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Abstrat

The lass of Stohasti Well Formed Colored Nets (SWN) was de�ned as a syntati restri-

tion of Stohasti High-Level Nets. The interest of the introdution of restritions in the model

de�nition is the possibility of exploiting the Symboli Reahability Graph (SRG) to redue the

omplexity of Markovian performane evaluation with respet to lassial Petri net tehniques. It

turns out that SWNs allow the representation of any olor funtion in a strutured form, so that any

unonstrained high-level net an be transformed into a well formed net. Moreover, most onstruts

useful for the modeling of distributed omputer systems and arhitetures diretly math the \well

form" restrition, without any need of transformation. A non trivial example of the usefulness of

the tehnique in the performane modeling and evaluation of multiproessor arhitetures is in-

luded.

�

This work has been done while G. Chiola was visiting researher at the Lab. MASI of the University of Paris 6, with

the �nanial support of a NATO-CNR annual researh grant. The work has been partially supported by the CNR projet

\Progetto Finalizzato Sistemi Informatii e Calolo Parallelo", grant 91.00879.PF69 and by an international ooperation

grant from the University of Torino.

1



Index Terms

� High-Level Petri nets

� model symmetry

� symboli reahability graph

� performane evaluation

� omputational omplexity

� Markov hains

� lumpability ondition

� multiproessor systems

� bus and memory ontention

2



1 Introdution

Stohasti Petri nets have been proposed in the literature as a good modeling tool for the study and

performane evaluation of multiproessor omputer arhitetures [1, 2, 3℄. The tehnique is easier

to use than more lassial Markovian modeling tehniques, but still leads to models whose size is

too large when modeling realisti systems. Tehniques for the development of \ompat" or \folded"

models [4, 5℄ have been proposed, but they had not been used by many researhers outside the

restrited group that developed them. This is due to the deep knowledge required by the modeler of

the behavioral harateristis and symmetries of the system under study. High level Petri net models

have been proposed from time to time as a more adequate tool (see, e.g., [6, 7℄) for the modeling

of omplex multiproessor systems. Although easier to use even by inexperiened modelers beause

of their higher level of abstration, lassial high-level Petri nets do not alleviate the need for a

thorough understanding of the symmetries of the system in order to allow the performane evaluation

of reasonably large systems.

Regular Nets (RN) have been proposed in [8℄ as a restrition of Colored Petri Nets (CPN) [9℄.

The interest in introduing suh a restrition on the olor domains and on the ar funtions was that

omplete algorithms have been proposed for the omputation of ows, redutions, and the de�nition of

a Symboli Reahability Graph (SRG) in this ase. Reently, stohasti models based on RNs alled

Regular Stohasti Petri Nets (RSPN) have been introdued for performane evaluation purposes

[10, 11℄. The steady-state performane of an RSPN model an be obtained by numerially solving

a Markov hain (MC) orresponding to the SRG generated by the RSPN. The omplexity in the

omputation of this solution is polynomial in the number of symboli markings of the SRG, whih

an be muh less than the number of ordinary markings generated by the Plae/Transition net (P/T)

resulting from the unfolding of the RN.

Some kinds of symboli marking representations to exploit the symmetries of the reahability

graph (RG) have already been proposed for general CPNs [12, 13, 7, 14℄ as well, but in all these

ases heuristis were needed to deide the type of aggregations. These heuristis were based on an

expliit knowledge by the modeler of the symmetries present in a partiular model. Thus none of these

methods ould be implemented in a general algorithmi form. From this point of view, the superiority

of RNs was due to the availability of a generi symboli �ring rule whih allows the omputation of

the SRG without any atual instantiation of olors and without expliit knowledge of the symmetry

of the model.

This use of the SRG for performane evaluation purposes is the main motivation that led us to

the proposal of the extended SRG omputation for more general lasses of CPNs alled \well-formed"

olored nets (WN) [15℄. The original RNs and their related SRG generation algorithm an be used to

model many interesting systems, but unfortunately the strong restritions imposed on the de�nition
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of the ar labeling funtions, the olor sets, and the initial marking, prevent their use in general ases.

In this paper we present the new lass of stohasti well-formed olored nets (SWN) as extensions

of RSPNs together with an extended SRG onstrution algorithm that allows an optimized Markovian

analysis exploiting the system symmetries. We assume that our SWNs are always bounded in order to

de�ne a �nite state spae. The SRG de�ned for this lass of models allows the same kind of performane

evaluation presented in [11℄ in the ase of general models. Moreover, this extended algorithm has the

same advantages as the one originally proposed for RN, i.e.: 1) it uses a symboli �ring rule, so that

both its time and spae omplexities depend only on the size of the SRG, and not on the size of the

atual RG; 2) it does not require any partiular heuristis to expliitly de�ne the symmetries of the

model; 3) it exploits the information that is impliit in the well strutured funtion and olor domain

de�nitions.

From the modeling power point of view any general CPN model an be translated into an equivalent

WN model with the same underlying struture; only the expression of the olor funtions and of the

omposition of olor lasses is re-written in a more expliit (and parametri) form, in terms of the basi

onstruts provided by the WN formalism. Moreover, in pratial modeling this formalism translation

is hardly needed: most (if not all) CPN models published in the literature an be diretly represented

as WNs, even without exploiting the power of prediate guards on the ar labeling funtions.

We also present a omplete modeling example taken from the literature on multiproessor omputer

arhiteture. The example shows how the tehnique an be exploited even by non expert modelers to

obtain good performane models of omplex systems. The symmetries of the system are automatially

taken into aount by the proposed algorithm without any expliit intervention of the modeler. The

time and spae omplexity of the analysis is however equal to the one of the best model devised by

an expert modeler.

The balane of the paper is as follows. Setions 2 presents the WN formalism, and Setion 3

presents the SRG, a sketh of the SRG onstrution algorithm with some examples, and some relevant

mathematial properties of the graph. Setion 4 ontains the de�nition of SWNs, and the performane

evaluation tehnique. Setion 5 presents a non trivial example of the appliation of SWNs to the per-

formane evaluation of a well known multiproessor omputer arhiteture. Finally, Setion 6 ontains

some onluding remarks and perspetives of this work. The formal notation has been somewhat sa-

ri�ed, and the presentation has been based mainly on examples to provide easier omprehension for

the non expert. A more rigorous notation and the formal proofs of many results an be found in [15℄

or in [16℄.
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2 Well-Formed Nets: an introdution

We assume the reader is already familiar with the Petri net notation both unolored [17℄ and ol-

ored [18℄ versions. We also assume the reader to be familiar with the GSPN formalism [19℄ and its

multiproessor appliations [4℄.

2.1 Notation and basi de�nitions

We start by giving some basi de�nition and a short outline of the notation used in the paper.

De�nition 2.1 A multiset a over a non-empty set A is a mapping a 2 [A! IN ℄, we use the notation

Bag(A) to denote a multiset over A. Intuitively, a multi-set is a set that an ontain several our-

renes of the same element. It an be represented by a formal sum: a =

P

x2A

a(x) x.

The oeÆient a(x) is alled multipliity of x in a.

A multiset a

2

is ontained into the multiset a

1

, denoted a

2

� a

1

i� 8x 2 A; a

2

(x) � a

1

(x).

De�nition 2.2 The summation, subtration and salar multipliation of multisets are de�ned as

follows:

� a

1

+ a

2

=

P

x2A

(a

1

(x) + a

2

(x))x

� a

1

� a

2

=

P

x2A

(a

1

(x)� a

2

(x))x provided that a

2

� a

1

� n a =

P

x2A

(n a(x))x

Given a family of sets fA

i

; i = 1; : : : ; ng we denote A

1

; : : : ; A

n

a new set obtained by Cartesian

produt of the sets in the family; an element in this new set is denoted < e

1

; : : : ; e

n

> where e

i

2 A

i

.

By generalization, if a

i

is a multiset over A

i

, we denote < a

1

; : : : ; a

n

> the multiset over A

1

; : : : ; A

n

obtained by Cartesian produt of the omponent multisets a

i

. The multipliity of the elements in the

resulting multiset is de�ned as follows:

8 < e

1

; : : : ; e

n

>2 A

1

; : : : ; A

n

; < a

1

; : : : ; a

n

> (< e

1

; : : : ; e

n

>) = a

1

(e

1

) � a

2

(e

2

) � : : : � a

n

(e

n

)

2.2 WN informal de�nition

The introdution of Colored Petri Nets (CPN) as well as other High Level Petri Nets formalisms (e.g.,

Pr/T nets) was ruial from the point of view of the expressive power of this lass of formalisms.

The possibility of assoiating information with tokens and of parameterizing transition �ring made

it possible to represent very onisely systems that would have required huge unolored nets to be

desribed.

Well Formed Colored Nets (WNs) are substantially idential to CPNs from the expressive power

point of view (see [20℄ for a proof of this statement). However the syntati de�nition of WNs leads
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to new, more eÆient analysis algorithms based on the original onept of symboli marking. In the

sequel of this setion we give an informal desription of the WN formalism. The syntax used in the

explanation and in the examples is the one aepted by the WN design and analysis tool prototype

that has been developed at the Computer Siene Dept of the University of Torino [21℄ and that will

be soon integrated in the pakage GreatSPN [22℄.

