbolic marking M is a 4-tuple R =

(m, card, d, mark), where

em : I — INT, such that m(i) (which will be also denoted m;) is the number of dynamic

subclasses of C; in M.

e The set of dynamic subclasses of C; is denoted: C; = {ZZJ |0 < j <m;}. We'll use the extended
notation C’(r), r € PUT, to denote the set of all possible tuples of dynamic subclasses in a

place/transition color domain.

e card : (Uz‘e[C’l> — IN, such that Vi, 37", card(Zij) = |Cjl; i.e., the set of dynamic subclasses

C; forms a partition of C}

od : (Uig@-) — IN such that V27, d(Z7) = q € [L.ng] and Y0 < i < n, V0 < j < k < my,
d(z]) < d(z})
e Vpe P, mark(p) : C(p) = IN
The associated semantics can be stated as:

e (; is a non-instantiated partition of the basic class C}

. Zij represents any subset C; ; of C; such that |C; ;| = card(Zij)

in case C; is ordered (¢ > h), the elements of C; ; are contiguous

e VMeR, Viel, Iy : C;— C;

(n; is a valid assignment of subsets of C; to dynamic subclasses Zg);

e 1, : C; — C; preserves

static subclass partitioning (function d)

cardinality (function card)

marking (function mark)

ordering relation in case of ordered classes (i.e. if i > h)

17

subclass that defines the set of markings {M : M € R}

When no ambiguity can arise, we denote the components of a representation simply by m, card, d,
and mark. When referring to more than one representation, we remove the ambiguity by prefixing a
proper representation identifier (e.g. Ri.m).

Note that using the above representation without further constraints, one can find many represen-
tations for a given symbolic marking M, as it happened with the former representation; we thus need

to define a unique representation for a given symbolic marking.

Canonical representation of symbolic markings The first step in devising an efficient algo-
rithm for the enumeration of the symbolic reachability graph of a WN is the definition of a unique
representation for each symbolic marking M. In order to obtain a unique representation we need a
criteria to decide: 1) how to partition the static subclasses (and hence the basic color classes) into
dynamic subclasses of a given cardinality; 2) how to name properly the dynamic subclasses.

The first problem is solved by defining a minimality property to be verified on the marking. The

rationale behind the minimality requirement goes beyond the mere necessity of a canonical represen-
tation: indeed it also involves the maximization of both marking and firing instances grouping.
The second problem is solved by introducing the concept of ordered representation. The ordering
criterion has to be defined in such a way that it is uniquely determined on some invariant characteristic
of all possible minimal representations. We use lexicographic ordering of the minimal representation
as such an invariant characteristics.

Both minimality and ordering definitions require the introduction of the marking projection func-

tion markgy.

Function marks,

This function is defined on the set of all possible tuples of dynamic subclasses from the Cartesian prod-
uct of any subset of C (without repetitions of the same basic color class). For computing minimality
the function is applied to single subclasses (i.e., tuples with arity one) while for computing ordering it
is applied to tuples from Cr. The formal definition of marksy is rather cuambersome and not included
here (it can be found in [15] or in [16]). Its meaning can be intuitively explained as follows. Given
a symbolic marking M, and a tuple of dynamic subclasses (possibly of arity one), function marks,
returns a vector of |P| natural numbers encoding the distribution of the tuple in the marking.

Considering the symbolic marking M" used in the previous example,
marks,(Z1)[Lined] = 1, marks,(Z{)(Choice) = 0, marks,(Z1)(Linel) = 2, (marks,(Z{) =< 1,0,2 >)

marksy(Z¢)(Line0) = 1, marks,(Z¢)(Choice) = 0, marks,(Z7)(Linel) = 0, (marks,(Z; =< 1,0,0 >)

18

Minimality
The minimality requirement refers to the number of dynamic subclasses in each basic class; intuitively
we want to have the smallest possible number of dynamic subclasses since this maximizes the economy

of both the marking representation and the number of possible firing instances.

Definition 3.1 (Minimality) Let M be a symbolic marking. A representation R is minimal iff:
Vi<h, Vik, jAk = (marky(Z]) £marky(ZF) v (d(Z]) #d(z}))
Vi>h, Vik, k=] = (marky(Z]) #marky(Z)) v (d(Z)) #d(z}))

So the representation of M” is minimal since marks,(Z1)(Linel) # marks,(Z?)(Linel).

Ordering

By properly ordering a minimal representation we can obtain a canonical representation. The re-
ordering of a minimal symbolic marking representation consists of readjusting the dynamic subclasses
indexes according to some univocal criteria.

Observe that if we restrict function marks, to range over C’[, we can represent marks, as a n-
dimensional matrix (one dimension for each basic class C; with as many elements as |Cy]). Hence,
given a minimal symbolic marking, we can translate it into a matrix of this kind where the element
(i1, ... ,1iy) contains the place indexed vector returned by marksp(Zil, ..., Z!) (note that of course also
the inverse translation is possible). Different minimal representations of the same symbolic marking
translate to matrices that are identical up to a permutation of their elements. It is easy to define
a canonical representation by chosing among all equivalent minimal representations, the one that
corresponds to a matrix that is lexicographically ordered with respect to the following reading order

of the matrix elements:
(1,1,...,1),(2,1,...,1),...,(m(1),1,...,1),(1,2,1,...,1),... (2)

The complete algorithm for the computation of the canonical representation is described in [15]
or in [16]. Intuitively the task accomplished by the algorithm is the following: it receives in input the
matrix marks, corresponding of a minimal representation R of a symbolic marking M and returns a
set S of symbolic permutations®. The matrix obtained by application of any symbolic permutation in

the set S is lexicographically ordered.

