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Abstract
This paper presents the evaluation experiments of two distributed algorithms using the ESTELLE

language and the simulation tool, EDT. Evaluation is carried out by series of simulations in order

to determine the most accurate parameter values of the studied algorithms. The interest is to

highlight the process of modelling, simulating and evaluating that is common to these

experiments in spite of the algorithms diversity. We discuss the difficulties that we have met

during this process. Then, we suggest improvements of ESTELLE and its simulation tools to

overcome these difficulties.

Keyword Codes: I.6.3; I.6.4; I.6.7

Keywords: Simulation and Modeling, Applications; Model Validation and Analysis; Simulation

Support Systems;

1. INTRODUCTION

The evaluation of distributed algorithms is an important step in their analysis. During the

evaluation of algorithms, different complexity indices are measured such as service time, memory

occupation, etc. These measures mainly depend on three factors:

• environment hypotheses (e.g. reliability degree of the medium),

• heuristic choices (e.g. first fit versus best fit memory allocation policies),

• determination of the algorithm parameters (e.g. timer values in protocols).

Such measures may be obtained either by analytic methods (e.g. markovian analysis) or by

simulation techniques. For the latter method, one needs a specification model and a related tool

which supports a simulation mode. Formal Description Techniques are an adequate framework for

the evaluation of communication protocols and distributed algorithms. Among these techniques,

ESTELLE is often chosen to specify such algorithms since it provides numerous facilities like for

instance: dynamic creation of entities and links, expression of time constraints and communication by

messages. So, numerous analysis tools based on ESTELLE have been developed [1-7]. Generally,

these tools use simulation techniques (exhaustive or not) that provide qualitative results (partial or

not).

The aim of this paper is to discuss what should be improved in ESTELLE and its simulation

tools in the light of two experiments in algorithm evaluation. The two experiments have been driven

with the tool EDB [4].

The first experiment concerns the verification and the evaluation of an industrial protocol

developed by Matra-Communication for the management of a High-Speed network [9].



The second experiment concerns the tuning of an optimized algorithm for the management of a

communication chain between two entities [8]. With the help of the tool, we have tried to obtain the best

performances for this algorithm given different hypotheses on the medium's reliability.

The three steps of the experiments, namely modelling, simulation and evaluation have outlined the following
problems:

• in ESTELLE the genericity of an algorithm is limited to processes since most of the links must be

explicitly specified between process instances and not between generic entities (i.e. modules).

• the specification of the expected behaviour of a medium - message loss and/or sequencing,

minimum/maximum transit time,… - requires an additional modelling prone to errors and which confuses

the model.

• as the modelling of message loss is done with transitions, a useful feature of a simulation tool should be
the specification of a probability law for transition firings. This feature is missing in EDB.

• a complementary feature would be the specification of an execution time in order to model the transit
time of a message. To overcome these problems some PASCAL procedures have been added to our
"medium protocol". Once again the specification is confused.

• when one wants to compare the quantitative results of different simulations, it is essential to have a
common scale of time: obviously it can be neither the number of transition firings nor the CPU (or
elapsed) time of the execution. EDB does not provide such a scale.

• an advanced feature (absent in EDB) of a tool would be the iteration of simulations with different values
of parameter with possibly: a strategy to obtain an optimum value, value series for the parameters and
expressions for the outputs (e.g including operators as average).

The results of our work are the foundation for the development of a software tool based on an

ESTELLE-like language. This is to be done in the scope of the framework of the European Eureka-Irena

project (EU 389: Industrial Requirements Engineering Based On Nets For Value Added Applications).

In Section 1 we briefly recall the main features of ESTELLE and EDT. In Section 2, we present the

principles of the two experimented distributed algorithms. Section 3 describes the modelling, the simulation
and the evaluation process of the algorithms using ESTELLE. In Section 4 we discuss the difficulties raised
by the modelling and the evaluation of similar protocols and we suggest the corresponding improvements.

2. ESTELLE AND EDT

ESTELLE is a formal description technique (FDT) standardized by ISO [10, 11]. It is well-adapted to

describe communication protocols and especially those following the OSI functionnal architecture. ESTELLE
holds numerous features related to communication protocols as process hierarchy, message communications

through FIFO queues, time constraints and synchronous/asynchronous parallelism. In ESTELLE, concurrent

processes are called modules. An ESTELLE module represents a generic entity from which numerous

instances can be created. It is defined by the association of a module header and a module body. The module
header defines exported variables and external interaction points whereas the module body describes its

behaviour by an extended automaton.

