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Abstract

Generalized Stochastic Petri Nets provide the

modeller with immediate transitions, but a model will

be correct only if the modeller can specify how to solve

the firing conflicts between these transitions. This task

is usually cumbersome and may be impossible for large

nets. In confusion-free nets, these conflict sets are

subsets of equivalence classes of a structural conflict

relation, which greatly simplifies the previous task.

This paper solves the problem of detecting confusion in

colored stochastic Petri nets and computing the

equivalence classes of the structural conflict relation.

Our approach relies on two techniques: the symbolic

representation of structural relations and the definition

of operations on these symbolic relations. Combined

with the lumping method presented in [13], our

algorithm could be the basis of an efficient tool for the

analysis of colored Generalized Stochastic Petri Nets.

1 Introduction

One of the advantages of using Petri nets for the
modelling of systems is that the same model can be
used for the analysis of behavioral properties, such as
liveness or termination, and structural properties.
Structural properties enclose all the properties that do
not depend on the initial state of the system, and they
are closely related to the structure of the Petri net
graph.

The application of structural relations to Generalized
Stochastic Petri Nets (GSPNs) is twofold. On the one
hand, structural relations can be used to improve the
implementation of simulation tools by optimizing the
management of the event list. For instance, the
structural conflict relation accounts for the fact that the
firing of a transition ti may disable another transition tj.

Hence, after firing ti, only those transitions that are in

structural conflict with ti should be tested for erasing

from the event list [1].
On the other hand, confusion may be detected by

means of structural relations. Actually, when several
immediate transitions are enabled in some marking,
two approaches can be used for the determination of the
transition to be fired. The first one is to use random
switches [2], i.e., define for every possible set of
simultaneously enabled transitions the respective firing
probabilities of each of these transitions. However, the
sets of simultaneously enabled transitions completely
depend on the current marking, and thus may be very
difficult to enumerate.

The second approach is to associate a weight with
every immediate transition [3]. In this case, the firing
probability of a transition in a marking is given by the
ratio of its weight to the sum of the weights of all
enabled transitions. The weights correctly define the
firing probabilities only if the designer knows the
conflicts in the model. This problem can be overcome
by computing structural extended conflict sets, which
are equivalence classes of a conflict relation. However,
partitioning transitions is not enough. In order to have
an adequate specification, the net must be confusion-
free, i.e., whenever two transitions belonging to
different conflict sets are enabled, the future behavior of
the net does not depend on the order of these firings. In
[3], an algorithm has been proposed to compute
extended conflict sets and detect confusion in GSPNs.

However, modelling complex systems with Petri nets
quickly results in inextricable models. High-level net
models, namely Predicate/Transition nets [4] and
colored nets [5], allow a more concise representation,
although the same features of the system are modelled.
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A colored Petri net is a net in which tokens are
identified by colors. Color domains are associated with
places and transitions and determine which colors can
mark the place (resp. fire the transition). When firing a
transition, a number of tokens is taken from each input
place, according to the incidence function labelling the
arc between the place and the transition, and a number
of tokens is produced in each output place, according to
the function labelling the arc between the transition and
the place. Hence, a structural relation in a colored net
will relate a color of a node to a color of another node.

Structural relations may be detected in colored nets
by studying the structure of the unfolded Petri net [6],
i.e., an ordinary Petri net that has the same behavior as
the colored net. However, a more efficient approach is
to take advantage of the structure of the color functions
to detect these relations directly at the colored net level.
This can be done by means of symbolic relations, which
are functions relating subsets of the color domains of
two nodes [7]. The aim of this paper is thus to apply the
symbolic relation approach to the definition of
structural relations and the detection of confusion.

The paper is organized as follows. In Section 2, we
recall the approach for structural detection of confusion
in ordinary Petri nets. Section 3 contains the definition
of colored nets, together with some definitions on
multisets and powersets. Section 4 introduces the notion
of symbolic relation and extends to colored nets the
algorithm presented in Section 2. In Section 5, we
discuss the interest of using symbolic relations to
compute structural relations in colored nets. Finally,
Section 6 presents some perspectives to this work.

2  Confusion in Ordinary Petri Nets

In this section, we recall the definition of confusion
and the algorithm that makes it possible to detect
confusion at the structural level in ordinary Petri nets.