The algorithm can be informally described as follows: it executes a loop of at most |Cy]...|Ch|
steps: let (i1,...,%,) be the index of a generic step (the indexes enumeration follows the order defined

5Symbolic permutations are defined as color permutations with dynamic subclasses replacing basic class objects

19

A YA LI gL N Yy WU pyYooevb Jyrivviitv puei iebvbvesred vl vlfvvb 0Ly Wwed vy v S

(* restrict S *)

< Alyeenyin >=<1,...,1 >; (*initialize the loop *)
while < iy,...,ip >#< R.m(1),...,R.m(n) > and |S| > 1 do
min_value = mingcsmarkg,(s1(i1),. .., sn(in))
S = {s € S|marksy(si(i1),...,sn(in)) = min_value}
if |S]|>1
then < iq,...,0p >=next(< i1, ..., in >);
(* increment < iy,...,4, > according to the order defined in eq. (2) *)
fi
od
K(M) =S|

Figure 8: Sketch of the canonical representation computation algorithm

in 2); the result achieved in the generic step is the choice of the possible elements { (j1,...,j,) } of the
input matrix that may end up in position (i1,...,%,) in the ordered matrix. In other words this step
constrains the possible values of (s1(%1),...Sn(in)) to range over the set { (ji,...,Jn) }. Obviously
the choice at step (i1,...,1,) is in turn constrained by the choices performed in all the previous steps.

A sketch of the algorithm is given in Figure 8.

Note that if the representation of M input to the algorithm is minimal, then the cardinality K (M)
of the set S depends on the symbolic marking, but not on the chosen representation.

The computation of the canonical representation is one of the most critical parts of the SRG
generation algorithm from a complexity point of view. Of course the actual complexity of a canonical-
ization operation depends on “how far” the input representation is from the canonical representation.
The experiments we have done show that usually the representation obtained after firing a transition
instance from a canonical representation is rather close to the ordered representation, so that the
computational cost of canonicalization is often less than the worst case cost. The canonicalization of
the initial marking M, may instead have the highest cost since the initial representation R is given

by the modeler.

3.1.2 Symbolic firing rule

In order to build the SRG directly starting from a symbolic initial marking M (i.e., without building
the RG and then grouping markings into equivalence classes, which would be much easier but too
costly), we first define a symbolic firing rule on the symbolic marking representations.

In a symbolic firing instance dynamic subclasses are assigned to the transition parameters instead
of objects. The meaning is that any object in the subclass can be assigned to the parameter. When

several type C; parameters of ¢ are assigned the same dynamic subclass Zij we also need to specify

20

param; the z'" parameter of type C;, in C(t), then the parameter instance can be specified by a pair
(\i(z), pi(z)) = (j, k) meaning that the parameter represents the k" (arbitrarily chosen) element of
sz . Of course k must be less than |Zf |. Moreover if there are m parameters instanced to sz , k cannot

be greater than m. More formally,

Definition 3.2 (Symbolic instance) Let t be a transition with C(t) = C(yy,...,Cy,; let e; be the
number of occurrences of C; in C(t) (i.e., the number of parameters of t whose type is C;). Let R be
a symbolic representation. A symbolic instance of t, denoted [\, u] is an instantiation of C’(t) for R
defined by:

A={N:{1,....e;} > INT}, p={pi:{l,...,e;} >IN}, such that Vi € I, V0 < z < ¢;,

e \i(x) <R.m(1),
Ai(@)
o pi(z) < R.card(R.Z;)
o if i <h then VY0 <k < pi(z), 3z’ <z such that Xi(z') = Ni(x) A pi(z") = k.

Ai(z) is used to choose the subclasses of C‘Z to be instantiated. In case of non ordered classes C;,
wi(z) is used to distinguish already instantiated elements from the other elements within the subclass
selected by A;(z). The additional conditions on u;(z) guarantee that the functions A and p define a
partition of the ordinary arcs of the reachability graph in symbolic arcs (an ordinary arc cannot satisfy
two different pairs [A,] simultaneously).
We denote H{ = sup(pi(z) | Ai(z) = j) the number of different instantiations in the dynamic subclass
Zf For any Z;j that is not instantiated (i.e. such that Az : A\j(z) = j), then by definition ,u‘g =0.
We now introduce the notion of split symbolic marking. As mentioned before, when we assign a
dynamic subclass to a transition parameter we mean that any object of the subclass may be selected
for assignment to the parameter. It doesn’t actually matter which object is chosen since they all
behave the same way. Now in order to define the symbolic enabling and firing rules, a splitting is
made in each subclass between the (arbitrarily chosen) objects that will be selected for the firing and
the other objects. For ordered classes we always split the instanced dynamic subclasses into a set of

new cardinality 1 dynamic subclasses.