As in PNs, plaes of WNs together with their marking play the role of desribing the system state

while transitions represent events that ause the state hanges. In WNs a token an inorporate some

information, indeed a token an be regarded as an instane of a data struture with a ertain number

of �elds whose semantis depend on the plae the token belongs to. The de�nition of the \data type"

assoiated with eah plae is alled plae olor domain and is similar to a C struture delaration. The

�elds data types are seleted from a set of basi types alled basi olor lasses

1

. The spei�ation of

the basi olor lasses is part of the net de�nition. In our tool basi olor lasses have always �nite

ardinality and are de�ned by enumeration of the elements

2

.

Often it may be useful to partition a basi olor lass into disjoint sublasses of objets with some

ommon property. For example the lass of proesses ould be partitioned into two sublasses: the

low priority proesses sublass and the high priority proesses one. In the WN terminology these are

alled stati sublasses (as opposite to dynami sublasses that will be introdued to de�ne symboli

markings). A basi lass may be ordered so that a suessor funtion is de�ned on its elements. The

ordering is assumed to be irular, so that the suessor funtion applied to the last element returns

the �rst one. Here is the grammar for the de�nition of basi olor lasses and their stati sublasses

within our tool. The syntax is depited in Figure 1, where \stat sb id" is simply a string denoting a

Basi lass grammar

lass ! lasstype statilist

statilist ! stat sb id j statilist , stat sb id

lasstype ! O j U

Examples

Msgs = UData msgs;Ak msg

Stati sublass grammar

stati ! STRING[NUM-NUM℄ j

[ objetlist ℄

objetlist ! STRING j objetlist , STRING

Examples

Data msgs = m[1� 3℄

Ak msg = [ak℄

Figure 1: Class de�nition syntax

stati sublass identi�er;

1

The �elds are not named. Their identi�ation is positional.

2

Shortuts are allowed to make the de�nition more onise: for example the set Sites = fs

1

; : : : ; s

10

g an be spei�ed

using the syntax s[1� 10℄.
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In the example in the same �gure the basi lass Msgs of possible messages is an unordered (U) lass

split in two stati sublasses Data msgs and Ak msg of ardinality 3 and 1 respetively.

The olor domain of plae p is denoted C(p) and the syntax for its de�nition is shown in Figure 2

where \lass id" is simply a string denoting a previously de�ned basi olor lass.

Plae olor domain grammar

Plaedomain! lasslist j �

lasslist ! lass id j lasslist, lass id

Examples

C(T:Message buffer) = Sites; Sites;Msgs

C(Idle sites) = Sites

Figure 2: Plae olour de�nition syntax

In WNs a plae an be used to represent the value of a variable of given type provided that it

never ontains more than one token (the empty plae ould represent either an uninitialized variable

or some �xed default value in the variable domain) and the plae olor domain is equal to the variable

data type. Another use of plaes in WN models is for the representation of the state of a (multi)set of

possibly distinguishable objets. The notation M(p) denotes the marking of plae p i.e., the multiset

of C(p) ontained in p aording to marking M .

The transitions in WNs an be onsidered as proedures with formal parameters. The formal

parameters are alled transition olor domain; their delaration is part of the net desription and

the type assoiated with eah parameter must be a basi olor lass. A transition olor domain is

de�ned in the same way as a plae olor domain. The list of lasses in the olor domain de�nes the

type assoiated with the transition parameters. The olor domain of a transition t (denoted C(t)) is

onstrained by the olor domains of its input, inhibitor and output plaes. We shall see later on that

the relation between transition and plae olor domains is de�ned through the ar expressions.

A transition whose formal parameters have been instaned to atual values is alled transition

instane. We use the notation [t; ℄ for an instane of transition t, where  represents the assignment

of atual values to the transition parameters. Observe that an assignment  is atually an element of

the set C(t) and for this reason it is often referred to as a \olor instane" of t.

In order to �re a transition, it is neessary to speify atual values for its formal parameters (it is

similar to the exeution of a proedure all ), i.e., we an only �re transition instanes. The enabling

hek of a transition instane and the state hange aused by its �ring depend (again) on the ar

expressions that label the ars onneted to the transition. Observe that many instanes of the same

transition an be onurrently enabled. They are onsidered as independent, onurrently ourring

events (unless they are in onit one with the other).

The ar expressions are (formal) sums of tuples; eah element of a tuple in turn is a weighted

sum of terms denoting multisets of the basi olor lasses. The ar expressions syntax is desribed in

Figure 3.
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The ar expressions are strutured aording to the orresponding plae olor domain. If the plae

olor domain ontains k basi olor lasses (i.e., k \�elds"), then the orresponding ar expression is

a weighted sum of k-tuples. The whole expression denotes a multiset in the Cartesian produt of the

basi olor lasses omposing the orresponding plae olor domain.

The j

th

element in eah k-tuple is an expression denoting a multiset of C

j

, where C

j

is the \type" of

the j

th

\�eld" in the plae olor domain. This element is a weighted sum of three types of terms: (1)

variable (e.g. rightfork); (2) suessor funtion applied to a variable (e.g.

L

rightfork ); (3) basi

lass/stati sublass identi�ers (e.g. S

Msgs

or S

Data msgs

).

The �rst two terms denote an objet in C

j

and the suessor of an objet in C

j

respetively, S

lass name

or simply S denotes the set lass name (C

j

in this ase), S

sublass name

denotes the stati sublass

sublass name.

An ar expression that ontains variables an be interpreted as a pattern standing for any multiset

that an be obtained binding the variables to atual elements in the proper basi olor lass. We all

assignment a olletion of variable bindings.

For example let us onsider the tuple < sr; dest;msg;

L

nt >, and let us assume that the

orresponding plae olor domain is Sites; Sites;Msgs;MsgNumbers. The variables sr, dest, msg

and nt stand for any objet in the orresponding basi olor lass, so that the ar expression is a

pattern for any set of ardinality one whose only element is a four-tuple of elements from the plae

olor domain. The expression < rightfork > + <

L

rightfork >, where variable rightfork is of

type Philosophers, stands for a set of ardinality two ontaining any element of Philosophers and its

suessor. The expression < broadast msg; S

Sites

> denotes a set of ardinality jSitesj of pairs. The

set is obtained by applying the Cartesian produt operator to any ardinality one subset of basi lass

Ar expression grammar

ar expr ! �j sum tuples

sum tuples ! oe� optional prediate <expr list> j

sum tuples plusop oe�

optional prediate <expr list>

expr list ! expr kernel j expr kernel, expr list

expr kernel ! term j expr kernel plusop term

term ! sublass term j lass term j

var term j su term

sublass term ! oe� S statiname

lass term ! oe� S j oe� S lassname

var term ! oe� STRING

su term ! oe�

L

STRING

oe� ! NUM j VBAR statiname VBAR j

VBAR lassname VBAR j �

plusop ! + j �

Examples

< proessor;memory >

< broadast msg; S

Sites

>

jSitesj < S

Ak Msg

>

< sr; dest;msg;

L

nt >

< rightfork > + <

L

rightfork >

< phonenum1 + phonenum2; hannel >

< S � soure >

Figure 3: Ar expression de�nition syntax
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<dest><source>

[source<>dest]

<source,dest,msg>

[D(msg)=Data_msg]

<source,dest,msg>

Idle sites

End sendStart send

T.Message buf

R.Message buf

Transmit

Sites Sites = {s[1-k]}
Msgs = Data_msgs, Ack_msg
Data_msgs = {m1,m2,m3}
Ack_msg = {ack}

think

waiting

start eat

eating

end eat

forks

<rightfork> + <leftfork>

<phil>

<phil>

<phil>

<phil>

<phil>

<rightfork> + <leftfork><phil>

Philosophers = {ph[1-5]}
+phi = ph((i+1) mod 5)

<source,dest,S Data_msg>

<dest,source,S Ack_msg>

<source,dest,S Ack_msg>
Receive

<source,dest,S Data_msg>

(a) (b)

[phil = rightfork]
rightfork] & [leftfork = +

[phil = rightfork]
rightfork] & [leftfork = +

Figure 4: Examples of WNs

Msgs, the type of variable broadast msg, and the set Sites. Finally expression jSitesj < S

Ak Msg

>

is a multiset ontaining jSitesj elements all with the same olor < ak >.

The set of variables appearing in all ar expressions related to a single transition are its formal

parameters. For example, in the net of Figure 4.(a) the parameters of transition Start send are soure

and dest, both ranging over lass Sites. The parameters of transition Transmit are soure, dest,

and msg. Variables soure and dest represent objets from the basi lass Sites while variable msg

represents an objet from lass Msgs.

Observe that when the same variable appears in many ar expressions related to the same transition,

the di�erent ourrenes atually denote the same objet, while when the same variable is used within

several ar expressions eah related to a di�erent transition, there is no relation between the objets

represented by the di�erent variable ourrenes.

Optionally a transition may have an assoiated prediate: a boolean expression of onditions on

the transition formal parameters as de�ned by the grammar depited in Figure 5, where D(variable)

denotes the stati sublass of the objet assigned to variable.

The enabling of a transition instane [t; ℄ is determined by evaluating the transition prediate

and the ar expressions of all input and inhibitor plaes with respet to the assignment . Notie

that in this ase an ar expression an be seen as a funtion, whose arguments are the variables ap-

pearing in the expression itself. A transition instane [t; ℄ is enabled i� the prediate evaluates to

true, eah input plae ontains the multiset resulting from the evaluation of the orresponding ar

expression and for eah inhibitor plae, eah tuple ontained in it has a smaller multipliity than

the same tuple in the multiset resulting from the evaluation of the orresponding ar expression. An

enabled transition instane [t; ℄ an �re. The state hange aused by the �ring amounts to subtrat-

ing/adding from/to eah input/output plae p the multiset resulting by evaluating the orresponding
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ar expression through the assignment .