The behavior of a system is made of a set of actions
that are either conlicting, i.e., they may be
simultaneously possible, but the execution of one may
disable the other, or non-conflicting. If two actions are
non-conflicting then the future behavior of the system
will be independent of the order of their executions. In
the Petri net modeling the system, transitions can be
accordingly partitioned into equivalence classes, such
that two transitions belonging to different classes
represent non-conflicting actions. Such classes might be
obtained by computing the transitive closure of the
conflict relation linking transitions such that the firing
of one transition may disable the other one. However,
the resulting relation can lead to incoherent classes. In
the net in Figure 1 [3], t2 and t3 are conflicting,

whereas t1 is not conflicting with t2 nor with t3 and
thus belongs to another class. However, depending on
whether t1 fires before t2 or not, t3 will be enabled or
not. This particular structure is known under the name
of asymmetric confusion. This definition of confusion is
slightly different from the definition in [8], [9], but is
identical to the definition in [3], [10] where an
algorithm is proposed to detect confusion at the
structural level.

t1
t2

t3

•

•

Fig. 1 : Example of asymmetric confusion

Stochastic Petri nets with immediate transitions
(GSPNs) must not include asymmetric confusion
structures among immediate transitions to preserve the
correctness of the timing semantics of the net.

In this paper, we will consider only the case of
GSPNs with two transition priority levels, one
corresponding to timed transitions, and the other one to
immediate transitions. For these models, the detection
of confusion is useful only among immediate
transitions. Thus we will consider in the rest of the
paper GSPNs in which all timed transitions have been
deleted.

We now recall the detection algorithm for ordinary
stochastic Petri nets. Asymmetric confusion appears
when the firing of a transition t1, which has no conflict

relation with another enabled transition t2, enables a

transition t3 that instead has a conflict relation with t2.

Hence, the detection of confusion at the structural level
implies that we define

1 - which transitions have a conflict relation with
some transition t,

2 - which transitions may be enabled by the firing of
some transition t1, knowing that t2 is enabled.

The first phase begins by the definition of the
conflict relation. Two transitions in conflict must not be
mutually exclusive (ME). We consider that a transition
t1 is in structural conflict (SC) with a transition t2 if

the firing of t1 may disable t2. As we want to define

classes of conflicting transitions, we must make this
relation symmetric. By taking the reflexive and
transitive closure of this new relation, we obtain an
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equivalence relation, called symmetric structural

conflict  (SSC), whose classes are called extended

conflict sets  (ECS).
The second phase can be performed by defining a

relation CC(t2) that allows us to find which transitions

can be enabled by the firing of a transition t1 knowing

that t2 is enabled, and are thus causally connected to t1.

Taking the transitive closure of this relation, we obtain
the causally connected set of t1, CCSt2(t1).

Having this information, it is possible to detect
confusion at the structural level. A sufficient condition
for the net to be confusion-free is that given two
transitions t, t’ belonging to the same conflict set, no
transition t” can be causally connected to t’ knowing
that t is enabled. The process of confusion detection is
summarized in Figure 2.

SC

SSC ECS

ME

Confusion

CCSCC

Fig. 2 : confusion detection process

Moreover if we prove that the net is confusion-free,
the operations that have been performed to obtain this
result can be used to improve the construction of the
reachability graph. In fact, in a confusion-free net, the
order for firing immediate transitions enabled in a
given marking has no effect on the overall behavior of
the net. Hence, the parallel firing of immediate
transitions belonging to different extended conflict sets
is possible and allows a reduction in the space needed
for storing vanishing markings [10] [3].

The next section is devoted to the extension of this
algorithm to colored nets by using symbolic relations.
We will successively consider mutual exclusion,
structural conflict and causal connection. From these
relations, we derive a sufficient condition for a colored
net to be confusion-free.

3 Colored Petri Nets

The analysis of colored Petri nets is based on the
handling of multisets. We present in the next section
some basic definitions on multisets.

3.1 Multisets

Definition 3.1 A multiset a over a non-empty set
E is a mapping a ∈ [E → ].

Intuitively, a multiset is a set that can contain several
occurrences of the same element. It can be represented
by a formal sum

a = a(x). x�
x ∈ E

in which the non-negative integer a(x) represents the
number of occurrences of the element x in the multiset
a. We denote Bag(E) the set of finite multisets over E.
Actually, we can extend this definition to mappings a ∈
[E → ], and denote BagZ(E) this new set of finite

multisets over E. In this case, multisets lose their
intuitive meaning.

We define a set of operations on Bag(E).

Definition 3.2 Let a, b be two elements of
Bag(E). Then :

• a + b = [a(x) + b(x)]. x�
x ∈ E

• a - b = (sup[a(x) - b(x), 0]). x�
x ∈ E

• a ∩ b = (inf[a(x), b(x)]). x�
x ∈ E

The definition of subtraction generalizes the one
usually employed, which applies only if a � b, i.e., if
∀ x ∈ E, a(x) � b(x).

The definition of functions on multisets is similar to
the definition of functions on sets. In this paper, we will
only consider linear functions. Linear functions on
Bag(E) needs to be defined only on the items of E as,
due to the linearity of f,

f a(x). x�
x ∈ E

= a(x). f(x)�
x ∈ E

Definition 3.3 Let f be a function from Bag(E) to

Bag(F). The transpose f t  of f is a function from Bag(F)
to Bag(E), defined by :

f t (x)(y) = f(y)(x)

In this notation, the first pair of brackets denotes the
application of the function, while the second one refers
to the multiset notation.