The first step to model a system using ESTELLE is to define its architecture. It consists in determining the
main components making up the system and how they are interconnected. Hence, each main component may

be divided into other components by refinement.



This refinement is obtained by defining "child" modules of a given module according to the
hierarchy concept. This induces the parent/child principle which provides execution priority of a
parent module over its children modules.

The second step consists in describing the behaviour of the various modules. For every
module, one defines a set of reachable states and a set of transitions. A transition is made up of two
parts: a condition part which describes the events that must occur to fire the transition and an action
part which specifies a sequence of Pascal statements and ESTELLE primitives that are executed
when firing the transition. For a given transition, the firing constraints are of four kinds:
• the process must be in a given state or in a given set of states,
• the process must receive a given message,
• the boolean expression including local variables and/or message parameters must be verified,
• the firing of the transition must be delayed a certain interval of time.

The action part may contain Pascal statements (only a subset of Pascal is used) for internal
treatment and ESTELLE primitives for message emission or configuration change
(creation/destruction of module instances or connexions).

As there are no capabilities to directly specify a variable transmission time or unreliable
communication, the user has to explicitly model such behaviours by defining modules ensuring these
tasks. In ESTELLE, the "delay" clause is useful to achieve such modelings. Indeed, the non-
determinism induced by the two parameters of a delay clause allows the modelling of most of the
predictable environment events.

Numerous ESTELLE tools have been developed since its definition [12, 13]. In this paper, we

discuss the modelling capabilities of simulation tools through the EDT one [14]. EDT represents a

toolset composed of :

• an ESTELLE compiler, which checks an ESTELLE specification and translates it into C source

code,

• an ESTELLE Simulator/Debugger, called EDB [4], which allows verification of an ESTELLE

specification.

In accordance with the "atomic transition" principle of the ESTELLE semantics, the unit of

execution in EDB is a simple transition. All sorts of non-determinism inherent to an ESTELLE

description are resolved during the simulation either in an interactive manner or automatically by a

random selection. EDB simulations can be achieved using the observation approach [15].

Observation is the ability to get informations related to the specification objects during a simulation

session. It is a useful way to obtain significant results in order to evaluate a given protocol.

Observation may be automatically achieved by "observers". The observers are programs written in

the simulation language so as to provide simulation informations. Moreover, one can define a

simulation scenario in order to verify predefined properties.

Numerous options are available in order to hold a simulation session. The most important ones

are:

• definition of a given run-time for the simulation,
• definition of a maximum number of fired transitions,
• control of the simulation stop by an observer (for example when a given global state is reached).

3. EXPERIMENTS

We have carried out experiments with two communication protocols which have the common
feature to be fault-tolerant. The two protocols have to manage and to maintain communication
between entities. In the first protocol [9], the entities are computers in a meshed ring network



In the second one [8], the entities are processes making up a communication chain through any

network. Through these experiments, we have encountered similar modelling and evaluation

problems. In the following, we briefly present the functionalities of the two protocols and outline the

options made in the modelling and evaluation stages. These two protocols have been chosen for their

complexity and for the several general mechanisms they use.

3.1. The Meshed Ring Protocol
This protocol has been studied in the framework of an industrial project with Matra-

Communication [9]. Our contribution was the verification and the evaluation of the protocol.

The main goal of this protocol is to
establish a logical ring configuration on a
network whose topology is a meshed ring.

Every host has three physical links: two
bidirectional main links and a bidirectional
redundant one. The main links are used to
establish the optimum logical configuration.
The redundant link may be used to re-
establish a logical ring in case of failures.

The main principles of the protocol are:

ELECTION principle: A logical ring must have only one master host whereas the others are slaves.

A logical ring is established when every host knows its status (master or slave) and every slave
host knows the master. The election is achieved by exchanging messages and is based on the host
identities. Failures may lead to situations where several logical rings coexist.

RECONFIGURATION principle: Every host attempts to belong to the largest logical ring.

A reconfiguration is the change of a logical ring configuration. It may be involved by:
• link or host failures.
• link or host restorations.

A typical reconfiguration may consist in splitting a logical ring or merging two logical rings.
This last case is illustrated by the following example.