Definition 3.3 (Splitting) Let R be a representation of a symbolic marking M. Then Rs = R[A, u]
is defined by the following transformations on R: Ry.C; = {Zg’k} with Zg’k defined as follows:

Case 1: Non-ordered Class C;, 1 < h
For each Zij s.t. dx : N\j(z) = j do

®Observe that we can instance at most as many different objects as the cardinality of the dynamic subclass

21

if ug < T\’,.card(Zij)

then split_subclasses = split_subclasses U {Zl-j’o} (subclass of remaining objects)
Rs.C; = R.C; — {sz} U split_subclasses

Rs.card(Zij’k) = if k> 0 then 1 else (T\’,.card(Zij) - ,u‘Z)

od

Case 2: Ordered Class C;, i > h
For each Zij s.t. Jx: Ni(z) = j do
split_subclasses = {Zij’k, 0<k< R.card(Z{) }
Rs.card(Zij’k) =1
od

Concerning the fourth component of R i.e., Rs.mark, it can naturally derived from R.mark: observe

that using the sum and Cartesian product operations on multisets defined in 2.1 we can write:
Zl =70+ 720 4z

so that the tuple < Z2, Z3 > after the splitting of Z? into Z12’0 + 212’1 + Zl2’2 and the splitting of Z3

into Zg”l + ZS”Z can be rewritten as
< Z20 4 72y 722 73+ 7t >

Since the notation < a,b > (where a and b are multisets) denotes the Cartesian product of a and b,

the above tuple can be transformed into
<z Z3 >+ < ZPN 23 > 4 < 207 20 > + < 270,257 > + < 2PN 237 > + < 272, 250 >

Proposition 3.1 Let R be a representation of the symbolic marking M. Then Rs = R\ p] is

another representation of M.

With such a definition of the split marking, subclasses can substitute objects in the transition firing.
The evaluation of arc expressions and predicates does not change when dynamic subclasses of
cardinality one replace objects in variable assignments. We use the notation W and i)(t) to indicate

the symbolic arc expressions and transition predicates respectively.

The four step symbolic firing. The canonical representation of the symbolic marking obtained by
firing (¢, A\, p) in M (i.e., M" = M(t, A, 1)) is computed in four steps, that use different intermediate

(non canonical) representations.

1. Splitting M with respect to [\, u]
let Rs = R[A,] be the split representation of M in which (¢, A\, i) is enabled;

22

Define Ry by copying the components m, card, and d from R,, and computing R¢.mark by

applying the incidence functions on Rs.mark.
Vpe P, Rpmark(p) = Rsmark(p) = W~ (p,)\, p) + W (p,1)(\,)
Ry is a (possibly non canonical) representation of M';

3. Grouping M’

Compute a minimal representation R,, of M’ by grouping dynamic subclasses of R ;

4. Ordering M’
Compute the canonical representation of M’ by transforming R,,, into an ordered representation.

This is obtained by applying one of the permutations in S to the dynamic subclasses of R,,.

Let us make a final remark on the splitting of ordered classes. The complete splitting into dynamic
subclasses of cardinality 1 is not strictly necessary, but it is convenient since it allows a homogeneous
treatment of the different cases that arise considering all the different positions occupied by the selected
element in the instantiated dynamic subclass. The reason for considering each case separately is due
to the need to maintain the ordering among the dynamic subclasses of an ordered class throughout

the algorithm.

Example of Symbolic Firing. Let us consider a very simple artificial example in order to illustrate
the four steps of the symbolic firing rule. The different steps are illustrated in graphical form in Figure
9. The WN considered in this example has no particular meaning. The top-left portion of the figure
depicts the canonical representation of an arbitrary marking M. The other portions represent the
four steps of the symbolic firing of transition ¢ for (Z2, Z1) (which is enabled in M, as the reader can
check).

The Symbolic firing rule can be easily cast into the usual algorithm structure for the computation
of the Reachability Graph of a Petri net provided that the Symbolic canonical representation is used

to store the markings of the reachability set.

3.2 SRG relevant properties

We present now the most interesting properties of the symbolic reachability graph that can be exploited
for a performance evaluation of WN models. Other interesting properties can be shown concerning
the qualitative behavior of WN models based on the analysis of the SRG, but they are not reported
here for the sake of conciseness.

The first two properties that we consider establish the equivalence between the RG and the SRG

from the point of view of the reachability of markings.

23

ORI G NAL

PL MARKI NG NB: if the splitting of z
i ik
<y> results in a single subclass ZJ_
I
<x>l¢ D P3 then k is onitted
t
<X>
3<y>
) \
_ litting SPLIT
card(Zz% =3 sP
(Q A (1) =2 P1 REPRESENTATI ON
all other 1) =1
subcl asses have (1) =
cardinality 1 A(1)=1 <y>—7!
w(1)=1 <x>—7%t 2

. h P3
t] @
<X>4>ZZ'1
/ ! 3<y>»321

NEW actual firing =)

2,0y _
MARKI NG card(Z1) =2
P1 car d(zjl) =1
().
<> h
vt]
<X>
3<y>

P3
M NI VAL
P2 REPRESENTATI ON

car d(Zio) =2 groupi ng P1
ez <x> */i>\ P3
t
<x>
3<y>
P2 car d(zi) =2
REF?;ESN%\II\I‘T%FLI N or dering card(Zi) =2

P1
<y>
<x> (/”—_N\\ P3
t
<x>
3<y>

P2 card(Zi) =2
card(zj) =2

Figure 9: An example of symbolic firing

24

Let My be a symbolic marking, and [My) be the set of symbolic markings reachable from My. Then
U) = [Mo)

MoEMyg
Property 3.2 Cardinality of a symbolic marking.
Let M be a symbolic marking and | M| be the number of ordinary markings belonging to the equivalence
class of M.
Let K (M) be the number of permutations computed during the ordering phase of the symbolic firing
algorithm. Then

M| = 1 T | Diq! & :
M= K(M) HH card(M.Zij)! H V()

i=1¢=1 Hd(M.Z{):q i=h+1

where v(i) = if (M.m(i) > 1 An; = 1) then |C;| else 1.