We will also use operations on functions that are
derived from operations on multisets.

Definition 3.4 Let f be a function from Bag(E) to
Bag(F). Let op be a binary operator on Bag(F). Then
f op g is a function from Bag(E) to Bag(F) defined by :
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(f op g)(x) = f(x) op  g(x)

3.2 Colored Petri nets

We recall the definition of a colored net [5], the
associated firing rule and the corresponding unfolded
net.

Definition 3.5 A colored Petri net N is a 7-tuple

N = <P, T, C, W-, W+, H, M0> where :

P is the set of places
T is the set of transitions with P ∩ T = ø and S =

P ∪ T � ø
C is the color function from P ∪ T to Ω , where

Ω is some finite set of finite and not empty
sets. An item of C(s) is called a colour of s and
C(s) is called the colour set of s.

W- (resp. W+, H) is the forward (resp. backward,
inhibitor ) incidence matrix on P x T , where

W-(p, t) (resp. W+(p, t), H(p, t) ) is a function
from Bag[C(t)] to Bag[C(p)]

M0 the initial marking of the net is a vector on P,

where M0(p) is an item of Bag[C(p)].

The firing rule defines the dynamic behavior of the
net.

Definition 3.6 Firing rule
• A transition t is enabled  for a marking M and a

colour ct ∈ C(t) if and only if :

∀ p ∈ P , M(p) � W-(p, t)(ct)

and (∀ c ∈ C(p) , M(p)(c) < H(p,t)(ct)(c) 

or  H(p,t)(ct)(c) = 0 )

• The firing of t for a marking M and a colour ct ∈
C(t) gives the marking M' defined by :

∀ p ∈ P , M'(p) = M(p) - W-(p,t)(ct) + W+(p,t)(ct)

Several times in this paper, we will refer to the
unfolded Petri net of a colored net. A colored net is in
fact an abbreviation of an ordinary Petri net with the
same behavior. This equivalent ordinary Petri net is
obtained with the following procedure.

• One place (resp. one transition) is created for
each possible couple (p, c), c ∈ C(p) (resp. (t, c), c
∈ C(t)).

• An arc between (p, c) and (t, c') (resp. between (t,
c') and (p, c)) exists and has a valuation k if the
forward (resp. backward) incidence function is

such that W-(p, t)(c')(c) = k (resp. W+(p, t)(c')(c)
= k).

• An inhibitor arc between (p, c) and (t, c') exists
and has a valuation k if the inhibitor incidence
function is such that H(p, t)(c')(c) = k.

• The initial marking of (p, c) is the number of
color c tokens that p contains in the colored net.

Defining a structural relation in a colored net
consists in, given a node of the net and an associated
color, finding for another node the set of colors of this
node that are in relation with the considered color of
the initial node. As we will have to handle sets of
colors, we recall some basic notions on powersets.

3.3 Powersets

The powerset of E is the set of subsets of E and is
denoted by P(E). Functions can be defined on
powersets, and using the union as an additive operator,
we can also define linear functions. Different operations
can be applied on these linear functions.

Definition 3.8 Let f and g be two functions from
P(E) to P(F). Then

• f ∩ g :  P(E) → P(F) is defined by :
[f ∩ g](x) = f(x) ∩ g(x)

• f ∪ g :  P(E) → P(F) is defined by :
[f ∪ g](x) = f(x) ∪ g(x)

Definition 3.9 Let f be a function from P(E) to
P(F). Then

• f t  :  P(F) → P(E) is defined by :

y ∈ f t (x)  ⇔ x ∈ f(y)

• c f :  P(E) → P(F) is defined by :
c f(x) = { y | y ∉ f(x)}

Definition 3.10 Let f be a function from P(E) to
P(F) and g be a function from P(F) to P(G). Then

• g o f  :  P(E) → P(G) is defined by :
[g o f ](x) = g[f(x)]

Definition 3.11 Let f be a function from P(E) to
P(E). Then

• f n   is recursively defined by :

f 0  = Identity    and    f n  =  f o f n - 1

•   f
+
    =  f

 n∪
n > 0

•   f
*
    =  f

 n∪
n ∈ N

Functions on powersets can be related to functions
on multisets.
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Definition 3.12 Let f be a function from Bag(E) to

Bag(F). Then f is a function from P(E) to P(F) defined
by :

f(x)  =  {y ∈ F  |  f(x)(y) > 0}

The two definitions of the transpose can also be
related.

Definition 3.13 Let f be a function from Bag(E) to

Bag(F). Then  f  t  =  f t.

4 Confusion in Colored Petri Nets

With the introduction of stochastic colored nets, the
extension of the algorithm for confusion detection
became necessary to ensure a correct timing semantics
of the colored net. A first algorithm was proposed,
which worked on the unfolded net [6]. But to avoid
working on the unfolded net, we must handle color
functions at a symbolic level. The next section recalls
the definition of symbolic relations, together with the
results that make it possible to work directly at the net
level.