Assume that, initially, a logical ring
(black arrows) is established between all the
hosts. Assume now that two links fail
simultaneously. In the example, only one
way of each link is perturbated. The logical
ring is broken and the hosts have to re-
establish another ring. Each host maintains a
table of its configuration links, and according
to it can send messages on only one output
link. This table is dynamically updated in
case of link or host failures.



In the first step, and according to the
ELECTION principle, all the hosts send
messages to elect a master. Because of the
two faulty links, two masters are elected then
two logical rings are established. The first
one is composed with hosts 1, 2, 3 and 8 and
the second one with hosts 4, 5, 6 and 7.

Hosts exchange messages including the
master identity of the ring they belong to. So,
a host knows that the different rings can be
merged. This is done in the next step.

In the second step, according to the
RECONFIGURATION principle, the hosts
work to belong to the largest logical ring. In
our example, the merging of the two logical
rings is achieved by using the redundant link
between hosts 1 and 5. This link has been
chosen arbitrarily. i.e. any other link could be
used.

Figure 2: Logical ring re-establishment

In order to ensure the logical ring establishment or reconfiguration, the protocol uses timers.

The performance as well as the functioning of the protocol strongly depend on the values of these

timers. For instance, in case of multiple reconfiguration schemes, the management of conflicts is

resolved by means of timers. Therefore, timer values play an important role not only at the

quantitative level but also at the qualitative one.

This protocol has been also modelled with ESTELLE and numerous simulations have been

achieved using the EDB tool. We have encountered several problems when modelling and

simulating this protocol. During the protocol simulations, we have discovered numerous design

anomalies which are mainly due to bad choices of timer values. The evaluation of this protocol has

allowed us to adjust the timer values and thus to get a correct and an efficient functioning.

3.2. The Communication Chain Protocol
Most distributed systems are designed according to the customer-server model. The general

structure of such a model can be viewed as a chain of cooperating entities. This model is frequently

encountered in numerous distributed applications as file transfer and remote procedure call. An

example is shown in Figure 3. Entities El and E6 communicate through inner entities E2, E3, E4 and

E5. The communication between host A and host B is managed by entities E2 and E3. Entities E4

and E5 manage the communication between host B and host C.



The presented protocol aims at the building and the maintenance of a chain of communicating entities

in an unreliable environment. The recovery of faulty entities is achieved according to the concept of dynamic

regeneration introduced in [16]. Dynamic regeneration consists in the dynamic creation of a new entity
instance on failure detection of an existing one. It can be regarded as an alternative to the classical fault

tolerance techniques based on redundancy. The details on the conditions of applying dynamic regeneration

are out of the scope of this paper and can be found in [16].

Protocol targets

• Building of the chain

The building of the chain consists in generating a finite set of entities such that each inner one has a

predecessor and a successor. Unlike the other systems where the elements are static, the entities are
dynamically generated. On the other hand, an initialization step is required. This step consists in generating

the first entity which is on user's initiative.

• Maintenance of the chain in an unreliable environment

If one or several entities fail, the chain breaks and no communication between the initial and ending
entities is possible. To keep end-to-end communication, it is necessary to replace the faulty entities. This is
carried out by the dynamic regeneration of the faulty entities. Thc treatment of a failure is composed of three
steps: the detection, the regeneration of a new entity and its insertion in the chain

When a failure occurs, in the example entity

Mi fails, it is detected by the predecessor of the

faulty entity. Then, entity Mi-1 detects the failure

of Mi and it regenerates a new entity Mi'. When

entity Mi' is created, it inserts itself in the chain,

i.e. it connects itself to the predecessor and the

successor of faulty entity Mi.
The protocol is carried out by the algorithm

whose principles are presented below.

Algorithm principles
We want to build and maintain a chain of N entities, where each entity communicates with the adjacent

entities. Our algorithm relies on four principles :

ACTIVATION principle: Each non-ending entity carries on the building of the chain.

Each entity with no successor and which is not the N
th
 one generates a successor. This principle allows

to carry on the building of the chain if it is not complete and to rebuild it if entities fail.

KNOWLEDGE principle: Each entity knows all its successors.

When a entity fails, it is regenerated according to the ACTIVATION principle. Then, this new entity

must be attached to the predecessor (the one who generated it) of the faulty entity and to its successor. The
regenerating entity must know its two immediate successors so as to give to the regenerated entity the

necessary informations to insert itself in the chain.