The above properties ensure that no information on reachability is lost by analyzing the SRG
instead of the RG. However, in order to derive an improved technique for performance evaluation
based on the SRG instead of the RG, we still need to know how to test the ergodicity of the Markov
chain and how to compute its transition rates. These additional requirements lead to the formulation

of the following additional propositions’.

Property 3.3 Necessary condition for ergodicity.

Strong connection of RG = Strong connection of SRG, but not vice-versa.
In [15] an example is given in which the SRG is strongly connected while the underlying RG is not.
Property 3.4 A sufficient condition for ergodicity.
Strong connection of SRG
A Y0 <i<h, IM' €SRG such that (M'.m(i) = n;)
AN Yh<i<n, ((n;>1) Vv (IM' €SRG such that (M'.m(i) =1))
= Strong connection of RG

The above property is an extension of a property already proven in [8] for the restricted case of Regular
nets®. On the other hand, the condition is not necessary in order for the RG to be strongly connected,
even in the simpler case of RNs. Indeed, in [15] an example of WN is given in which the SRG is
strongly connected, dynamic subclasses are never completely grouped, and yet the RG is strongly

connected.

"Remember that a finite, continuous time Markov chain is ergodic iff its graph representation is strongly connected.
®Indeed, the additional condition on the dynamic subclass partition is always satisfied by the (symmetric) initial

marking in an RN.

25

Let M and M’ be two symbolic markings of the SRG, and M € M be an ordinary marking of the RG.
Let Apr v be the set of arcs of the RG connecting M to any marking M’ € M', and Ay be the
set of symbolic arcs of the SRG connecting M to M'.

Then there exists a mapping w from Ay p onto Apg e such that:

o if the label of an arc a € Ay is [t, < " CZ: >| then the label of w(a) is [t, X, u] with

d €Dy = MA(Z}) = ¢

o if the label of a symbolic arc a € Apq apr s [t, A, i) then the cardinality of the reciprocal image of

a denoted |w™(a)| is
h m;

H H card(Z;)

i—1 = 1 (card ZJ))

where jif = sup, . 3,y i)

4 Stochastic WNs and lumped Markov chains

Stochastic Regular nets where already defined in [10]. The basic principle for timing a colored Petri
net is to associate a function from the markings to positive real numbers to each arc of the reachability
graph. In this way a discrete-state semi-Markov process is defined whose state space is corresponding
to the reachability set of the colored net. In this section, after a formal definition of stochastic well-
formed colored nets (SWN), we prove that an aggregate Markovian process can be defined based on the
SRG in order to compute the same performance estimates with a lower computational cost compared

to the usual technique based on the RG.

4.1 Stochastic well-formed nets

In WNs a priority structure is defined on transitions. This priority is reflected in the timing semantics
of SWNs in the same way as was originally defined for GSPNs [19]. Transitions with priority level 0
are called timed transitions, and they fire at the instant of the elapsing of a delay from the instant of
the transition enabling. The delay is determined for each instantiation of the enabling of a transition
according to a random process with negative exponential probability distribution. Transitions with
priority level greater than 0 are called immediate transitions, and they fire in zero time at the instant
of their enabling. In case of conflicting immediate transitions a firing probability is assigned to each
conflicting transition, proportionally to a weight. The probability is computed by normalizing the
weights of all conflicting transitions enabled in the same marking.

In order to guarantee the presence of symmetry not only from a logical but also from a stochastic

point of view, we restrict the possibility of marking dependency for the mean values of transition

26

that the objects assigned to the transition parameters belong to, and not a function of the assigned
objects themselves. In this way all objects of a given static subclass determine the same transition

firing delay. This can be formalized by introducing the notation
Ci={Di1,...,Dig }

In analogy with the notation introduced for the representation of symbolic markings and dynamic

subclasses, given a transition ¢ with color domain C'(t) = Cj(;) we define
C(t) = {< Di,ji,--» Dipjp > | 0<ji<ny}

For any ¢ =< ¢’ ’cz]: > € C(t) we also define ¢ =< 6'2711,,6'27,’: > C(t) such that éf = D, 4 iff

110"

c{ € D; 4. Finally we define the static partition of a marking M denoted M (p) € Bag(C(p)) as follows:

Mp)©) = Y M)

c :d=¢

The static partition of a marking represents, for each place and for each Cartesian product of static
subclasses, the number of tuples in the place that belong to the same Cartesian product of static

subclasses.
Property 4.1 Static partition of symbolic markings.
VM, M' e M, Vpe P, M(p)=M/p)
Hence we can define the static partition of a symbolic marking as well and denote it M.