4.1 Symbolic Relations

A structural relation in a Petri net is a relation
between two nodes of the graph of the net. Consider for
instance the “precedes” relation. In an ordinary Petri
net, a place p precedes a transition t iff there is an input
arc between p and t. If we consider the unfolded Petri
net of a colored net, such a relation can be easily
extended :

(p, c)  precedes  (t, c’)    ⇔    W-(p, t)(c’)(c) > 0

W-(p, t) is a function from Bag[C(t)] to Bag[C(p)], and

has a corresponding function W-(p, t)   from P[C(t)] to

P[C(p)], which is such that

W-(p, t) (c’)  =  {c ∈ C(p)  |  W-(p, t)(c’)(c) > 0}.

Hence, the result of this function is the set of all the
color instances of p that precede (t, c’). We can write :

(p, c)  precedes  (t, c’)     ⇔     c ∈ W-(p, t) (c’) 

If now we want to determine which transitions
precede a place (p, c), we can write :

(t, c)  precedes  (p, c’) ⇔    W+(p, t)(c)(c') > 0

⇔    W+(p, t) t (c')(c) > 0

hence,   (t, c)  precedes  (p, c’)  ⇔  c ∈ W+(p, t) t (c') 

We can now introduce the formal definition of
symbolic relations. For more details, see [7].

Definition 4.1 Let N be a colored net. Let M be a
square matrix indexed by the nodes of N such that M(s',
s)  is a function from  P[C(s)] to P[C(s’)]. M is called a

symbolic relation of N, and RM denotes a relation

between the nodes of the unfolded net, defined by :

(s', c') RM (s, c)  ⇔  c' ∈ M(s', s)(c).

Thus, if we consider the relation RM = precedes, the

symbolic relation M is defined by :
∀ p, p' ∈ P, ∀ t, t' ∈ T, 

M(p, t) =  W-(p, t)  M(t, p) = W+(p, t) t  

M(p, p') = 0 M(t, t') = 0
The operations, e.g. intersection or transpose, that

we have defined in the previous section apply to
symbolic relations. But we are also interested in
computing the transitive closure of a relation by means
of the associated symbolic relation. Therefore, we
extend to symbolic relations some classical operators on
relations.

Definition 4.2 Let N be a colored net, let M and
M' be two symbolic relations of N. Then M.M' the
product symbolic relation of M and M' is defined by :

M.M'(s', s) = ∪ s" ∈  S  M(s', s") o  M'(s", s)

The product RM .RM' of two relations RM  and  RM'
is usually defined by :

(s', c') ∈ RM .RM'  (s, c)  ⇔  ∃ (s", c") |

(s',c') ∈ RM (s", c") and (s", c") ∈ RM'  (s, c)

It is not difficult to show that the relation associated
with the product of two symbolic relations is the
product of the relations, i.e.,

RM.M'  =  RM .RM'

Definition 4.3 Let N be a colored net and M be a
symbolic relation of N

Mn is recursively defined by

M0 = Identity and Mn =  Mn-1 . M. We define

M + = M n∪
n > 0

M * = M n∪
n ∈ N

Then RM
+ is the transitive closure of RM , and

RM* is the reflexive transitive closure of RM. We

could also prove that like in the ordinary case, the
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union defining M+ (resp. M*) is stationary at some
step. This would provide an algorithm to compute the
transitive closure. But on ordinary graphs, Warshall's
algorithm [11] is more efficient and we choose to
extend this algorithm to symbolic relations. Unlike
what happens in ordinary graphs, we have to compute
the transitive closure inside a node of the high-level net
(i.e., a set of nodes in the unfolded net). Thus, the
algorithm is [7] :

For s ∈ S do M(s, s) := M(s, s)+

For s ∈ S do
For s' ∈ S do

For s"∈ S do

M(s", s') := M(s",s') ∪ M(s", s) o M(s,s)* o

M(s,s')

We illustrate on a simple example the necessity of
modifying the ordinary graph algorithm by introducing

the term M(s, s)*.
Consider the colored net in Figure 3. We want to

compute the transitive closure of the relation "shares an
input token".