However, it is not enough in case of multiple failures of adjacent entities. In this case, each regenerated
entity has to regenerate a successor until a valid successor has been found.



So, to restore the chain whatever the number of faulty adjacent entities, each entity has to
know all its successors.

If the regenerated entity is the initial one, it cannot receive informations on its succcessors
from its predecessor since the last one does not exist. In order to avoid the building of a new chain,
the initial entity must keep in stable memory information on its successors. This information will be
communicated to it, if it is regenerated.

PURGE principle: Each non-initial entity with no predecessor destroys itself after a finite time.
When the predecessor of an entity fails, this one must be eliminated if no new entity replaces

the predecessor after a finite time. Hence, "parasite" sub-chains are progressively removed.

SUSPICION principle: The validity of the chain is periodically tested.
Periodically, each entity checks its successor. This mechanism allows to detect faulty

entities.

More precisely, the detection is based on an acknowledgement mechanism. Each entity
periodically transmits a control message to its successor so as to verify that it is still valid. If no
answer has been given after a time t, the successor is considered faulty. This mechanism can bring
false detections. whose rate is inversely proportional to t.

3.3. Simulation targets
The analysis of one protocol is an important stage so as to fulfill the designer requirements.

These requirements may be of two kinds, qualitative and quantitative. Qualitative analysis consists in

verifying whether the protocol ensures the desired functionalities. Quantitative analysis aims at

evaluating its parameters to make it high-performance.

Our requirements amount to the following points.

• The well functioning of the protocols: according to different situations, the system must reach a

stable state. In the first protocol, a stable state is a state where no more reconfiguration is possible

according to the configuration of all the links. For the second protocol, a stable state is the

existence of a unique complete chain where each entity holds coherent information.

• The tuning of parameters: it consists in determining the best values of the parameters that have

influence on the protocol behaviour. For the meshed ring protocol, the main goal is to minimize

reconfiguration time in case of link and host failures. In the case of the chain protocol, the main

goal is to minimize bad detections. A bad detection is diagnosing that one entity is faulty while it

is valid.

For both protocols, and according to the previous main points, we met with the same

difficulties and. generally, we applied similar solutions. In the following sections, we mainly outline

the modelling and the tuning problems in the case of the chain protocol.

4. Modelling, Simulation and Evaluation

To specify any protocol, ESTELLE imposes the description of the environment in which it

executes. The ESTELLE modelling of the protocols distinguishes the modelling of the environment

and the modelling of the protocols. The modelling of the environment introduces specific

mechanisms which are not directly held by ESTELLE. In our experiments, such mechanisms consist

in simulating failure events and the message transit time. The failure events are caused either by

entity failures or by message losts. The message transit time varies within a given interval of values.

The modelling of the protocols consists in describing the behaviour of each communicating entity.



4.1. Modelling

The environment modelling consists in describing a medium, failure events and a global clock.

The medium classically models the transport functionalities (routing, variable transit time) and

message losts events. The failure events concern entity failures. The global clock is used as a

reference to control the simulation times. We assume that the internal treatment times associated with

entities are equal to zero.

4.1.1. Genericity

In ESTELLE, a process is an instance of a generic entity called module. All the instances of a
given module inherit the same communication and behaviour characteristics. In particular, they have
the same interaction points defined each with a given role. However, this leads to some drawbacks
when considering the semantics of interaction point connections. Indeed, two connected interaction
points must be declared with the same channel but with opposite roles. Therefore, it is not allowed to
inter-connect instances of a same module with only one interaction point. Such a situation may arise
in numerous applications. For example, to create a complete meshed network where all the processes
are instances of a same module, we are led to define two interaction points because we cannot
connect the instances through the same interaction point.

4.1.2. Absolute time
To achieve meaningful comparisons between different simulation results, we need to capture

the specification absolute time in order to control simulations. Indeed, the common criterion to
different simulations for consistent comparison is, generally, the specification time. The EDB tool
allows to set a simulation time related only to the machine run-time which is independent from the
specification time.

For our experiments, to capture the
specification absolute time, we introduced a
CLOCK transition. The CLOCK transition is
used as a time reference. This transition has a
DELAY clause and is the only one defined
in the root module. Therefore, it has the
largest hierarchical priority and is always
enabled. In Figure 6, the TClock parameter
represents a clock tip. It is worth noting that
this time reference is the same as that of the
ESTELLE DELAY clauses.