Definition 4.1 (SWN) A stochastic well-formed colored net is a pair SWN = (W N,0) such that
W N is a well-formed colored Petri net

0 is a function defined on the set of transitions T such that

o(t) - C’(t) X Bag(é(pl)) X Bag(é(pg)) X ...Bag(é(p|p‘)) — IR"

For any timed transition ¢, the function 6(t)(& M) represents the average firing rate for any instance
of transition [¢,c|] enabled in marking M. In case of immediate transitions, the same function is

interpreted as the weight to be normalized within a conflict set in order to obtain the firing probability:

0(t)

™

, M)
é

27

We present now an algorithm that exploits the partition in equivalence classes of markings implicitly
determined by the computation of the SRG of an SWN in order to reduce the cost of the numerical
Markovian analysis.

We denote by SRS the set of all reachable symbolic markings M; of the WN. An actual marking
of the equivalence class defined by M; is denoted here with a double index M; j,, where k represents an
internal ordering within the equivalence class. The weight function 6 is extended to symbolic subclasses
as follows: VM, Y[\, u], VM € M, Vt € T, Ve € C(t) such that n;(c)) = Zi)‘i(j), Ot)\, u, M) =
0(t)(¢, M).

The performance evaluation algorithm can thus be outlined as follows:
1. Construction of the aggregate state space description

e construction of the SRG of the WN
e elimination of self-loop arcs (W (p,t)(A,) — W~ (p,t)(\, i) = 0)

e for each arc of the SRG, computation of ©(¢)(\, u, M)

2. Construction of the square matrix Q = [g; j] of dimension N' = |SRS| with ¢;; = — 37, ¢i;

E[t,)\,,u] s Mty M; G(t) (>‘7 My -A;li)'m_l(tu >‘a H’)|
Z[t’,)\’,,u’] s MG) G(t,) (>‘,7 W, Mi)'m_l(t,a N, M,)|

3. Numerical solution of the Semi-Markov process described by Q, (the solution is unique if the SRG
contains a single strongly connected component) and computation of the steady-state probability

distribution Wfor tangible symbolic markings.

From the probability distribution ¥ of the tangible symbolic markings it is always possible, if needed,
to compute the probability distribution v of the tangible actual markings of the SWN as:

VM; e M;, ;= %
Note that usually the actual marking distribution is not needed for the computation of performance
indexes defined at the net level and that in any case the complexity of the above outlined numerical
analysis is polynomial in the cardinality of the SRG instead of the cardinality of the RG. Thus, the
proposed techniques exploits at its greatest extent the color structure of the model in order to reduce
the size of the state space of the stochastic process to be analyzed.

The prove that the analysis of the stochastic process defined on the SRG yields the same steady-

state solution that can be computed from the general technique based on the RG is divided in three

steps.

28

whose variables are the symbolic marking probabilities.
2. The coefficients of the reduced linear system can be computed directly from the SRG.
3. All actual markings within a symbolic marking have the same probability.

See [20] for an outline of the formal proof.

5 A Complex Application to Multiprocessor Architectures

In this section we apply the WN formalism to the modeling and performance evaluation of a mul-
tiprocessor system already studied in [23, 2, 5]. The reasons for reconsidering this almost classic
architecture are many. First, it is intrinsically more complex and more realistic than other systems
already studied by colored or high-level Petri nets, such as, e.g., [7, 11]. Second, the solutions based
on Markov or Stochastic Petri net techniques presented in [23, 2] are not satisfactory due to their
inherent complexity in terms of increasing of the number of states as a function of the number of
processors considered in the system, that limited the availability of results to very few processors
(< 3). Third, the solution based on folded GSPN model presented in [5], although much better from
the computational complexity point of view was still not satisfactory from a modeling point of view
due to the complexity of the GSPN model itself, whose construction required a great deal of ingenuity
and a deep understanding of the behavioral symmetries of the system.

The aim of this example is twofold. On one hand we show the considerable difference in size of
the (aggregated) Markov chain directly obtained from the SRG with respect to the size of the Markov
chain obtained from the detailed RG, which is equivalent to those presented in [23, 2]. On the other
hand we compare the aggregations automatically performed in the SRG generation phase with those
devised in [5] at the price of a thorough (human) analysis of the system behavior and find that the
same level of lumping is now achieved without any effort on the part of the modeler. Indeed the gain
in space enlarges the class of numerically solvable models.

The multiprocessor architecture analyzed in this example is composed by a set of processors con-
nected through a bus. Each processor p; is associated with a local memory composed of two sections,
a private one (PM;) and a common one (CM;). Private memory areas (PM) can be accessed only
by the corresponding processor through its private bus (PB); private memory accesses never generate
contention. Common memory areas (CM) are accessible to all the processors in the system. Accesses
to the local module of the CM are performed through the private bus plus the local bus (LB), while
accesses to non local CM modules are performed using the global bus (GB) plus the local bus of the

destination CM module.

29

begin. own ace __p PClend_own_acc
X X X

req_priv_mem
X

Memory

> P
Y i y
F Teq_ext_acc béijgg,extiacc

e £ i he . AP end_ext_acc
Run = X <%y <X, y> _CXE_:

SelectMem Queue ExtMemAcc

ExtBus

Figure 10: An intuitive WN model of the multiprocessor architecture

Contention arises in the use of GB as well as of the local busses (and the CM modules). A processor
is delayed when some of the resources it is trying to access are busy. We assume however that external
access requests to CM modules have priority over the local CM accesses and cause their preemption.