In order to �nd all the enabled instanes of a transition t it is possible to use either a \brute

fore" approah, i.e., generate all possible assignments and hek for enabling, or a more sophistiated

approah that takes into aount the ontents of input and inhibitor plaes to generate diretly the

subset of assignments that orrespond to enabled instanes.

In the seond approah we onsider eah ar expression as a pattern for a multiset of olors. A

math proedure an then be de�ned that is used to math the pattern spei�ed by an ar expression

with the marking of the orresponding input or inhibitor plae. The math operation may fail or

sueed; if it sueeds it returns a set of possible loal assignments. The assignments obtained from

all the input and inhibitor plaes must then be ombined to form a set of proper global assignments,

taking also into aount the onstraints due to the transition prediate. If a variable appears only on

the output ar expressions, any assignment that satis�es the prediate onstraints is valid.

Let us illustrate on some examples the enabling test and the �ring. The net in Figure 4.(a)

represents a ommuniation system in whih a site sends a message to a distant site. This message

is split into three pakets and eah paket is transmitted separately over the network. One the

three pakets have been reeived by the distant site, the latter sends an aknowledgement to the

site that originated the ommuniation. On reeption of this aknowledgement, the ommuniation

ends and the sender beomes idle again. There are two basi lasses in this model: the lass of sites

Sites = fs1; : : : ; skg, and the lass of messages, partitioned into two stati sublasses: the sublass

ontaining the (three) data messages and the sublass ontaining the (single) aknowledge message

Msgs = Data msgs [Ak msg = fm1;m2;m3g [ fakg

Transition Start send �ring is triggered by the presene of an element in plae Idle sites to be

mathed with the variable soure. The assignment to variable dest does not depend on any input

plae, however it must satisfy the prediate [soure 6= dest℄. Therefore, given a marking M all

assignments of soure and dest suh that the site soure is in Idle sites and dest is di�erent from

Prediate grammar

prediate ! prediate OR pterm j pterm

pterm ! term AND pfatt j pfatt

pfatt ! (prediate) j

D(STRING) eqop doperand j

STRING eqop stroperand

doperand ! D (STRING) j statiname

statiname! STRING

statiindex! NUM

stroperand! STRING j

L

STRING

eqop ! = j <>

Examples

(leftfork =

L

rightfork)

D(msg1) = D(msg2)

soure <> destination

D(msg) = Ak Msg

Figure 5: Prediate de�nition syntax
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soure orrespond to enabled instanes of transition Start send.

Thus if the instane

3

[Start send; (soure = s1; dest = s4)℄ is �red the multiset f<s1>g is subtrated

from plae Idle sites while the multiset f<s1,s4,m1>, <s1,s4,m2>, <s1,s4,m3>g is added to plae

T.Message bu�er.

Let us onsider transition Reeive. It is triggered by the presene in plae R.Message buf of a set

of three-tuples mathing the pattern < soure; dest;m1>, < soure; dest;m2>, < soure; dest;m3>

(the boldfae strings denote objets from basi lasses), meaning that site dest has reeived all the

three messages sent by soure. In this ase the assignment of proper values to the variables to �nd

an enabled instane of Reeive depends only on the input plae marking. When �ring the instane

[Reeive; (soure =si; dest =sj)℄, the set f<si,sj,m1>, <si,sj,m2>, <si,sj,m3>g is subtrated from

R.Message buf, and the set f<sj, si, ak>g, representing the aknowledge sent by sj to si, is added

to T.Message bu�er.

Observe that the mathing proedure may be omputationally expensive if the ar expressions

are omplex (in partiular the ar expressions may ontain prediates and in that ase the math

operation omplexity may inrease signi�antly). Our experiene is that usually in big models only

few ar expressions are omplex, while many of them are very simple (e.g. identity funtions) so that

the more eÆient proedure for generation of enabled instanes an be applied to most transitions in

the net.

2.3 WN formal de�nition

In this setion we give the de�nition of WNs and formalize the enabling and �ring of a transition

instane.

De�nition 2.3 (WN) A well formed net WN = hP; T;C; J;W

�

;W

+

;W

h

;�; �;M

0

i is made of:

P the �nite set of plaes;

T the �nite set of transitions, P \ T = ;, P [ T 6= ;;

C the family of basi lasses: C = fC

1

; : : : ; C

n

g, with C

i

\ C

j

= ; (we denote I = f1; : : : ; ng the

ordered set of indexes); C

i

is possibly partitioned in stati sublasses: C

i

=

S

n

i

q=1

D

i;q

;

J : P [ T ! Bag(I), where Bag(I) is the multiset on I. C(r) = C

J(r)

denotes the olor domain of

node r;

W

�

;W

+

;W

h

: W

�

(p; t);W

+

(p; t);W

h

(p; t) 2 [C

J(t)

! Bag(C

J(p)

)℄ the input, output, and inhibition

funtions are ar expressions;

3

We use the notations (var

1

= value

1

; : : : ; var

k

= value

k

) and < value

1

; : : : ; value

k

> interhangeably to desribe

an assignment  2 C(t).
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�(t) : C

J(t)

! fTrue; Falseg is a standard prediate assoiated with the transition t. By default we

will assume 8t 2 T the standard prediate �(t) = True;

� : T ! IN the priority funtion. By default we will assume 8t 2 T the value �(t) = 0;

M

0

: M

0

(p) 2 Bag(C(p)) is the initial marking of p.

De�nition 2.4 (Firing rule) A transition instane [t; ℄ (where  2 C(t)) is enabled in a marking

M i�:

i) 8p 2 P , W

�

(p; t)() �M(p) ^W

h

(p; t)() > M(p), and �(t)()

whih is the expression of the �ring rule in a net without priorities,

ii) 8t

0

with �(t

0

) > �(t), 8

0

2 C(t

0

), 9p 2 P suh that either W

�

(p; t

0

)(

0

) > M(p) _W

h

(p; t)() �

M(p) or :�(t

0

)(

0

)

whih means that no higher priority transition is enabled.

The �ring of transition instane [t; ℄ leads to a new marking M

0

=M [t; i de�ned by:

8p 2 P; M

0

(p) =M(p) +W

+

(p; t)() �W

�

(p; t)()

2.4 Basi Properties of WN

A major interest of WNs is that they provide a modeling framework in whih symmetries appear

naturally as a way of reduing the size and omplexity of the representation. Another fortunate

property of WNs is their modeling power equivalent to unonstrained olored nets. The two next

propositions of WN illustrate this situation.

Proposition 2.1 Any CPN an be transformed into a WN with the same basi struture, same olor

domains (possibly partitioned in stati sublasses), equivalent ar labeling. See [20℄ for a proof.

De�nition 2.5 (Color permutation) Let � = f s = hs

1

; : : : ; s

h

; s

h+1

; : : : ; s

n

i g be a subgroup of

the permutations on C

1

; : : : ; C

n

suh that:

� 80 < i � h s

i

is a permutation on C

i

suh that 8D

i;q

, s

i

(D

i;q

) = D

i;q

;

� 8h < i � n s

i

is a rotation on C

i

suh that 8D

i;q

, s

i

(D

i;q

) = D

i;q

. Note that this ondition

implies that if the number of stati sublasses of C

i

; n

i

> 1 then the only allowed rotation s

i

is

the identity.

Let C

J

be a olor domain and < 

1

; : : : ; 

k

>2 C

J

, s 2 �. Then s(< 

1

; : : : ; 

k

>) is de�ned by :

s(< 

1

; : : : ; 

k

>) =< s

(1)

(

1

); : : : ; s

(k)

(

k

) > where s

(i)

is the permutation assoiated with the i

th

basi

lass in olor domain C

J

.

12



De�nition 2.6 (Marking permutation) Let M be a marking, and s 2 � a permutation.

Then M

0

= s:M is a marking de�ned by: 8p 2 P; 8 2 C(p); s:M(p; s()) =M(p; ).

For instane, if C(p) = C

J

, then M

0

= s:M is de�ned on p by:

8 < 

1

; : : : ; 

k

>2 C

J

; M

0

(p;< s

(1)

(

1

); : : : ; s

(k)

(

k

) >) =M(p;< 

1

; : : : ; 

k

>)

Proposition 2.2 The �ring property is preserved by applying a permutation both on the markings

and the transition instantiation. 8M ordinary marking, 8t 2 T , 8 2 C(t), 8s 2 �,

M [t; iM

0

() s:M [t; s()is:M

0

De�nition 2.7 (Symboli marking) Let Eq be the equivalene relation de�ned by:

M Eq M

0

() 9s 2 �; M

0

= s:M

An equivalene lass of Eq is alled a symboli marking, denoted with M.

Rather than onsidering a single initial marking M

0

, we allow a WN to be initially marked by a

symboli marking M

0

. In this ase, the WN no longer represents a single net, but a set of nets, eah

being initially marked by one of the markings ontained in the equivalene lass M

0

.

3 SRG

The symboli reahability graph of a well-formed net is based on the idea of symmetry of objets of

the basi olor lasses. It onsists of a symboli representation of all possible states of the model and

the possibility of transition from one to the other. Of ourse its onstrution beomes algorithmially

e�etive only in ase of �nite state spae (bounded models).