This difficulty has been also encountered
in our experiments. For the meshed ring
protocol, the redundant link between stations
is modelled with two connections through
two interaction points (see Figure 5).

This difficulty is due to a genericity
concept which is "restricted" in ESTELLE. In
fact, the definition of generic entities and
generic interaction points is a basic feature
whereas connections are only achieved
between instances.



4.1.3. Medium

The role of the medium is mainly the transport of messages between entities. In real
applications, a medium is characterised by a message transit time, a rate of message loss and/or out
of sequence messages. An ESTELLE specification only induces a communication mechanism
through FIFO queues. Hence, the previous features can not be directly specified.

In our experiments, we needed to simulate failures of the medium in which messages are lost.
In order to simulate message transit time and since we cannot associate a different execution time
with each transition (especially with sending transitions), the following scheme is used.

Figure 7 describes in a simplified style
the medium modelling. The START
_TRANSPORT transition periodically
invokes the beginning of the message
transport. The periodicity is characterized by
a DELAY clause whose parameters define
the time range of the message transit time.
The messages from a transmitter instance to
a receiver instance are delivered or cancelled
according to a loss rate (transition
TRANSPORT). The END_TRANSPORT
transition is executed when all the messages
have been treated.

These transitions are defined within a module which has hierarchical priority over those of the
communicating entities. The modelling of the module failures is achieved in a similar manner.

4.2. Simulation
Some events related to the system global states can not be controlled by the only modelling.

For instance, in an unreliable environment one may verify if the system reaches stable state. In this
case, he must be able to stop the occurrence of new failures for a while. The invocation of such
events is generally made from an appropriate global state.

4.2.1. Temporary events
In order to verify qualitative properties in our experiments, we have been led to simulate

temporary events. For the meshed ring protocol we needed to verify if the establishment of a logical
ring is always possible. Therefore, the following scenario has been achieved:
• execution of the system considering host failures and message loss,
• execution of the system without considering host failures and message loss,
• verification of the establishment of the logical ring after a while.

In the example of the Section 2.1, the two link failures broke the logical ring (Figure 2.a).
From this moment on and without new failures, two new logical rings are established (Figure 2.b).
According to the RECONFIGURATION principle, the two rings are merged (Figure 2.c). This state
corresponds to a desired configuration.

To control such a system evolution, we handle two boolean "lost_message" and "failure". The
"lost_message" variable indicates whether the medium applies an unreliable transmission whereas
the "failure" variable indicates whether a link is faulty. Initially, these variables are set to "true".
After some simulation time, we change their values to "false" and we observe whether a stable state
is reached. Hence, during a simulation session we can directly act (by means of EDB commands) on
the medium functioning.



4.2.2. Observers
The EDB tool used for our experiments allows observations during simulations. Observation is the

ability to get information related to the specification objects from a simulation session [15]. Observation may

be automatically achieved by "observers". The observers are programs written in the simulation language so

as to provide simulation information. In particular, observation allows the capture of specific global states. In
the example described in Section 2.1, observers have been used to determine the appropriate moment

(corresponding to a specific global state) so as to act on the medium functioning.

4.3. Evaluation
In this section we present the simulation results of the communication chain protocol. The different

simulations have shown that once a reliable environment is set (it may be set when the simulation is in
progress), the system reaches its stable state (the building of a unique chain) in a finite time. In the following,

we focus on the more important purpose namely the protocol evaluation. It consists in the tuning of

parameters to make the protocol optimum. We test the protocol in extreme situations so as to quickly obtain
significant results. These situations are characterized by large message loss and host failure rates.

The protocol evaluation is mainly achieved by means of event accounting. Indeed, for a given
simulation, the following information is useful:
• the total number of failure detections,
• the number of bad failure detections,
• the total number of message emission events,
• the total number of message retransmission events.

In order to handle such information, we define "observers" which count the corresponding event

occurrences. In general, these events correspond to the execution of particular transitions. In this case, the

observers simply provide statistical information on the execution occurrences of the associated transitions.

Three parameters are relevant for the chain protocol: the values of the timers TPRED and TSUCC and the

number of message retransmissions (NReem). According to the SUSPICION principle, each entity checks its

successor every TSUCC time units. On the other hand, TPRED represents the maximum time at the end of

which an entity diagnoses a failure or a disconnection from its predecessor if no interaction is made. As long

as one entity's message is not acknowledged. it may be sent again until NReem times.