C(s) = C = {a, b, c}

∀ x ∈ C

X(x) = x

S(x) = a + b + c

∀ s ∈ P ∪ TP1

P2

P3

t1

t2

t3

X

X

S

X

S-X

Fig. 3 : example of transitive closure

By reasoning on the unfolded net, we see that (t1, c)

shares a token c in P1 with (t2, a) and (t2, b). (t2, a) and

(t2, b) share the tokens a, b and c in P2 with (t2, c), and

(t2, c) shares a token c in P3 with (t3, c). Hence, [(t1, c),

(t3, c)] must belong to the transitive closure of the

relation.
Let us now give the symbolic expression of the

relation. W-(p, ti) (c)  gives the set of colors of p that

are input of ti. By applying W-(p, tj)  t to this set of

colors, we obtain the colors of tj that have one of these

tokens in input and thus share an input token with (ti,

c). Hence, if we call SH the symbolic relation associated
with the relation "shares an input token", we have :

SH (ti, tj) =  W
-
(p, tj)

  t
  o  W

-
(p, ti) ∪

p ∈ P

If we apply the transitive closure algorithm without

introducing the term  M(s, s)*, we have :

SH(t1, t3)  =  SH(t1, t3) ∪ SH(t1, t2) o SH(t2, t3)

It is easy to verify that ∀ x ∈ C,

X  is defined by X (x)  = {x},

S  is defined by S (x)  = C

S-X  is defined by S-X (x)  = C \ {x}

and that the transpose of all these functions is equal to

the function itself. Hence,  SH(t1, t3) = S-X  , which

means that an instance of t3 is associated with all the

instances of t1, except itself, in the transitive closure of

the relation. But we have shown that actually [(t3, c),

(t1, c)] must belong to this transitive closure. The

reason for the mistake is that we have not taken into
account the fact that a color instance of t2 shares an

input token with all the color instances of t2. This is

why we have to introduce the term  M(s, s)* in the
algorithm, and in that case, the result is correct.

The next paragraphs are devoted to the
determination of basic structural relations in colored
nets by means of symbolic relations. We will
successively consider mutual exclusion, structural
conflict and causal connection. These relations are
preliminary steps for the detection of confusion. They
can also be used to improve the implementation of
simulation.

4.2 Mutual Exclusion

Two kinds of mutual exclusion may be checked
independently of the marking of the net. Structural
mutual exclusion occurs when the valuations of the arcs
prevent two transitions from being simultaneously
enabled. Marking mutual exclusion occurs when some
place invariant ensures that no reachable marking will
provide enough tokens for the transitions to be
simultaneously enabled. We present here only the
relation of structural mutual exclusion, but marking
mutual exclusion can be found in [12].

In an ordinary net, a sufficient condition for two
transitions to be in mutual exclusion is that a place is
connected to one transition by an inhibitor arc and to
the other one by an input arc with a greater or equal
valuation. In a colored net, the valuations are no longer
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integers, but color functions. Hence, in order to extend
the comparison of the valuations, we need to define an
operator between color functions with the same
codomain and different domains.

Definition 4.4 Let f be a function from Bag(E) to
Bag(F) and g be a function from Bag(G) to Bag(F).

Then (g \ f) is a function from P(E) to P(G) defined
by :

(g \ f)(c1) =  { c2 ∈ G |  ∃ c ∈ F,  g(c2)(c) � f(c1)(c) >

0}

In Figure 4, it is clear on the ordinary net that t1 and
t2 are mutually exclusive. In the colored net, the
application of the operator \ to color c1 of t1 gives the

set of colors of t2 such that, for at least one color c in P,
the integer valuation g(c2)(c) is greater than f(c1)(c),

which ensures the mutual exclusion. Note that in this
case, the second inequality in the definition of (g \ f)
ensures that the inhibitor arc exists.

Hence, based on Definition 4.4, we can define the
symbolic relation mutex(t2, t1) by :

mutex (t2, t1) =   W
-
(p, t2) \ H(p, t1)  ∪

p ∈ P

ordinary net colored net

3

2

P

t1

t2

f

g
F

E

G

P

t1

t2

Fig. 4 : mutual exclusion in ordinary and
colored nets

The set mutex(t2, t1)(c1) contains all the color

instances of t2 whose enabling requires more tokens in

some place p than is allowed in the same place for the
enabling of (t1, c1). This relation only accounts for the

case where the inhibitor arc is between p and t1, but we
are as well interested in the case where it relates p to t2.
Thus, the relation ME that we want to define must be
such that :

(t1, c1) ME (t2, c2)   ⇔

c2 ∈ mutex(t2, t1)(c1)  or  c1 ∈ mutex(t1,

t2)(c2)

i.e., such that if either t1 or t2 is related to some place

by an inhibitor arc, the other transition is related to p by
an input arc, and the valuations forbid the simultaneous
enablings of t1 and t2.

An equivalent expression of this relation is :

(t1, c1) ME (t2, c2)    ⇔

c2 ∈ [mutex(t2, t1) ∪ mutex(t1, t2)t](c2)

This can be also written as

ME(t2, t1) = mutex(t2, t1) ∪ mutex (t1, t2)t

The following trivial property accounts for the
symmetry of structural mutual exclusion.

Proposition 4.1 ME(t2, t1) = ME(t1, t2)t

4.3 Structural Conflict

A structural conflict occurs when the firing of a
transition (t2, c2) may disable the firing of a previously

enabled transition (t1, c1). A necessary condition is that

the firing of (t2, c2) decrements the marking of an input

place or increments the marking of an inhibition place
of (t1, c1).