In WNs it is possible to identify two basi kinds of symmetry: rotation, and general permutation

inside subsets. Combinations of the two basi symmetry kinds an be found in atual models. The

idea is to substitute the atual state representation with a symboli representation that aounts for

the symmetry properties holding in the model state spae. A symboli marking thus represents an

equivalene lass on the state spae of the WN model, and the equivalene is in terms of the possible

basi olor permutations that yield the same behavior. In this setion we �rst present an eÆient

algorithm for the omputation of the SRG, whose appliation does not require any a-priori knowledge

on the symmetries of the system modeled by the WN (i.e., the algorithm is based only on the syntax

of the WN representation, and not on any sort of semantis of the spei� model). Then we analyze

the properties of the SRG that are relevant for the Markovian analysis of performane models based

on SWNs.
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ChoiceLine0
N

Lines1

Serv1Serv0 Make_choice

<line> <line>

Figure 6: Model of two servers in tandem.

3.1 SRG Computation

We start by de�ning the representation of symboli markings that, together with a symboli �ring

rule, allows the onstrution of the symboli reahability graph in an eÆient algorithmi way.

3.1.1 Symboli Marking

Equivalene lasses of markings and �ring instanes The hoie of a good representation of

the data is always the �rst problem in the de�nition of an algorithm. Let us �rst present informally

the idea of symboli marking by onsidering the simple example of �gure 6. It represents a losed

system with two servie stations in tandem. The �rst one is a single server station ( plae Line0

transition Serv0 ), the seond is a multiple server station (plae Lines1, transition Serv1(line)) with

four servers, eah with a separate waiting line (basi olor lass Lines = l[1� 4℄ ). When a ustomer

leaves the �rst station, it randomly hooses whih line to join in the multiserver (plae Choie and

transition Make hoie(line)). Consider the following marking:

Line0(1)Choie(1)Line1(2 < l

1

>;< l

2

>)

orresponding to the state with 1 ustomer in servie on the �rst servie station, 1 ustomer making

the hoie of a line to join in the multiserver 2 ustomers in the �rst line and 1 in the seond line of

the multiserver station. By looking at the possible behavior of the model the reader an hek that

a permutation symmetry exists in this ase between the di�erent objets of the basi olor lass. We

an take an arbitrary permutation of the objets in basi olor lass Lines and obtain another legal

state of the model with the same harateristis suh as, e.g.

Line0(1)Choie(1)Line1(2 < l

4

>;< l

3

>)

The only relevant ommon harateristis of the two markings above is that one token is in plae

Line0, one token is in plae Choie, while in Line1 there is an element with multipliity 2 and a

di�erent element with multipliity 1. From both these states only transition Make hoie(line) an

14



�re produing one out of three possible results: a) the ustomer represented by the token in plae

Choie hooses to join the line where two ustomers are already waiting, or b) the line where one

ustomer is waiting, or ) one of the two remaining empty lines. Hene, also after the transition �ring

we an reognize a permutation symmetry, in whih any permutation of objets in a given marking

produes another valid marking with similar harateristis.

From the above informal reasoning it appears onvenient to diretly represent with an appropriate

data struture the equivalene lasses of markings based on the permutation and symmetry property

of WN rather then the individual markings as usual in Petri nets. This an be ahieved by abstrating

from the atual identity of objets and retaining only enough information so that it is still possible to

make an equality omparison between the new \symboli objets."

Our �rst proposed abstration onsists of substituting objet identi�ers with variables. For example

the \symboli basi lass" Lines would be de�ned

4

as fz

1

; : : : ; z

4

g. An example of symboli marking

would thus be the following:

M = Line0(1)Choie(1)Line1(2 < z

1

>;< z

2

>)

To de�ne the semantis of this symboli marking we need the de�nition of valid assignment. An

assignment of objets from a basi lass to variables z

i

is said to be valid i� the following three

onditions are veri�ed: 1) every variable is assigned an objet; 2) the same objet is not assigned

to more than one variable; 3) if the lass is ordered, adjaent objets are assigned to subsequently

numbered variables.

The symboli markingM ould thus represent the set of all ordinary markings that an be obtained

from valid assignments of objets to the variables z

i

. Observe that the symboli marking

M

0

= Line0(1)Choie(1)Line1(2 < z

2

>;< z

4

>)

represents the same set of ordinary markings represented by M. This fat indiates the need for

riteria that lead to a unique representation i.e., a anonial representation. We ignore this problem

for the moment (we shall solve it later on) and we just onsider M and M

0

as the same symboli

marking.

This symboli marking atually implements the kind of abstration that we were looking for, indeed

the set of markings represented by the symboli markings as de�ned above are exatly the equivalene

lasses identi�ed by the equivalene relation Eq of De�nition 2.7. Observe that it is rather natural to

de�ne a symboli �ring rule for this kind of symboli marking sine the variables play the same role

that objets played in ordinary marking. Hene from marking M it is possible to �re the symboli

transition instane [Makehoie; (line = z

2

)℄ from whih the new symboli marking

M

00

= Line0(1)Line1(2 < z

1

>; 2 < z

2

>) (1)

4

A separate set of variables should be de�ned for eah stati sublass

15



is reahed. The symboli �ring instane stands for all the ordinary instanes that an be obtained

by valid assignments of objets to variables. In Figure 7 a pitorial representation of the grouping

indued by the symboli marking and symboli �ring onept is shown.

λ1 λ1
λ2 λ2

λ1 λ1
λ2 λ2 λ1+λ2

M

0

M

0

M M

Figure 7: Grouping of ordinary markings and ars

There is however a further step we an take to better exploit the grouping indued by the symboli

�ring. It stems from the observation that �ring either one of the two symboli instanes [Makehoie,

(line = z

3

)℄ and [Makehoie, (line = z

4

)℄ form markingM we reah the same new symboli marking

(provided we use a anonial representation). In Figure 7 this situation is depited by many ars

departing from the same ordinary marking within a symboli marking and going to a group of ordinary

markings all belonging to the same symboli marking. It is possible to know in advane whih are the

symboli instanes that lead to the same new symboli marking: indeed all those variables that have

the same distribution of tokens in the plaes an be used interhangeably in a transition instane.

We then introdue the onept of dynami sublasses, representing sets of objets that are not

identi�ed individually but that are known to be permutable one with the other in any �ring instane

to produe markings that belong to the same equivalene lass. A dynami sublass is haraterized by

its ardinality (i.e., the number of di�erent objets represented by the dynami sublass), and by the

stati sublass to whih the represented objets belong (i.e., we an only group variables belonging to

the same stati sublass). In ase of ordered basi lasses, only ontiguous objets an be represented

by the same dynami sublass and the ordering relation among objets is reeted by the ordering of

the indexes of the dynami sublasses.

Representation of symboli markings: formal de�nition. The dynami sublass onept af-

fets both the symboli marking representation and the symboli �ring. Using dynami sublasses

instead of variables in the marking representation allows a muh more ompat desription of the

marking itself. Moreover symboli �ring instanes based on dynami sublasses allow one to group

many ars onneting the same two symboli markings.

Let us onsider the marking M

00

de�ned in (1); the two variables z

1

and z

2

have the same distri-
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bution of tokens in the plaes (they both appear only in plae Line1 with multipliity 2), so that they

an be grouped in the dynami sublass Z

1

Lines

of ardinality 2. Also the two remaining variables, z

3

and z

4

have the same distribution sine they do not appear in any plae, so that we an group them

in the ardinality two dynami sublass Z

2

Lines

. The new symboli marking representation an thus

be written as

M

00

= Line0(1)Line1(2Z

1

Lines

); jZ

1

Lines

j = jZ

2

Lines

j = 2

More formally, the representation of the syntax and semantis of a symboli marking an be

de�ned as follows. Syntatiallly, a representation R of a symboli marking M is a 4-tuple R =

hm; ard; d; marki, where

� m : I ! IN

+

, suh that m(i) (whih will be also denoted m

i

) is the number of dynami

sublasses of C

i

in M.

� The set of dynami sublasses of C

i

is denoted:

^

C

i

= fZ

j

i

j 0 < j � m

i

g. We'll use the extended

notation

^

C(r); r 2 P [ T , to denote the set of all possible tuples of dynami sublasses in a

plae/transition olor domain.

� ard :

�

S

i2I

^

C

i

�

! IN , suh that 8i,

P

m

i

j=1

ard(Z

j

i

) = jC

i

j; i.e., the set of dynami sublasses

^

C

i

forms a partition of C

i

� d :

�

S

i2I

^

C

i

�

! IN suh that 8Z

j

i

, d(Z

j

i

) = q 2 [1::n

i

℄ and 80 < i � n, 80 < j < k � m

i

,

d(Z

j

i

) � d(Z

k

i

)

� 8p 2 P , mark(p) :

^

C(p)! IN

The assoiated semantis an be stated as:

�

^

C

i

is a non-instantiated partition of the basi lass C

i

� Z

j

i

represents any subset C

i;j

of C

i

suh that jC

i;j

j = ard(Z

j

i

)

in ase C

i

is ordered (i > h), the elements of C

i;j

are ontiguous

� 8M 2 R; 8i 2 I; 9�

i

: C

i

!

^

C

i

(�

i

is a valid assignment of subsets of C

i

to dynami sublasses Z

j

i

);

� �

i

: C

i

!

^

C

i

preserves

- stati sublass partitioning (funtion d)

- ardinality (funtion ard)

- marking (funtion mark)

- ordering relation in ase of ordered lasses (i.e. if i > h)
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� �

�1

i

(Z

j

i

) = C

i;j

is the set of all possible instantiations (i.e., valid assignments) of a dynami

sublass that de�nes the set of markings fM :M 2 Rg

When no ambiguity an arise, we denote the omponents of a representation simply by m, ard, d,

and mark. When referring to more than one representation, we remove the ambiguity by pre�xing a

proper representation identi�er (e.g. R

1

:m).