The overall behavior of the system can be described as follows: processors alternate periods of
processing requiring only access to the private memory (we call these periods CPU bursts), with pe-
riods of CM modules accesses. For simplicity we assume that the system is made up of n identical
processor-memory modules. In order to build the WN model of the system it can be useful to classify
the possible states of a processor as follows:

Active: Processor executing in its private memory;

Accessing local CM: Processor performing a local CM module access;
Accessing remote CM: Processor performing an external CM module access;
Queued: Waiting for the GB to become available;

Blocked: Waiting to continue a local CM access preempted by an external access.

The behavior of the system is described in a straightforward manner by the WN model in Figure
10. Let us note that there is an additional guard [z # y]| on the transition ‘req_ext_acc’. Places
represent the possible states of each processor as follows. ‘Run’ contains tokens whose color represent
the identity of processors in the “Active” state. Similarly, places ‘ExtMemAcc’ and ‘Queue’ represent
processors in the “remote access” and in the “Queued” states, respectively. Place ‘OwnMemAcc’ can
represent either state “local access” or “Blocked”, depending on the fact that a token of the same color
is or is not present in place ‘Memory’. A probabilistic choice among private, local, or external memory
access is modeled by the three conflicting immediate transitions ‘req_priv_mem’, ‘begin_own_acc’, and
‘req_ext_acc’. In the latter case, the choice of the external memory is represented by the choice of
the second component (y) of the color domain of transition ‘req_ext_mem’ (which is enabled for any
y #).

This WN representation of the system, although correct and quite easy to understand, is not the
simplest one can draw. For example, the three conflicting immediate transitions can be “agglomerated”

into their preceding timed transition ‘mem req’ by applying a well known net reduction rule that

30

P Memory

;<X'y> PP y> PP /end ext_acc

ExtMemAcc

ExtBus

Figure 11: A more compact WN model of the multiprocessor architecture

preserve all behavioral properties of the net [24] as well as the timing semantics of the model [25].
Moreover, the timed transition resulting from the fusion of transitions ‘mem_req’ and ‘req_priv_mem’
in the WN in Figure 10 can be deleted since its firing determines no change in the marking of the
net. Finally, the WN representation can be further simplified by “delaying” the choice of the external
memory to be accessed until the global bus is available: indeed, the information about the identity of
the memory module to be accessed is useless before the GB access is granted to the processor.

By applying all the above discussed simplifications, one can finally draw the more compact WN
model depicted in Figure 11. Let us note that there is an additional guard [z # y] on the transition
‘begin_ext_acc’. The Basic colour class P is introduced to represent module identities (both proces-
sor and associated local CM identities). For example place Active with colour domain P contains
tokens representing the active processors; place ExtMemAcc with colour domain P, P contains pairs
(processor, C Mmodule) representing the external accesses currently going on’; place Memory with
domain P contains tokens corresponding to the CM modules not used by any external processor; place
OwnMemAcc with domain P contains both processors in Blocked and in Access local CM states, the
former (latter) being characterized by the absence (presence) of the corresponding coloured token in
place Memory; place EztBus has no associated colour domain (has neutral domain) and describes the
GB state: empty for GB busy, filled with one token for GB idle.

Transitions begin_own_acc, end_own_acc, and req-ext_acc, have colour domain P. Transition be-
gin_ext_acc has domain P, P and has an associated predicate.'®

Transition begin_ext_acc is immediate because we assume that both arbitration and release time of
busses are negligible (and thus set to zero). Furthermore we have assumed that both CPU bursts and
CM access periods are independent, exponentially distributed, random variables. Finally, external
access requests from each processor are directed to any non local CM module with probability ﬁ;

this is represented in the model by stating that all possible (conflicting) instantiations of transition

90f course, due to the availability of a single GB, there cannot exist more than one token at a time in this place.
0This transition represents the beginning of an external access of processor x to the CM module y. Because of the

predicate only firing instances with = # y are enabled. Indeed x = y would represent a local access. The selection of a

request from the external access queue has been modeled assuming a random order queueing discipline.

31

=

7 tang. shix

7 tang. his

LAar)/n

ulGb

13
23
36
92
71
93
118
146

© o0 N S Ot ke W N

—
e}

10

62

340
1652
7354
30746
122728
472904
1772494

0.6752411
0.6600941
0.642929
0.6227463
0.5991253
0.5719982
0.5417373
0.5092124
0.475696106

0.27009645
0.39605642
0.51434340
0.62274684
0.71895120
0.80079870
0.86678098
0.91658070
0.95139024

Table 1: Results

begin_ext_acc have equal probability. The parameters of our model are the number n of processor-
memory modules, the average CPU burst length (1/X), and the average external accesses duration
(1/p). As in [23, 2, 5], we define the system load factor p as the ratio A/p. Some performance figures
that can be obtained from our model are: the average number of active processors (E[AP]); the GB
utilization (U[GB]). These performance figures can be computed from the steady state probability of

the symbolic markings using the following formulas:

[] E[AP] = ZMEtang(SRG) \IJ(M) #Active
where W(M) is the steady state probability of the symbolic marking M, while # Active is the
number of elements in place ‘Active’ defined as #Active = E<Z{>EM(AC“.U8) card(Zf)

e U[GB] = EMetang(SRG):M(GB):o‘I’(M)

In Table 1 the performance figures computed for different values of the number of processors assuming
a load factor p = 0.2 are shown. The mean number of active processors is here divided by n in order
to obtain a normalized version of this figure.

In Table 1 the size of the aggregate and complete Markov chains are also reported for different
values of n, to give a flavor of the considerable gain that can be achieved with this method.