Bad choices of parameter values may involve unfavourable results such as a great number of bad

detections and useless messsage retransmissions. Indeed, this leads to useless dynamic regeneration of new

entities, which causes system overloading and thus delays the reaching of a stable state.

The optimization concerns the minimisation of bad detections. Indeed, the bad detection reflects a bad

functioning of the protocol. It is caused by bad choices of the timer parameters (TPRED and TSUCC) and the

number of message retransmissions (NReem). This leads to useless reconfigurations. We proceed in a first

stage to the evaluation of the timer parameters. and in a second stage to the evaluation of the message

retransmission number.

4.3.1. The tuning or timer parameters

In order to evaluate the TPRED timer value, two opposite constraints must be considered:
• On the one hand, we have to maximize TPRED so as to avoid that an entity assumes it has no more

predecessor. Before destroying itself, a given entity must wait a sufficient time to take into account its
predecessor normal events even if they are slow.

• On the other hand, we have to minimize TPRED so as to avoid that an entity, which is disconnected from
the main chain, uses resources needlessly and for a long time.



The tuning of the TSUCC timer is simpler. Since its role is to determine the periodicity of

checking its successor, it has no direct effects on the bad detections. The choice of its value depends

on the wished quickness of failure detections.

We study the protocol behaviour according to the values of the ratio TPRED/TSUCC. In the

following the simulation hypothesis:

Remark:

The CLOCK transition used in the CHAIN module provides the basic time unit (btu).

simulation time
transit time
message lost rate
host failure rate
TSUCC

= 20 000 btu
= [1, 2] btu
= 1%
= 0.02 %
= 100 btu

4.3.2. The tuning or the message retransmission number

The message retransmission allows to overcome the problem of lost messages. Consequently,

it prevents hosts from declaring too quickly their successor or predecessor failed. Similarly to the

TPRED parameter, a compromise must be found for the two following constraints :

• On the one hand. if we have few retransmissions, the number of bad detections increases. The

extreme case is if we have no retransmissions at all, every lost message leads to a bad detection.

• On the other hand, if we have a lot of retransmissions, we obtain few bad detections but the

detection of real failures may be delayed and the medium may be overloaded.

Figure 8 presents a set of curves, each
providing the number of bad detections
according to the values of TPRED/TSUCC.
A given retransmission number is used for
each curve.We remark that the number of
bad detections decreases when the ratio
TPRED/TSUCC decreases. and remains
constant from a certain value on. For the two
first curves (0 and 1 retransmission), the
number of bad detections weakly increases.
This is due to the fact that a short simulation
time does not exclude atypical simulations.
The common conclusion we can make about
these curves is: from a certain value. it is
useless to wait longer for an entity since it
can not reduce the number of bad detections.
Finally. for the values 0, 1, 2, 3 and 4 of the
retransmission number we respectively
obtain the optimum values 1.5, 2.0, 2.5, 2.5
and 3 of the ratio TPRED/TSUCC.

(between two adjacent entities)



Therefore, we have to determine the
number of retransmissions that provides a
reasonable value of the cost of bad detections
and the cost of retransmitted messages.

In our simulations, we vary the host failure
rate and the number of retransmissions and we
compute the number of bad detections. We
associate the value 300 btu with the TPRED
timer.

Figure 9 presents a set of curves, each
providing the relationship between the cost of

bad detections and the cost of retransmitted
messages.

The achieved simulations show that when
the failure rate increases, the cost of bad
detections decreases. This is quite normal since
the cost we consider is the ratio of the bad
detections to all the detections (bad detection and
real detections).

Remark:

To have an idea on our simulation run-times, we give the values related to the TPRED evaluation:

• with TPRED/TSUCC equal to 1 and 0 retransmission, we have obtained 1082 minutes (cpu time). (which

corresponds to 164236 total fired transitions).

• with TPRED/TSUCC equal to 4 and 4 retransmissions, we have obtained 253 minutes (cpu time). (which

corresponds to 162307 total fired transitions).

The simulations have been executed on a Sparc machine (Sun 4).

It is worth noting that these values are altered by the used observers. Therefore, they are not very
indicative of the protocol complexity.