Note that using the above representation without further onstraints, one an �nd many represen-

tations for a given symboli markingM, as it happened with the former representation; we thus need

to de�ne a unique representation for a given symboli marking.

Canonial representation of symboli markings The �rst step in devising an eÆient algo-

rithm for the enumeration of the symboli reahability graph of a WN is the de�nition of a unique

representation for eah symboli marking M. In order to obtain a unique representation we need a

riteria to deide: 1) how to partition the stati sublasses (and hene the basi olor lasses) into

dynami sublasses of a given ardinality; 2) how to name properly the dynami sublasses.

The �rst problem is solved by de�ning a minimality property to be veri�ed on the marking. The

rationale behind the minimality requirement goes beyond the mere neessity of a anonial represen-

tation: indeed it also involves the maximization of both marking and �ring instanes grouping.

The seond problem is solved by introduing the onept of ordered representation. The ordering

riterion has to be de�ned in suh a way that it is uniquely determined on some invariant harateristi

of all possible minimal representations. We use lexiographi ordering of the minimal representation

as suh an invariant harateristis.

Both minimality and ordering de�nitions require the introdution of the marking projetion fun-

tion mark

sp

.

Funtion mark

sp

This funtion is de�ned on the set of all possible tuples of dynami sublasses from the Cartesian prod-

ut of any subset of

^

C (without repetitions of the same basi olor lass). For omputing minimality

the funtion is applied to single sublasses (i.e., tuples with arity one ) while for omputing ordering it

is applied to tuples from

^

C

I

. The formal de�nition of mark

sp

is rather umbersome and not inluded

here (it an be found in [15℄ or in [16℄). Its meaning an be intuitively explained as follows. Given

a symboli marking M, and a tuple of dynami sublasses (possibly of arity one), funtion mark

sp

returns a vetor of jP j natural numbers enoding the distribution of the tuple in the marking.

Considering the symboli marking M

00

used in the previous example,

mark

sp

(Z

1

1

)[Line0℄ = 1;mark

sp

(Z

1

1

)(Choie) = 0;mark

sp

(Z

1

1

)(Line1) = 2; (mark

sp

(Z

1

1

) =< 1; 0; 2 >)

mark

sp

(Z

2

1

)(Line0) = 1;mark

sp

(Z

2

1

)(Choie) = 0;mark

sp

(Z

2

1

)(Line1) = 0; (mark

sp

(Z

2

1

=< 1; 0; 0 >)

18



Minimality

The minimality requirement refers to the number of dynami sublasses in eah basi lass; intuitively

we want to have the smallest possible number of dynami sublasses sine this maximizes the eonomy

of both the marking representation and the number of possible �ring instanes.

De�nition 3.1 (Minimality) Let M be a symboli marking. A representation R is minimal i�:

8i � h; 8j; k; j 6= k =)

�

mark

sp

(Z

j

i

) 6= mark

sp

(Z

k

i

)

�

_

�

d(Z

j

i

) 6= d(Z

k

i

)

�

8i > h; 8j; k; k = �j =)

�

mark

sp

(Z

j

i

) 6=mark

sp

(Z

k

i

)

�

_

�

d(Z

j

i

) 6= d(Z

k

i

)

�

So the representation of M

00

is minimal sine mark

sp

(Z

1

1

)(Line1) 6= mark

sp

(Z

2

1

)(Line1).

Ordering

By properly ordering a minimal representation we an obtain a anonial representation. The re-

ordering of a minimal symboli marking representation onsists of readjusting the dynami sublasses

indexes aording to some univoal riteria.

Observe that if we restrit funtion mark

sp

to range over

^

C

I

, we an represent mark

sp

as a n-

dimensional matrix (one dimension for eah basi lass C

i

with as many elements as j

^

C

i

j). Hene,

given a minimal symboli marking, we an translate it into a matrix of this kind where the element

(i

1

; : : : ; i

n

) ontains the plae indexed vetor returned bymark

sp

(Z

i

1

1

; : : : ; Z

i

n

n

) (note that of ourse also

the inverse translation is possible). Di�erent minimal representations of the same symboli marking

translate to matries that are idential up to a permutation of their elements. It is easy to de�ne

a anonial representation by hosing among all equivalent minimal representations, the one that

orresponds to a matrix that is lexiographially ordered with respet to the following reading order

of the matrix elements:

(1; 1; : : : ; 1); (2; 1; : : : ; 1); : : : ; (m(1); 1; : : : ; 1); (1; 2; 1; : : : ; 1); : : : (2)

The omplete algorithm for the omputation of the anonial representation is desribed in [15℄

or in [16℄. Intuitively the task aomplished by the algorithm is the following: it reeives in input the

matrix mark

sp

orresponding of a minimal representation R of a symboli marking M and returns a

set S of symboli permutations

5

. The matrix obtained by appliation of any symboli permutation in

the set S is lexiographially ordered.

The algorithm an be informally desribed as follows: it exeutes a loop of at most j

^

C

1

j : : : j

^

C

n

j

steps: let (i

1

; : : : ; i

n

) be the index of a generi step (the indexes enumeration follows the order de�ned

5

Symboli permutations are de�ned as olor permutations with dynami sublasses replaing basi lass objets
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S :=

^

�; (* The set

^

� of all possible symboli permutations is initially assigned to S *)

(* restrit S *)

< i

1

; : : : ; i

n

>=< 1; : : : ; 1 >; (* initialize the loop *)

while < i

1

; : : : ; i

n

>6=< R:m(1); : : : ;R:m(n) > and jSj > 1 do

min value = min

s2S

mark

sp

(s

1

(i

1

); : : : ; s

n

(i

n

))

S = fs 2 Sjmark

sp

(s

1

(i

1

); : : : ; s

n

(i

n

)) = min valueg

if jSj > 1

then < i

1

; : : : ; i

n

>= next(< i

1

; : : : ; i

n

>);

(* inrement < i

1

; : : : ; i

n

> aording to the order de�ned in eq. (2) *)

fi

od

K(M) := jSj

Figure 8: Sketh of the anonial representation omputation algorithm

in 2); the result ahieved in the generi step is the hoie of the possible elements f (j

1

; : : : ; j

n

) g of the

input matrix that may end up in position (i

1

; : : : ; i

n

) in the ordered matrix. In other words this step

onstrains the possible values of (s

1

(i

1

); : : : s

n

(i

n

)) to range over the set f (j

1

; : : : ; j

n

) g. Obviously

the hoie at step (i

1

; : : : ; i

n

) is in turn onstrained by the hoies performed in all the previous steps.

A sketh of the algorithm is given in Figure 8.

Note that if the representation ofM input to the algorithm is minimal, then the ardinalityK(M)

of the set S depends on the symboli marking, but not on the hosen representation.

The omputation of the anonial representation is one of the most ritial parts of the SRG

generation algorithm from a omplexity point of view. Of ourse the atual omplexity of a anonial-

ization operation depends on \how far" the input representation is from the anonial representation.

The experiments we have done show that usually the representation obtained after �ring a transition

instane from a anonial representation is rather lose to the ordered representation, so that the

omputational ost of anonialization is often less than the worst ase ost. The anonialization of

the initial marking M

0

may instead have the highest ost sine the initial representation R

0

is given

by the modeler.

3.1.2 Symboli �ring rule

In order to build the SRG diretly starting from a symboli initial markingM

0

(i.e., without building

the RG and then grouping markings into equivalene lasses, whih would be muh easier but too

ostly), we �rst de�ne a symboli �ring rule on the symboli marking representations.

In a symboli �ring instane dynami sublasses are assigned to the transition parameters instead

of objets. The meaning is that any objet in the sublass an be assigned to the parameter. When

several type C

i

parameters of t are assigned the same dynami sublass Z

j

i

we also need to speify
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whether the parameters are instaned to the same objet or to di�erent objets

6

of Z

j

i

. So if we denote

param

x

i

the x

th

parameter of type C

i

, in C(t), then the parameter instane an be spei�ed by a pair

h�

i

(x); �

i

(x)i = hj; ki meaning that the parameter represents the k

th

(arbitrarily hosen) element of

Z

j

i

. Of ourse k must be less than jZ

j

i

j. Moreover if there are m parameters instaned to Z

j

i

, k annot

be greater than m. More formally,

De�nition 3.2 (Symboli instane) Let t be a transition with C(t) = C

(1)

; : : : ; C

(k)

; let e

i

be the

number of ourrenes of C

i

in C(t) (i.e., the number of parameters of t whose type is C

i

). Let R be

a symboli representation. A symboli instane of t, denoted [�; �℄ is an instantiation of

^

C(t) for R

de�ned by:

� = f�

i

: f1; : : : ; e

i

g ! IN

+

g, � = f�

i

: f1; : : : ; e

i

g ! IN

+

g, suh that 8i 2 I, 80 < x � e

i

,

� �

i

(x) � R:m(i),

� �

i

(x) � R:ard(R:Z

�

i

(x)

i

)

� if i � h then 80 < k < �

i

(x); 9x

0

< x suh that �

i

(x

0

) = �

i

(x) ^ �

i

(x

0

) = k.

�

i

(x) is used to hoose the sublasses of

^

C

i

to be instantiated. In ase of non ordered lasses C

i

,

�

i

(x) is used to distinguish already instantiated elements from the other elements within the sublass

seleted by �

i

(x). The additional onditions on �

i

(x) guarantee that the funtions � and � de�ne a

partition of the ordinary ars of the reahability graph in symboli ars (an ordinary ar annot satisfy

two di�erent pairs [�; �℄ simultaneously).