Now let us compare the automatic aggregations performed by the SRG generation algorithm
with those devised in [5]. In that paper a non colored GSPN model was built having already in
mind the aggregated state information required. That is, the redundant information of the original
(much simpler and easy to build) model was discovered by carefully studying the system behavior and
eliminated by changing the kind of state encoding at the net level. It is interesting to observe that the

same redundancies are automatically detected on the WN model by the SRG generation algorithm as

can be observed comparing the tangible SRG of the WN model and the tangible RG of the uncolored

32

ne external access, one active processor, one queued

One external access, one |ocal access,one active processor
Two | ocal accesses, one active processor

One external access, two processors queued

! One external access, one |ocal access, one processor queued
One external access, two | ocal accesses

Three | ocal accesses

external access request

| ocal access request

Figure 12: SRG of the multiprocessor WN

model shown in Figure 12. Notice that the construction of the WN description, as compared to the
folded GSPN model originally presented in [5], although equivalent from the point of view of efficiency
of the analysis requires a substantially smaller intellectual effort to be understood and to be devised

starting from the description of the system behaviour.

6 Conclusions

Stochastic Petri nets were introduced some time ago as a good modeling tool for the performance
evaluation of multiprocessor computer systems. They offered a much higher level tool than previously
used Markov chains, but they suffered from the same large dimension problem that often hampers the
possibility of obtaining results for realistic size systems. High-level Petri net formalisms have already
been employed to further reduce the cost of the model definition and validation, and sometimes also to
perform lumpings of the underlying Markovian models in order to reduce the cost of the performance
evaluation for larger system configurations. So far, however, it was the total responsibility of the
modeler to identify such system characteristics as symmetry in behavior, in order to exploit the
characteristics to obtain models that are less complex to analyze.

For the first time a completely algorithmic approach is proposed that allows the exploitation of
these model characteristics for the construction of lumped Markov chains. The user need not be aware
of the lumping technique, as long as he specifies the behavior of the system in terms of well-formed
colored nets. The intrinsic symmetries are automatically detected and used at their greatest extent by
means of the construction of the symbolic reachability graph. The technique presented in this paper is
a direct extension of that already proposed for a restricted class of “regular nets”. The novelty of the
result presented here is that, with the extension of the SRG technique to well-formed colored nets,

the technique is now applicable to any colored model.

33

usual RG if the model does not exhibit useful symmetries as defined in section 3. This situation may
happen in two cases: if the system to be modelled does not contain any symmetry, or if the model
does not take the intrinsic symmetries of the system into account properly. It is interesting to note
that the syntax for the definition of SWN models encourages the modeller to group objects into basic
colour classes and to avoid splitting them in static subclasses if this is not necessary, since this way
the textual part of the model description is smaller and faster to produce. Thus models that take all
symmetries into account are more likely to be produced than equivalent models that do not. In this
sense the modeller implicitly gives to the SRG construction algorithm the best of his knowledge about
system symmetries by simply trying to reduce his model description effort.

We have presented an example of use of stochastic well-formed nets for the study of a non trivial
multiprocessor architecture. Another complex example of modelling a concurrent algorithm using this
formalism can be found in [26]. These examples show how the technique overcomes the difficulties
found in the use of other performance modeling techniques. On the one hand the model is easier to
devise in terms of the WN formalism, and fairly easy to understand even by non Petri net experts. On
the other hand, the exploitation of the SRG construction algorithm allows an evaluation whose cost
is comparable to the analysis cost of thoroughly designed GSPN models where all crucial behavioral
symmetries of the system have been fully identified by the modeler himself.

In conclusion we notice that the performance analysis by construction of a Markov chain from the
RG of a Petri net model is in practice most often hampered by the large size of the graph caused
by two different reasons. The first reason is the representation of the parallelism in terms of all
possible interleavings that can be observed on the global state of the model. The second reason is the
possible presence of intrinsic symmetries of the model that produce many different portions of a graph
representing essentially the same behavior. In this paper we have addressed and solved the second
problem. The first problem is inherent to the state-space representation, and in our opinion can be
avoided only by using non state-space based analysis techniques.

The initial simplification of the WN model in Figure 10 in order to obtain the one in Figure 11
could be an example of use of formal net structural reduction techniques for the reduction of the
cardinality of the state space. Work is currently in progress in order to formalize these reduction

techniques in the performance evaluation framework provided by SWNs.

References

[1] M.K. Molloy. Performance analysis using stochastic Petri nets. IEEE Transaction on Computers,
31(9):913-917, September 1982.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, and F. Gregoretti. Modeling bus contention and memory
interference in a multiprocessor system. IEEE Transactions on Computers, 32(1):60-72, January
1983.

34

[16]

[17]

[18]

pPrLiOLilalIle allalysls OL HIULLIPLOCESS0L Sy SLCLLs. AUV LTWIHIoWlLeUTis U1 WUTTLPUWLCT D Yoblllto, 4\ 1],

May 1984.

M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of Multiprocessor Systems.
MIT Press, Cambridge, USA, 1986.

M. Ajmone Marsan and G. Chiola. Construction of generalized stochastic Petri net models of bus
oriented multiprocessor systems by stepwise refinements. In Proc. 2" Intern. Conf. on Modeling
Techniques and Tools for Performance Analysis, Sophia Antipolis, France, June 1985. ACM.