5. HOW TO IMPROVE ESTELLE AND EDB

Following these two experiments, we can give some critical notes about the simulation technique we

used and about simulation tools in general. Along these experiments, we had similar evaluation requirements

and we have encountered similar modelling problems. These requirements correspond to an effective need in

real applications. Our criticism consists in stating the encountered difficulties in the modelling and evaluation

stages, and in giving suggestions to enhance the adequate specification languages and verification tools.

5.1. Language Requirements

The specification of real systems has shown the necessity to introduce new features. The most
important ones have been defined in the SSL language [17]. SSL is an ESTELLE-like language which is the
formalism used for the protocol verification software developed in the Eureka-Irena project. It emphasizes the
features of genericity for conciseness of the protocol specification and formal semantics in order to use
verification algorithms with Coloured Petri Nets [18]. The general definition of this language is out of the
scope of this paper.



This architecture is described in
SSL as follows:

(Firstly two groups, terminal and
computer, are defined and contain one
instance each)

terminals[3];

Duplication to 3 of the terminal group
instance (step 1 in Figure 10).

..

..

ASSOCIATE(computer,terminal,l_ptop)[4];

Point to point connections between the computer and all the terminal group instances. Then
duplication to 4 of the resulting structure (step 2).

ASSOCIATE(computer,computer,l_ring);

Ring establishment by connecting the computer instances (step 3).

The same architecture may be described in ESTELLE as follows:
ALL i: 1..4 DO IN IT computer[i] WITH computer_body;

ALL i: 1..4 DO

ALL j: 1..3

DO INIT terminal[i,j] with terminal_body;

ALL i: 1..4 DO

ALL j: 1..3

DO CONNECT terminal[i,j].ip TO computer[i].ip[j];

ALL i: 1..4 00

CONNECT sites[i].succ TO sites[(i mod 4)+1].pred ;

• Medium specification and access
In SSL, the link has some attributes such as its topology (since it defines a set of links), its

alphabet, and its discipline. In its timed version SSL includes the specification of the transit time by
means of standard probability law. As a link of SSL is a set of concrete links, the language provides
concise mechanisms such as an undeterministic wait of messages or a broadcast primitive. Here is
the continued example where a broadcast of the status_msg message is achieved by a computer
instance on the reception of any fail_msg message:

Figure 10 describes an example of
architecture which is composed of 4
computers and 12 terminals. Each
computer is connected to 3 terminals.
Computers communicate according to a
ring based protocol.

• Genericity
In SSL, the genericity is applied on processes and links. It means that we can define a set of

processes, called group in SSL, with a similar behaviour and similar connections. Unlike
ESTELLE, the SSL connections are defined between groups (i.e. generic entities) and not between
instances. This leads to the definition of generic links. Here is an example of an architecture
description in SSL and in ESTELLE.



SSL description
WHEN fail_msg ON l_ptop FROM ANY

BEGIN OUTPUT status_msg ON l_ptop TO ALL END;

ESTELLE description
ANY i:l..3 DO WHEN ip[i].fail_msg

BEGIN FOR j:=l TO 3 DO OUTPUT ip[j].status_msg; END;

• Object approach
The process and the processes group are a major part of the language. A process is similar to an object

and a group is similar to a class. It means that any group defines a type of the language. This type is not

equivalent to an interval or an enumeration type for it forbids the use of constants. The fundamental principle
of SSL is that a process knows only processes with which it interacts. Thus processes are never explicitly

designated. When necessary, names are transmitted inside messages and consequently the only name that a

process initially knows is its own name using a predefined variable (a very close approach to the one of the

object language). Here is the continued example where a computer instance send the ack_msg message to

the sender of the req_msg message:

SSL description

/* declaration of the term_ID variable as a groupe terminal type */
VAR term_Id: terminal;

WHEN req_msg ON l_ptop FROM term_ID

BEGIN OUTPUT Ack ON l_ptop TO term_ID END;

When a computer instance receives the req_msg message from any terminal instance, the identity of this

latter is stored in the term_ID variable. The computer instance uses this variable to reply to the sender.

ESTELLE description
ANY i:l..3 DO WHEN ip[i].req_msg

BEGIN OUTPUT ip[i].ack_msg END;

5.2. Tools requirements

• Probability events
The probability events correspond to real hypotheses in protocol modelling. For instance, host failure

and message loss events are submitted to given probability laws. In ESTELLE, only non-deterministic

executions may be associated to transitions. There is no way to specify the execution of a given transition

with a given probability. In our case, we have been led to write a Pascal procedure associated with a transition

so as to model probability events. For instance, the delivery or the loss of a message by the medium is

achieved according to a "random" function used in a Pascal procedure.