We denote �

j

i

= sup(�

i

(x) j �

i

(x) = j) the number of di�erent instantiations in the dynami sublass

Z

j

i

. For any Z

j

i

that is not instantiated (i.e. suh that 6 9x : �

i

(x) = j), then by de�nition �

j

i

= 0.

We now introdue the notion of split symboli marking. As mentioned before, when we assign a

dynami sublass to a transition parameter we mean that any objet of the sublass may be seleted

for assignment to the parameter. It doesn't atually matter whih objet is hosen sine they all

behave the same way. Now in order to de�ne the symboli enabling and �ring rules, a splitting is

made in eah sublass between the (arbitrarily hosen) objets that will be seleted for the �ring and

the other objets. For ordered lasses we always split the instaned dynami sublasses into a set of

new ardinality 1 dynami sublasses.

De�nition 3.3 (Splitting) Let R be a representation of a symboli marking M. Then R

s

= R[�; �℄

is de�ned by the following transformations on R: R

s

:

^

C

i

= fZ

j;k

i

g with Z

j;k

i

de�ned as follows:

Case 1: Non-ordered Class C

i

; i � h

For eah Z

j

i

s.t. 9x : �

i

(x) = j do

6

Observe that we an instane at most as many di�erent objets as the ardinality of the dynami sublass
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split sublasses = fZ

j;k

i

j9x : h�

i

(x); �

i

(x)i = kg (seleted objets sublasses)

if �

j

i

< R:ard(Z

j

i

)

then split sublasses = split sublasses [ fZ

j;0

i

g (sublass of remaining objets)

R

s

:

^

C

i

= R:

^

C

i

� fZ

j

i

g [ split sublasses

R

s

:ard(Z

j;k

i

) = if k > 0 then 1 else (R:ard(Z

j

i

)� �

j

i

)

od

Case 2: Ordered Class C

i

; i > h

For eah Z

j

i

s.t. 9x : �

i

(x) = j do

split sublasses = fZ

j;k

i

; 0 < k < R:ard(Z

j

i

) g

R

s

:ard(Z

j;k

i

) = 1

od

Conerning the fourth omponent of R

s

i.e., R

s

:mark, it an naturally derived from R:mark: observe

that using the sum and Cartesian produt operations on multisets de�ned in 2.1 we an write:

Z

j

i

= Z

j;0

i

+ Z

j;1

i

+ : : :+ Z

j;k

i

i

so that the tuple < Z

2

1

; Z

3

2

> after the splitting of Z

2

1

into Z

2;0

1

+ Z

2;1

1

+ Z

2;2

1

and the splitting of Z

3

2

into Z

3;1

2

+ Z

3;2

2

an be rewritten as

< Z

2;0

1

+ Z

2;1

1

+ Z

2;2

1

; Z

3;1

2

+ Z

3;2

2

>

Sine the notation < a; b > (where a and b are multisets) denotes the Cartesian produt of a and b,

the above tuple an be transformed into

< Z

2;0

1

; Z

3;1

2

> + < Z

2;1

1

; Z

3;1

2

> + < Z

2;2

1

; Z

3;1

2

> + < Z

2;0

1

; Z

3;2

2

> + < Z

2;1

1

; Z

3;2

2

> + < Z

2;2

1

; Z

3;2

2

>

Proposition 3.1 Let R be a representation of the symboli marking M. Then R

s

= R[�; �℄ is

another representation of M.

With suh a de�nition of the split marking, sublasses an substitute objets in the transition �ring.

The evaluation of ar expressions and prediates does not hange when dynami sublasses of

ardinality one replae objets in variable assignments. We use the notation

^

W and

^

�(t) to indiate

the symboli ar expressions and transition prediates respetively.

The four step symboli �ring. The anonial representation of the symboli marking obtained by

�ring (t; �; �) in M (i.e., M

0

=M[t; �; �i) is omputed in four steps, that use di�erent intermediate

(non anonial) representations.

1. Splitting M with respet to [�; �℄

let R

s

= R[�; �℄ be the split representation of M in whih (t; �; �) is enabled;
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2. Atual Firing M

0

=M[t; �; �i

De�ne R

f

by opying the omponents m, ard, and d from R

s

, and omputing R

f

:mark by

applying the inidene funtions on R

s

:mark.

8p 2 P; R

f

:mark(p) = R

s

:mark(p)�

^

W

�

(p; t)(�; �) +

^

W

+

(p; t)(�; �)

R

f

is a (possibly non anonial) representation of M

0

;

3. Grouping M

0

Compute a minimal representation R

m

of M

0

by grouping dynami sublasses of R

f

;

4. Ordering M

0

Compute the anonial representation ofM

0

by transformingR

m

into an ordered representation.

This is obtained by applying one of the permutations in S to the dynami sublasses of R

m

.

Let us make a �nal remark on the splitting of ordered lasses. The omplete splitting into dynami

sublasses of ardinality 1 is not stritly neessary, but it is onvenient sine it allows a homogeneous

treatment of the di�erent ases that arise onsidering all the di�erent positions oupied by the seleted

element in the instantiated dynami sublass. The reason for onsidering eah ase separately is due

to the need to maintain the ordering among the dynami sublasses of an ordered lass throughout

the algorithm.

Example of Symboli Firing. Let us onsider a very simple arti�ial example in order to illustrate

the four steps of the symboli �ring rule. The di�erent steps are illustrated in graphial form in Figure

9. The WN onsidered in this example has no partiular meaning. The top-left portion of the �gure

depits the anonial representation of an arbitrary marking M. The other portions represent the

four steps of the symboli �ring of transition t for hZ

2

1

; Z

1

2

i (whih is enabled in M, as the reader an

hek).

The Symboli �ring rule an be easily ast into the usual algorithm struture for the omputation

of the Reahability Graph of a Petri net provided that the Symboli anonial representation is used

to store the markings of the reahability set.

3.2 SRG relevant properties

We present now the most interesting properties of the symboli reahability graph that an be exploited

for a performane evaluation of WN models. Other interesting properties an be shown onerning

the qualitative behavior of WN models based on the analysis of the SRG, but they are not reported

here for the sake of oniseness.

The �rst two properties that we onsider establish the equivalene between the RG and the SRG

from the point of view of the reahability of markings.
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Figure 9: An example of symboli �ring
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Property 3.1 Equivalene between symboli and ordinary reahability.

Let M

0

be a symboli marking, and [M

0

i be the set of symboli markings reahable from M

0

. Then

[

M

0

2M

0

[M

0

i = [M

0

i

Property 3.2 Cardinality of a symboli marking.

LetM be a symboli marking and jMj be the number of ordinary markings belonging to the equivalene

lass of M.

Let K(M) be the number of permutations omputed during the ordering phase of the symboli �ring

algorithm. Then

jMj =

1

K(M)

0

�

h

Y

i=1

n

i

Y

q=1

jD

i;q

j!

Q

d(M:Z

j

i

)=q

ard(M:Z

j

i

)!

1

A

n

Y

i=h+1

�(i)

where �(i) = if (M:m(i) > 1 ^ n

i

= 1) then jC

i

j else 1.

The above properties ensure that no information on reahability is lost by analyzing the SRG

instead of the RG. However, in order to derive an improved tehnique for performane evaluation

based on the SRG instead of the RG, we still need to know how to test the ergodiity of the Markov

hain and how to ompute its transition rates. These additional requirements lead to the formulation

of the following additional propositions

7

.

Property 3.3 Neessary ondition for ergodiity.

Strong onnetion of RG =) Strong onnetion of SRG, but not vie-versa.

In [15℄ an example is given in whih the SRG is strongly onneted while the underlying RG is not.

Property 3.4 A suÆient ondition for ergodiity.

Strong onnetion of SRG

^ 80 < i � h, 9M

0

2SRG suh that (M

0

:m(i) = n

i

)

^ 8h < i � n, ((n

i

> 1) _ (9M

0

2SRG suh that (M

0

:m(i) = 1) )

=) Strong onnetion of RG

The above property is an extension of a property already proven in [8℄ for the restrited ase of Regular

nets

8

. On the other hand, the ondition is not neessary in order for the RG to be strongly onneted,

even in the simpler ase of RNs. Indeed, in [15℄ an example of WN is given in whih the SRG is

strongly onneted, dynami sublasses are never ompletely grouped, and yet the RG is strongly

onneted.

7

Remember that a �nite, ontinuous time Markov hain is ergodi i� its graph representation is strongly onneted.

8

Indeed, the additional ondition on the dynami sublass partition is always satis�ed by the (symmetri) initial

marking in an RN.
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Property 3.5 Equivalene between symboli �ring and ordinary �ring.

Let M and M

0

be two symboli markings of the SRG, and M 2M be an ordinary marking of the RG.

Let A

M;M

0

be the set of ars of the RG onneting M to any marking M

0

2 M

0

, and A

M;M

0

be the

set of symboli ars of the SRG onneting M to M

0

.

Then there exists a mapping ! from A

M;M

0

onto A

M;M

0

suh that:

� if the label of an ar a 2 A

M;M

0

is [t; < 

j

1

i

1

; : : : ; 

j

k

i

k

>℄ then the label of !(a) is [t; �; �℄ with



j

i

2 D

i;q

()M:d(Z

�

i

(j)

i

) = q

� if the label of a symboli ar a 2 A

M;M

0

is [t; �; �℄ then the ardinality of the reiproal image of

a denoted j!

�1

(a)j is

h

Y

i=1

m

i

Y

j=1

ard(Z

j

i

)!