The definition of structural conflict can be used for
an efficient implementation of simulation. Actually,
this relation makes it possible to optimize the
management of the event list. After the firing of an
arbitrary transition (t2, c2), only those transitions (t1,

c1) that are in structural conflict with (t2, c2) and not in

mutual exclusion with (t2, c2) should be tested for

erasing from the event list. Such a management of the
event list has proved efficient in most case studies [1].

We define the symbolic relation SC by :

SC (t2, t1) =  W
-
(p, t2) - W

+
(p, t2)

 t
  ο  W

-
(p, t1)   ∪

p ∈ P

∪  W
+
(p, t2) - W

-
(p, t2)

 t
  ο  H(p, t1)

The first term of the expression which defines SC
corresponds to the colour instances of t2 whose firing

decrements a colour of p that is an input of t1. The

second term of this expression corresponds to the colour
instances of t2 whose firing increments a colour of p

that inhibits t1.

This relation of structural conflict is non symmetric,
unreflexive and intransitive. However, it can be made
symmetric rather easily. In fact, what we want is a
relation SSC such that :
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(t1, c1) SSC (t2, c2)  ⁄  [c2 ∈ SC(t2, t1)(c1) or

c1 ∈ SC(t1, t2)(c2)]  and  c2 ∉ ME(t2,

t1)(c1)

This relation can be expressed in a formal way by :

SSC(t2, t1)  =

[SC(t2, t1) ∪  SCt(t1, t2)]  ∩ cME(t2, t1)

Other conflict notions can be defined. For instance,
effective conflict [10] uses the reachability graph and
checks if there exists some marking in which two
transitions are enabled, and after the firing of one of
them, the other one is no longer enabled. But such
relations are very expensive to check and moreover,
they are not structural because they depend on the
initial marking.

4.4 Extended Conflict Sets

Relation SSC is symmetric. Thus, if we compute its
reflexive and transitive closure, we obtain an
equivalence relation that can be used to partition
immediate transitions into classes of possibly
conflicting transitions that are called extended conflict
sets.

ECS  = SSC*

Extended conflict sets can be used to improve the
construction of the reachability graph of a GSPN.
Actually, in the case where the net is confusion free,
immediate transitions belonging to different ECS can
be fired in parallel, allowing to reduce the space needed
for storing the vanishing markings [10].

4.5 Causal Connection

Causal connection accounts for the fact that the
firing of a transition (t1, c1) may enable another

transition (t2, c2). Similarly to structural conflict,

causal connection can be used in the implementation of
simulation.  After the firing of (t1, c1), only those

transitions (t2, c2) that are causally connected to (t1, c1)

should be tested for inclusion in the event list.

4.5.1 Causal Connection Conditioned:
Confusion arises when the firing of a transition (t1, c1)

that does not belong to the ECS of a given transition
(tk, ck) may enable another transition (t2, c2) that

belongs to the conflict set of (tk, ck), i.e., such that c2
belongs to ECS(t2, tk)(ck). So we need to define a

relation of causal connection between transitions (t1,

c1) and (t2, c2) conditioned on the fact that a third

transition (tk, ck) is enabled, and its enabling condition

is not affected by the firing of transition (t1, c1).

This relation between (t1, c1) and (t2, c2) depends on

the colour domain of tk. So we extend colour and

powerset functions so that we can take into account the
colour domain of tk.

Notation : we will use <a, b> to denote an element of
the Cartesian product A x B.

Definition 4.5 Let x ∈ Βag(E),  y ∈ Βag(F).
Then <x, y>∈ Βag(E x F) is defined by :

<x, y> = [x(a).y(b)] . <a, b>�
<a, b> ∈ E×F

Example : 2.a + 3.b ∈ Βag(E),  c + 2.d ∈ Βag(F).
< 2.a + 3.b, c + 2.d> = 2.<a, c> + 4.<a, d> +3.<b, c>

+ 6.<b, d>

Definition 4.6 Let A ∈ P(E),  B ∈ P(F). Then
<A, B> ∈ P(E x F) is defined by :

<A, B>  =  {<a, b>}∪
<a, b> ∈ A×B

Definition 4.7 Let f be a function from Bag(E) to
Bag(F), X be a function from Bag(G) to Bag(G). Then
<f, X > is a function from Bag(E x G) to Bag(F x G)
defined by :

< f , X >(<a, b>) = <f(a), b>

A similar definition applies to powerset functions.