M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. Modeling the software architecture of
a prototype parallel machine. In Proc. 1987 SIGMETRICS Conference, Banf, Alberta, Canada,
May 1987. ACM.

C. Lin and D.C. Marinescu. On stochastic high level Petri nets. In Proc. Intern. Workshop on
Petri Nets and Performance Models, Madison, WI, USA, August 1987. IEEE-CS Press.

S. Haddad. Une Categorie Regulire de Reseau de Petri de Haut Niveau: Definition, Proprietes
et Reductions. PhD thesis, Lab. MASI, Universite P. et M. Curie (Paris 6), Paris, France, Jun
1987. These de Doctorat, RR87/197 (in French).

K. Jensen. Coloured Petri nets and the invariant method. Theoretical Computer Science, 14:317—
336, 1981.

C. Dutheillet and S. Haddad. Regular stochastic Petri nets. In Proc. 10th Intern. Conf. Applica-
tion and Theory of Petri Nets, Bonn, Germany, June 1989.

C. Dutheillet and S. Haddad. Aggregation and disaggregation of states in colored stochastic Petri
nets: Application to a multiprocessor architecture. In Proc. 3"% Intern. Workshop on Petri Nets
and Performance Models, Kyoto, Japan, December 1989. IEEE-CS Press.

P. Huber, A.M. Jensen, L.O. Jepsen, and K. Jensen. Towards reachability trees for high-level
Petri nets. In G. Rozenberg, editor, Advances on Petri Nets 84, volume 188 of LNCS, pages
215-233. Springer Verlag, 1984.

A. Zenie. Colored stochastic Petri nets. In Proc. Intern. Workshop on Timed Petri Nets, pages
262-271, Torino, Italy, July 1985. IEEE-CS Press.

J.A. Carrasco. Automated construction of compound Markov chains from generalized stochastic
high-level Petri nets. In Proc. 3" Intern. Workshop on Petri Nets and Performance Models,
pages 93-102, Kyoto, Japan, December 1989. IEEE-CS Press.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed coloured nets and
their symbolic reachability graph. In Proc. 11" Intern. Conference on Application and Theory of
Petri Nets, Paris, France, June 1990. Reprinted in High-Level Petri Nets. Theory and Application,
K. Jensen and G. Rozenberg (editors), Springer Verlag, 1991.

Claude Dutheillet. Symétries dans les réseauz colorés: Définition, analyse et application d
l’évaluation de performances. PhD thesis, Laboratoire MASI, Université Paris 6, France, January
1991. these de I'Université P. et M. Curie (in French).

T. Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE, 77(4):541—
580, April 1989.

K. Jensen and G. Rozenberg, editors. High-Level Petri Nets. Theory and Application. Springer
Verlag, 1991.

35

UCLLLiOL at vilc 1oL 1ovel alll 1vs LU pULaLViOls. 1yiyly 1TUWHoWCLeOTee U1t DU JLWWIC LylToyeltCCrolvy,

19(2):89-107, February 1993.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-Formed coloured nets
and multiprocessor modelling applications. In K. Jensen and G. Rozenberg, editors, High-Level
Petri Nets. Theory and Application. Springer Verlag, 1991.

G. Chiola, R. Gaeta, and M. Ribaudo. Designing an efficient tool for Stochastic Well-Formed
Coloured Petri Nets. In R. Pooley and J. Hillston, editors, Computer Performance Evaluation:
Techniques and Tools, pages 308-311, Edinburgh, UK, September 1992. Edinburgh University
Press.

G. Chiola. Great spnl.5 software architecture. In Proc. 5" Intern. Conf. on Modeling Techniques
and Tools for Computer Performance Evaluation, Torino, Italy, Feb 1991. IEEE-CS Press.

M. Ajmone Marsan, G. Balbo, and G. Conte. Comparative performance analysis of single bus
multiprocessor architectures. IEEE Transactions on Computers, 31(12), December 1982.

S. Haddad. Generalization of reduction theory to coloured nets. In Proc. 9" Europ. Workshop
on Application and Theory of Petri Nets, Venezia, [taly, June 1988.

G. Chiola, S. Donatelli, and G. Franceschinis. GSPN versus SPN: what is the actual role of
immediate transitions? In Proc. 4" Intern. Workshop on Petri Nets and Performance Models,
pages 20-31, Melbourne, Australia, December 1991. IEEE-CS Press.

G. Balbo, G. Chiola, S.C. Bruell, and P. Chen. An example of modelling and evaluation of a con-
current program using coloured stochastic Petri nets: Lamport’s fast mutual exclusion algorithm.
IEEE Transactions on Parallel and Distributed Systems, 3(2):221-240, March 1992. Reprinted in
High-Level Petri Nets. Theory and Application, K. Jensen and G. Rozenberg (editors), Springer
Verlag, 1991.

36

1 Class definition syntax L e 6
2 Place colour definition syntax Lo 7
3 Arc expression definition syntax oL L L 8
4 Examples of WNs o e 9
5 Predicate definition syntax L L 10
6 Model of two servers in tandem. L L L 14
7 Grouping of ordinary markings and arcs oL oL 16
8 Sketch of the canonical representation computation algorithm 20
9 An example of symbolic firing 24
10 An intuitive WN model of the multiprocessor architecture 30
11 A more compact WN model of the multiprocessor architecture 31
12 SRG of the multiprocessor WN e 33

List of Tables

1 Results. e 32

37