(ard(Z

j

i

)� �

j

i

)!

where �

k

i

= sup

x : �

i

(x)=k

�

i

(x)

4 Stohasti WNs and lumped Markov hains

Stohasti Regular nets where already de�ned in [10℄. The basi priniple for timing a olored Petri

net is to assoiate a funtion from the markings to positive real numbers to eah ar of the reahability

graph. In this way a disrete-state semi-Markov proess is de�ned whose state spae is orresponding

to the reahability set of the olored net. In this setion, after a formal de�nition of stohasti well-

formed olored nets (SWN), we prove that an aggregate Markovian proess an be de�ned based on the

SRG in order to ompute the same performane estimates with a lower omputational ost ompared

to the usual tehnique based on the RG.

4.1 Stohasti well-formed nets

In WNs a priority struture is de�ned on transitions. This priority is reeted in the timing semantis

of SWNs in the same way as was originally de�ned for GSPNs [19℄. Transitions with priority level 0

are alled timed transitions, and they �re at the instant of the elapsing of a delay from the instant of

the transition enabling. The delay is determined for eah instantiation of the enabling of a transition

aording to a random proess with negative exponential probability distribution. Transitions with

priority level greater than 0 are alled immediate transitions, and they �re in zero time at the instant

of their enabling. In ase of oniting immediate transitions a �ring probability is assigned to eah

oniting transition, proportionally to a weight. The probability is omputed by normalizing the

weights of all oniting transitions enabled in the same marking.

In order to guarantee the presene of symmetry not only from a logial but also from a stohasti

point of view, we restrit the possibility of marking dependeny for the mean values of transition
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�ring delays. The average �ring rate of a transition instane an be a funtion of the stati sublass

that the objets assigned to the transition parameters belong to, and not a funtion of the assigned

objets themselves. In this way all objets of a given stati sublass determine the same transition

�ring delay. This an be formalized by introduing the notation

~

C

i

= f D

i;1

; : : : ;D

i;q

g

In analogy with the notation introdued for the representation of symboli markings and dynami

sublasses, given a transition t with olor domain C(t) = C

J(t)

we de�ne

~

C(t) = f< D

i

1

;j

1

; : : : ;D

i

k

;j

k

> j 0 < j

l

� n

i

l

g

For any  =< 

j

1

i

1

; : : : ; 

j

k

i

k

> 2 C(t) we also de�ne ~ =< ~

j

1

i

1

; : : : ; ~

j

k

i

k

>

~

C(t) suh that ~

j

i

= D

i;q

i�



j

i

2 D

i;q

. Finally we de�ne the stati partition of a markingM denoted

~

M(p) 2 Bag(

~

C(p)) as follows:

~

M(p)(~) =

X



0

: ~

0

=~

M(p)(

0

)

The stati partition of a marking represents, for eah plae and for eah Cartesian produt of stati

sublasses, the number of tuples in the plae that belong to the same Cartesian produt of stati

sublasses.

Property 4.1 Stati partition of symboli markings.

8M; M

0

2M; 8p 2 P;

~

M(p) =

~

M

0

(p)

Hene we an de�ne the stati partition of a symboli marking as well and denote it

~

M.

De�nition 4.1 (SWN) A stohasti well-formed olored net is a pair SWN = hWN; �i suh that

WN is a well-formed olored Petri net

� is a funtion de�ned on the set of transitions T suh that

�(t) :

~

C(t)� Bag(

~

C(p

1

))�Bag(

~

C(p

2

))� : : : Bag(

~

C(p

jP j

)) �! IR

+

For any timed transition t, the funtion �(t)(~;

~

M ) represents the average �ring rate for any instane

of transition [t; ℄ enabled in marking M . In ase of immediate transitions, the same funtion is

interpreted as the weight to be normalized within a onit set in order to obtain the �ring probability:

�(t)(~;

~

M)

P

M [t

0

;

0

i

�(t

0

)(~

0

;

~

M)
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4.2 SRG based lumped proess

We present now an algorithm that exploits the partition in equivalene lasses of markings impliitly

determined by the omputation of the SRG of an SWN in order to redue the ost of the numerial

Markovian analysis.

We denote by SRS the set of all reahable symboli markings M

i

of the WN. An atual marking

of the equivalene lass de�ned byM

i

is denoted here with a double indexM

i;k

, where k represents an

internal ordering within the equivalene lass. The weight funtion � is extended to symboli sublasses

as follows: 8M, 8[�; �℄, 8M 2 M, 8t 2 T , 8 2 C(t) suh that �

i

(

j

i

) = Z

�

i

(j)

i

, �(t)(�; �;

~

M) =

�(t)(~;

~

M ).

The performane evaluation algorithm an thus be outlined as follows:

1. Constrution of the aggregate state spae desription

� onstrution of the SRG of the WN

� elimination of self-loop ars (

^

W

+

(p; t)(�; �) �

^

W

�

(p; t)(�; �) = 0)

� for eah ar of the SRG, omputation of �(t)(�; �;

~

M)

2. Constrution of the square matrix Q = [q

i;j

℄ of dimension N

0

= jSRSj with q

i;i

= �

P

j 6=i

q

i;j

and 8j : i 6= j; q

i;j

=

P

[t;�;�℄ : M

i

[t;�;�iM

j

�(t)(�; �;

~

M

i

):j�

�1

(t; �; �)j

P

[t

0

;�

0

;�

0

℄ : M

i

[t

0

;�

0

;�

0

i

�(t

0

)(�

0

; �

0

;

~

M

i

):j�

�1

(t

0

; �

0

; �

0

)j

3. Numerial solution of the Semi-Markov proess desribed byQ, (the solution is unique if the SRG

ontains a single strongly onneted omponent) and omputation of the steady-state probability

distribution 	for tangible symboli markings.

From the probability distribution 	 of the tangible symboli markings it is always possible, if needed,

to ompute the probability distribution  of the tangible atual markings of the SWN as:

8M

j

2M

i

;  

j

=

	

i

jM

i

j

Note that usually the atual marking distribution is not needed for the omputation of performane

indexes de�ned at the net level and that in any ase the omplexity of the above outlined numerial

analysis is polynomial in the ardinality of the SRG instead of the ardinality of the RG. Thus, the

proposed tehniques exploits at its greatest extent the olor struture of the model in order to redue

the size of the state spae of the stohasti proess to be analyzed.

The prove that the analysis of the stohasti proess de�ned on the SRG yields the same steady-

state solution that an be omputed from the general tehnique based on the RG is divided in three

steps.
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1. The embedded Markov hain is lumpable. Hene it is possible to derive a redued linear system

whose variables are the symboli marking probabilities.

2. The oeÆients of the redued linear system an be omputed diretly from the SRG.

3. All atual markings within a symboli marking have the same probability.

See [20℄ for an outline of the formal proof.

5 A Complex Appliation to Multiproessor Arhitetures

In this setion we apply the WN formalism to the modeling and performane evaluation of a mul-

tiproessor system already studied in [23, 2, 5℄. The reasons for reonsidering this almost lassi

arhiteture are many. First, it is intrinsially more omplex and more realisti than other systems

already studied by olored or high-level Petri nets, suh as, e.g., [7, 11℄. Seond, the solutions based

on Markov or Stohasti Petri net tehniques presented in [23, 2℄ are not satisfatory due to their

inherent omplexity in terms of inreasing of the number of states as a funtion of the number of

proessors onsidered in the system, that limited the availability of results to very few proessors

(� 3). Third, the solution based on folded GSPN model presented in [5℄, although muh better from

the omputational omplexity point of view was still not satisfatory from a modeling point of view

due to the omplexity of the GSPN model itself, whose onstrution required a great deal of ingenuity

and a deep understanding of the behavioral symmetries of the system.

The aim of this example is twofold. On one hand we show the onsiderable di�erene in size of

the (aggregated) Markov hain diretly obtained from the SRG with respet to the size of the Markov

hain obtained from the detailed RG, whih is equivalent to those presented in [23, 2℄. On the other

hand we ompare the aggregations automatially performed in the SRG generation phase with those

devised in [5℄ at the prie of a thorough (human) analysis of the system behavior and �nd that the

same level of lumping is now ahieved without any e�ort on the part of the modeler. Indeed the gain

in spae enlarges the lass of numerially solvable models.

The multiproessor arhiteture analyzed in this example is omposed by a set of proessors on-

neted through a bus. Eah proessor p

i

is assoiated with a loal memory omposed of two setions,

a private one (PM

i

) and a ommon one (CM

i

). Private memory areas (PM) an be aessed only

by the orresponding proessor through its private bus (PB); private memory aesses never generate

ontention. Common memory areas (CM) are aessible to all the proessors in the system. Aesses

to the loal module of the CM are performed through the private bus plus the loal bus (LB), while

aesses to non loal CM modules are performed using the global bus (GB) plus the loal bus of the

destination CM module.
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Figure 10: An intuitive WN model of the multiproessor arhiteture

Contention arises in the use of GB as well as of the loal busses (and the CM modules). A proessor

is delayed when some of the resoures it is trying to aess are busy. We assume however that external

aess requests to CM modules have priority over the loal CM aesses and ause their preemption.

The overall behavior of the system an be desribed as follows: proessors alternate periods of

proessing requiring only aess to the private memory (we all these periods CPU bursts), with pe-

riods of CM modules aesses. For simpliity we assume that the system is made up of n idential

proessor-memory modules. In order to build the WN model of the system it an be useful to lassify

the possible states of a proessor as follows:

Ative: Proessor exeuting in its private memory;

Aessing loal CM: Proessor performing a loal CM module aess;

Aessing remote CM: Proessor performing an external CM module aess;

Queued: Waiting for the GB to beome available;

Bloked: Waiting to ontinue a loal CM aess preempted by an external aess.