Definition 4.8 Let f be a function from P(E) to
P(F) and X be a function from P(G) to P(G).
Then < f, X > is a function from P(E x G) to P(F x G)
defined by :

< f , X >(<a, b>) = <f(a), b>

Definition 4.9 Let f be a function from Bag(E) to
Bag(F), g be a function from Bag(G) to Bag(F) and X
be a function from Bag(G) to Bag(G).
Let op be an operator on Bag(F). Then <f op g, X> is a
function from Bag(E x G) to Bag(F x G) defined by :

< f op g, X >(<a, b>) = <f(a) op g(b), b>

Now, a first condition for the firing of (t1, c1) to

enable (t2, c2) is that the firing of (t1, c1) adds some

tokens to an input place of (t2, c2). But knowing that

(tk, ck) is enabled, this condition can be refined. The
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firing of (t1, c1) must add tokens to an input place p of

(t2, c2) such that the firing of (t2, c2) requires more

tokens in p than the firing of (tk, ck).

For every place p, the colors c of p, whose marking
is increased when firing (t1, c1), verify :

W+(p, t1)(c1)(c) > W-(p, t1)(c1)(c)

For every place p, the colors c of p such that the
firing of (t2, c2) requires more tokens c in p than the

firing of (tk, ck) verify :

W-(p, t2)(c2)(c) > W-(p, tk)(ck)(c)

According to Definition 4.9,

<W-(p, t2) - W-(p, tk), X > (<c2, ck>)  =

<W-(p, t2)(c2) - W-(p, tk)(ck),

ck>

= �
c �  C(p)

  [W-(p, t2)(c2)(c) - W-(p, tk)(ck)(c)].<c, ck> 

(Definition
4.5)
Hence,

<W-(p, t2) - W-(p, tk), X >  (<c2, ck>)   

=  { <c, ck> ∈ C(p) x C(tk)  |

W-(p, t2)(c2)(c) > W-(p, tk)(ck)(c)

}

Thus, we retain only the colors c of p such that the
firing of (t2, c2) requires more tokens c in p than the

firing of (tk, ck).

Now consider an element c1 of C(t1). By Definition

4.7, we have :

<W+(p, t1) - W-(p, t1), X > (<c1, ck>)  =

<[W+(p, t1) - W-(p, t1)](c1),

ck>

Hence,

<W+(p, t1) - W-(p, t1), X >  (<c1, ck>)   

=  { <c, ck> ∈ C(p) x C(tk)  |

W+(p, t1)(c1)(c) > W-(p, t1)(c1)(c)

}
and

<W+(p, t1) - W-(p, t1), X >   
t
 (<c, ck>)

=  { <c1, ck> ∈ C(t1) x C(tk)  |

W+(p, t1)(c1)(c) > W-(p, t1)(c1)(c)

}

Hence, the following symbolic relation allows us to
compute a first set of couples <c1, ck> such that the

firing of (t1, c1) may enable (t2, c2).

CC1(tk)(t1, t2) =  < W+(p, t1) - W-(p, t1) , X  >  
t
   

o  < W-(p, t2) - W-(p, tk) , X  >

A second case where the firing of (t1, c1) may enable

(t2, c2) is when the firing of (t1, c1) subtracts tokens to

an inhibition place of (t2, c2). Knowing that (tk, ck) is

enabled, this condition can be refined. The firing of (t1,

c1) must subtract tokens c to an inhibition place p of

(t2, c2) such that the maximal number of tokens c in p

for which (t2, c2) is enabled is less than the maximal

number of tokens c in p for which (tk, ck) is enabled.

Let x(c) be the maximum number of tokens c in p
such that (t2, c2) is enabled. If there is an inhibitor arc

between p and tk, let y(c) be the maximum number of

tokens c in p such that (tk, ck) is enabled. In that case,

y(c) - x(c) > 0 accounts for the fact that the maximum
number of tokens c in p for which (t2, c2) is enabled is

less than the maximum number of tokens c in p for
which (tk, ck) is enabled. If there is no inhibitor arc

between p and tk, this is true as soon as x(c) > 0.

Definition 4.10 Let x and y be two elements of Bag(E).
Then (x � y) is an element of Bag(E) defined by : (x �
y)(c) = if y(c) = 0  then x(c)

else if y(c) > x(c) > 0
then y(c) - x(c)  else 0.

Thus, our condition is [H(p,t2)(c2) � H(p,tk)(ck)] > 0.

Applying the same procedure as for the first

condition, <H(p, t2) �  H(p, tk), X >  (<c2, ck>)  gives

the set of tokens <c, ck> of C(p) x C(tk) such that the

maximum number of tokens c in p for which (t2, c2) is

enabled is less than the maximum number of tokens c
in p for which (tk, ck) is enabled.

<W-(p, t1) - W+(p, t1), X >   
t
 (<c, ck>) gives the

set of tokens <c1, ck> of C(t1) x C(tk) such that the

firing of (t1, c1) decreases the number of tokens c in p.