The ESTELLE simulation tools interpret the non-determinism in the execution of the conflicting

transitions by a random choice. If additional information (execution probabilities) is associated with

transitions, the probability events can be easily modelled. Such information may be handled at the simulation

tool level and need not be considered at the specification level. Moreover, this kind of information would

allow the development of performance analysis tools associated with ESTELLE. Some research works have

already been interested in a similar approach (EVEDA : variant of VEDA [19]).



• Message transit time
Usually, in the modelling of communication protocols, one neglects internal treatment time of

processes but takes into account the message transit time. Moreover, the message transit time is not
fixed and may vary according to a given probability law. This is essential for quantitative analysis of
communication protocols.

ESTELLE does not make any assumption on the execution time of the transitions. Therefore,
there is no way to specify an execution time only for emission transitions. ESTELLE
implementations provide particular interpretations of transition execution time. For instance, the
EDB tool allows to associate a time interval to all the transitions of a given ESTELLE module
instance. Non-determinism is used to choose a time value within the given interval. This does not
resolve our problem since the specified execution time can not be associated only with emission
transitions. In our case, to fulfill the hypothesis of a variable transit time, we have created a special
protocol (inside the MEDIUM) to ensure this functionality.

The suggestion we made about the message transit time is similar to that about probability

events. A tool may handle additional information associated with every transition to specify its

execution time. In this case, the specification of such an information associated only with emission

transitions allows the modelling of this functionality. In the same way, this information may be

handled at the simulation tool level.
The two previous suggestions (probability events and message execution time) can be used

together to model all the medium functionalities.

• Capture capability or the system time
The system time may be defined as the time with which the system (described by a protocol)

evolves. In ESTELLE, the delay values are assumed to be dynamically changed by a "time process"
which is independent of a specification. This means that the system progresses with respect to the
delay values and eventually with respect to the execution time of transitions (the latter is considered
implementation dependent from the standard point of view [11]). In our case, the execution of
transitions is immediate. Consequently, time progresses only when delayed transitions are executed

(i.e. when only delayed transitions are enabled in whole the system).
For simulation purposes, it has seemed essential to us to capture the system time (see Section

4). As it has been mentioned, the tuning of parameters is possible only if comparisons are done on
simulations having the same system time. Nevertheless, the EDB tool allows to fix a simulation time
related to the machine run-time.

It is worth offering simulation commands which allow the capture of the system time. Hence, a
user can fix a time for multiple simulations.

• Parametrization or simulations and automated computation of results
The evaluation of a protocol involves numerous simulations. These simulations differ about the

value of one or more parameters. Hence, it is useful to get the ability of automatically iterating
simulations. It would be interesting to support simulation session including: value series for the
parameters, expressions for outputs (with operators like average or maximum), etc. An advanced
feature could be the specification of a method to obtain an optimum value (e.g. dichotomy research,
interpolation method,...). The simulator must manage the appropriate simulations and output the
corresponding results.

In the case of our protocol evaluation, with a fixed value of NReem (retransmission number),
we are interested in the variation of bad detections according to the values of TPRED/TSUCC.

Such facilities are not available on the used tool, so we have been led to achieve "by hand" the

required simulations.



6. CONCLUSION

We have presented in this paper two algorithm evaluation experiments using the ESTELLE language

and the tool EDB. These experiments have pointed out the ability of modelling distributed algorithms with

ESTELLE and the capabilities of simulation with EDB.

However we have also reported some difficulties encountered during these experiments. On the one

hand, these difficulties result from some aspects of the language ESTELLE: the restricted definition of the

genericity (which excludes genericity of links) and the difficulty to express attributes of the media (transit
time, sequencing,.. .). On the other hand, the tool EDB should be improved to handle: optimization of the

observers, time associated to the execution of the model, iteration of simulations with statistical operators and

research of optimum.
In the EUREKA project IRENA, we are developing a software tool for protocol verification based on an

ESTELLE-like language, SSL, which includes all the improvemcnts shown here and some other ones in order

to combine verification by simulation and by formal methods based on Coloured Petri Nets.
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