The behavior of the system is desribed in a straightforward manner by the WN model in Figure

10. Let us note that there is an additional guard [x 6= y℄ on the transition `req ext a'. Plaes

represent the possible states of eah proessor as follows. `Run' ontains tokens whose olor represent

the identity of proessors in the \Ative" state. Similarly, plaes `ExtMemA' and `Queue' represent

proessors in the \remote aess" and in the \Queued" states, respetively. Plae `OwnMemA' an

represent either state \loal aess" or \Bloked", depending on the fat that a token of the same olor

is or is not present in plae `Memory'. A probabilisti hoie among private, loal, or external memory

aess is modeled by the three oniting immediate transitions `req priv mem', `begin own a', and

`req ext a'. In the latter ase, the hoie of the external memory is represented by the hoie of

the seond omponent (y) of the olor domain of transition `req ext mem' (whih is enabled for any

y 6= x).

This WN representation of the system, although orret and quite easy to understand, is not the

simplest one an draw. For example, the three oniting immediate transitions an be \agglomerated"

into their preeding timed transition `mem req' by applying a well known net redution rule that
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Figure 11: A more ompat WN model of the multiproessor arhiteture

preserve all behavioral properties of the net [24℄ as well as the timing semantis of the model [25℄.

Moreover, the timed transition resulting from the fusion of transitions `mem req' and `req priv mem'

in the WN in Figure 10 an be deleted sine its �ring determines no hange in the marking of the

net. Finally, the WN representation an be further simpli�ed by \delaying" the hoie of the external

memory to be aessed until the global bus is available: indeed, the information about the identity of

the memory module to be aessed is useless before the GB aess is granted to the proessor.

By applying all the above disussed simpli�ations, one an �nally draw the more ompat WN

model depited in Figure 11. Let us note that there is an additional guard [x 6= y℄ on the transition

`begin ext a'. The Basi olour lass P is introdued to represent module identities (both proes-

sor and assoiated loal CM identities). For example plae Ative with olour domain P ontains

tokens representing the ative proessors; plae ExtMemA with olour domain P; P ontains pairs

hproessor; CMmodulei representing the external aesses urrently going on

9

; plae Memory with

domain P ontains tokens orresponding to the CM modules not used by any external proessor; plae

OwnMemA with domain P ontains both proessors in Bloked and in Aess loal CM states, the

former (latter) being haraterized by the absene (presene) of the orresponding oloured token in

plae Memory; plae ExtBus has no assoiated olour domain (has neutral domain) and desribes the

GB state: empty for GB busy, �lled with one token for GB idle.

Transitions begin own a, end own a, and req ext a, have olour domain P . Transition be-

gin ext a has domain P; P and has an assoiated prediate.

10

Transition begin ext a is immediate beause we assume that both arbitration and release time of

busses are negligible (and thus set to zero). Furthermore we have assumed that both CPU bursts and

CM aess periods are independent, exponentially distributed, random variables. Finally, external

aess requests from eah proessor are direted to any non loal CM module with probability

1

n�1

;

this is represented in the model by stating that all possible (oniting) instantiations of transition

9

Of ourse, due to the availability of a single GB, there annot exist more than one token at a time in this plae.

10

This transition represents the beginning of an external aess of proessor x to the CM module y. Beause of the

prediate only �ring instanes with x 6= y are enabled. Indeed x = y would represent a loal aess. The seletion of a

request from the external aess queue has been modeled assuming a random order queueing disipline.
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n # tang. SRG # tang. RG E(AP )=n U(GB)

2 6 10 0.6752411 0.27009645

3 13 62 0.6600941 0.39605642

4 23 340 0.642929 0.51434340

5 36 1652 0.6227463 0.62274684

6 52 7354 0.5991253 0.71895120

7 71 30746 0.5719982 0.80079870

8 93 122728 0.5417373 0.86678098

9 118 472904 0.5092124 0.91658070

10 146 1772494 0.475696106 0.95139024

Table 1: Results

begin ext a have equal probability. The parameters of our model are the number n of proessor-

memory modules, the average CPU burst length (1=�), and the average external aesses duration

(1=�). As in [23, 2, 5℄, we de�ne the system load fator � as the ratio �=�. Some performane �gures

that an be obtained from our model are: the average number of ative proessors (E[AP ℄); the GB

utilization (U [GB℄). These performane �gures an be omputed from the steady state probability of

the symboli markings using the following formulas:

� E[AP ℄ =

P

M2tang(SRG)

	(M) #Ative

where 	(M) is the steady state probability of the symboli marking M, while #Ative is the

number of elements in plae `Ative' de�ned as #Ative =

P

<Z

j

1

>2M(Ative)

ard(Z

j

1

)

� U [GB℄ =

P

M2tang(SRG):M(GB)=0

	(M)

In Table 1 the performane �gures omputed for di�erent values of the number of proessors assuming

a load fator � = 0:2 are shown. The mean number of ative proessors is here divided by n in order

to obtain a normalized version of this �gure.

In Table 1 the size of the aggregate and omplete Markov hains are also reported for di�erent

values of n, to give a avor of the onsiderable gain that an be ahieved with this method.

Now let us ompare the automati aggregations performed by the SRG generation algorithm

with those devised in [5℄. In that paper a non olored GSPN model was built having already in

mind the aggregated state information required. That is, the redundant information of the original

(muh simpler and easy to build) model was disovered by arefully studying the system behavior and

eliminated by hanging the kind of state enoding at the net level. It is interesting to observe that the

same redundanies are automatially deteted on the WN model by the SRG generation algorithm as

an be observed omparing the tangible SRG of the WN model and the tangible RG of the unolored
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Figure 12: SRG of the multiproessor WN

model shown in Figure 12. Notie that the onstrution of the WN desription, as ompared to the

folded GSPN model originally presented in [5℄, although equivalent from the point of view of eÆieny

of the analysis requires a substantially smaller intelletual e�ort to be understood and to be devised

starting from the desription of the system behaviour.

6 Conlusions

Stohasti Petri nets were introdued some time ago as a good modeling tool for the performane

evaluation of multiproessor omputer systems. They o�ered a muh higher level tool than previously

used Markov hains, but they su�ered from the same large dimension problem that often hampers the

possibility of obtaining results for realisti size systems. High-level Petri net formalisms have already

been employed to further redue the ost of the model de�nition and validation, and sometimes also to

perform lumpings of the underlying Markovian models in order to redue the ost of the performane

evaluation for larger system on�gurations. So far, however, it was the total responsibility of the

modeler to identify suh system harateristis as symmetry in behavior, in order to exploit the

harateristis to obtain models that are less omplex to analyze.

For the �rst time a ompletely algorithmi approah is proposed that allows the exploitation of

these model harateristis for the onstrution of lumped Markov hains. The user need not be aware

of the lumping tehnique, as long as he spei�es the behavior of the system in terms of well-formed

olored nets. The intrinsi symmetries are automatially deteted and used at their greatest extent by

means of the onstrution of the symboli reahability graph. The tehnique presented in this paper is

a diret extension of that already proposed for a restrited lass of \regular nets". The novelty of the

result presented here is that, with the extension of the SRG tehnique to well-formed olored nets,

the tehnique is now appliable to any olored model.
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Of ourse the SRG algorithm presented here fails in produing a smaller desription than the

usual RG if the model does not exhibit useful symmetries as de�ned in setion 3. This situation may

happen in two ases: if the system to be modelled does not ontain any symmetry, or if the model

does not take the intrinsi symmetries of the system into aount properly. It is interesting to note

that the syntax for the de�nition of SWN models enourages the modeller to group objets into basi

olour lasses and to avoid splitting them in stati sublasses if this is not neessary, sine this way

the textual part of the model desription is smaller and faster to produe. Thus models that take all

symmetries into aount are more likely to be produed than equivalent models that do not. In this

sense the modeller impliitly gives to the SRG onstrution algorithm the best of his knowledge about

system symmetries by simply trying to redue his model desription e�ort.

We have presented an example of use of stohasti well-formed nets for the study of a non trivial

multiproessor arhiteture. Another omplex example of modelling a onurrent algorithm using this

formalism an be found in [26℄. These examples show how the tehnique overomes the diÆulties

found in the use of other performane modeling tehniques. On the one hand the model is easier to

devise in terms of the WN formalism, and fairly easy to understand even by non Petri net experts. On

the other hand, the exploitation of the SRG onstrution algorithm allows an evaluation whose ost

is omparable to the analysis ost of thoroughly designed GSPN models where all ruial behavioral

symmetries of the system have been fully identi�ed by the modeler himself.

In onlusion we notie that the performane analysis by onstrution of a Markov hain from the

RG of a Petri net model is in pratie most often hampered by the large size of the graph aused

by two di�erent reasons. The �rst reason is the representation of the parallelism in terms of all

possible interleavings that an be observed on the global state of the model. The seond reason is the

possible presene of intrinsi symmetries of the model that produe many di�erent portions of a graph

representing essentially the same behavior. In this paper we have addressed and solved the seond

problem. The �rst problem is inherent to the state-spae representation, and in our opinion an be

avoided only by using non state-spae based analysis tehniques.

The initial simpli�ation of the WN model in Figure 10 in order to obtain the one in Figure 11

ould be an example of use of formal net strutural redution tehniques for the redution of the

ardinality of the state spae. Work is urrently in progress in order to formalize these redution

tehniques in the performane evaluation framework provided by SWNs.
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