As a consequence, the following symbolic relation
allows us to compute a second set of couples <c1, ck>

such that the firing of (t1, c1) may enable (t2, c2) :
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CC2(tk)(t1, t2) =  < W-(p, t1) - W+(p, t1) , X  > 
t
   

o  < H(p, t2) �  H(p, tk), X  >

To summarize, knowing that (tk, ck) is enabled, a

sufficient condition for (t2, c2) to be enabled after the

firing of (t1, c1) is that <c1, ck> ∈ [CC1(tk)(t1, t2) ≈
CC2(tk)(t1, t2)](<c2, ck>). Among these couples, we

want to retain only those such that (t1, c1) and (t2, c2)

are not mutually exclusive. This set can be obtained by

applying the function <cME(t1, t2), X> to <c2, ck>.

Finally, the causal connection relation CC(tk)(t1, t2)

that allows us to compute the set of transitions (t1, c1)

that can directly enable (t2, c2) knowing that (tk, ck) is

enabled is given by :

CC(tk)(t1, t2) = <cME(t1, t2), X>  ∩ 
[CC1(tk)(t1, t2) ∪ CC2(tk)(t1,

t2)]

4.5.2 Causally Connected Set: The causally connected
set of a transition (t2, c2) is the set of all transitions (t1,

c1) whose firing can directly or indirectly  enable (t2,

c2), knowing that a third transition tk is enabled. It is

obtained with the transitive closure of the relation
CC(tk).

CCS(tk) = CC(tk)+

4.6 Confusion

A sufficient condition for the absence of confusion in
a net is that a transition belonging to the conflict set of
another transition (t, c) can be causally connected only
with transitions that are in mutual exclusion with (t, c).

In other words, if we consider a transition (t2, c2)

that belongs to the conflict set of another transition
(t1, c1), any transition that may enable (t2, c2) is in

mutual exclusion with (t1, c1). Due to the definition of

the causal connection relation, CCS(t1)(t3, t2)(<c2, c1>)

contains for every transition t3 the set of colors of t3
that may enable (t2, c2) and that are not in mutual

exclusion with (t1, c1). Hence, if this set is empty, any

transition (t3, c3) that may enable (t2, c2) is in mutual

exclusion with (t1, c1) and the net is confusion-free.

This condition can be expressed formally :

∀  t1 , t2, t3 , CCS(t1)(t3, t2) o <ECS(t2, t1), X> = Ø

where X is defined on P[C(t1)].

NB : if the relation is applied for t1 = t2, c1 must be

withdrawn from ECS(t1, t1)(c1) before applying

CCS(t1).

5  Efficiency of the Approach

If the color functions of the net have no structure at
all, the definition of structural relations by means of
symbolic relations may not offer any improvement
compared with the handling of the unfolded net. For

instance, without any structure, the cost of computing f
might be equivalent to the cost of unfolding the net.

But if we consider a subclass of colored nets, with a
restricted set of basic color functions and arc
expressions being linear combinations and/or Cartesian
products of these basic functions, the approach can be
very efficient. Actually, once the basic powerset

function f has been computed for every basic color

function f, the expression of  f  for an arc expression
will in turn be a Cartesian product of the basic powerset

functions  f.
Besides, the detection of confusion only uses a

restricted set of operations, namely intersection, union,
composition and transitive closure. If the result of the
application on basic powerset functions of all these
operations is still a basic powerset function, then the
whole algorithm handles only basic powerset functions.

As a consequence, one of the parameters that
influences the efficiency of the algorithm is the size of
the set of basic color functions. This approach has
already been successfully applied to Unary Regular Nets
[7], which are a restricted class of colored nets. In this
case, the algorithm handles only four functions. We are
now working on the extension of the algorithm to Well-
Formed nets [13] that have the same modelling power
as general colored nets. This extension mainly consists
in introducing predicates and the successor function.

One of the most interesting features of these two
classes of colored nets is that the definition of their
color functions does not depend on the cardinality of
the color domains. As a consequence, the results of the
algorithm are parameterized and instead of applying the
confusion detection algorithm several times for
different nets with the same structure, a single
application provides results that hold for a family of
colored nets that differ only by the cardinality of the
color domains.

6  Conclusions
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We have presented in this paper a new approach for
computing structural relations in colored GSPNs. This
approach is based on the use of symbolic relations that
directly handle the color functions labelling the arcs of
the net, thus avoiding the unfolding of the net. We have
applied this technique to the detection of confusion.

The use of symbolic relations results in important
savings in the cost of computing structural relations.
And a very interesting advantage of the technique is
that the structural relations expressed with symbolic
relations are parameterized, i.e., their expression does
not depend on the cardinality of the color domains of
the nodes. As a consequence, they hold for a family of
nets that have the same structure and different sizes of
color domains.

We have already shown the efficiency of the
symbolic relation approach for a restricted class of
colored nets, namely Unary Regular Nets. We are now
working on the extension of the results to Well-Formed
Nets, which have the same modelling power as general
colored nets.
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