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Abstract
The construction of symbolic reachability graphs is a useful technique for
reducing state explosion in High-level Petri nets. Such a reduction is obtained
by exploiting the symmetries of the whole net [1]. In this paper, we extend this
method to deal with partial symmetries. In a first time, we introduce an
example which shows the interest and the principles of our method. Then we
develop the general algorithm. Lastly we enumerate the properties of this
Extended Symbolic Reachability Graph, including the reachability
equivalence.
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Introduction

Numerous verification techniques of systems have been defined from the theory of
High-level Petri nets. The computation of reachability graphs is one of the most used,
however, it has to cope with combinatorial explosion problem in space and time.
Therefore we aim at reducing the size of the graph to be constructed, with regards to
some desired properties. The symmetrical technique is one of the most successful
since it gathers, into equivalence classes, the markings which cause the same
behavior of the system [8][9].  Among the related methods, the symbolic reachability
graph computation [1][2][4] has the following advantages: to be completely
automatizable, to define classes of transition firings, and to be applied in stochastic
analysis[3].

The former techniques exploit the existence of symmetries in the behavior of
systems. However, they do not deal efficiently with what we call "partially
symmetrical" systems. This is the case for a system, the behaviors of which
sometimes depend on the process identities (e.g. static priorities based on identities),
and sometimes not. With regards to such systems, the set of reachable symbolic
markings are nothing more than the set of reachable ordinary markings. In this
paper, we aim at extending the theoretical results brought out by [1] to take into
account such partially symmetrical systems.



The method presented here can be summarized by the following points: (1) partition
the nets, in particular the transitions, to a symmetrical part and an asymmetrical one;
(2) optionally, add to the symbolic marking the relevant information in order to
handle the firing of asymmetrical transitions; (3) re-define the symbolic firing rule
for the "asymmetrical" part of the net; (4) build an Extended Symbolic Reachability
Graph in such a way that the additional information is developed, only if it is
required.

The next sections are organized as follows: part 2 briefly recalls the principles of the
Symbolic Reachability Graph and highlights the limits of this approach through an
example; part 3 formally defines the Extended Symbolic Reachability Graph (ESRG)

and shows an algorithm for their constructions; part 4 brings out the main properties

of the ESRG; part 5 is our conclusion.

2. Motivations and Informal Presentation

The starting point of our development is the model of Well-formed Petri Nets (WN)
[1].  Such nets have the same expressive power as the common Colored Petri Nets
[9], but define the color management in a very rigorous syntax. In particular, color
domains and their associated functions are defined from classes of primitive objects
and from static subclasses of these objects. Classes gather objects having the same
nature, while static subclasses gather objects having the same behavior.

Example: one may define the class Process ={p1,p2,p3} to model three processes,

and may split Process into two static subclasses Interactive={p1,p2} and

Batch={p3}.

Roughly speaking, a standard symbolic marking is an equivalence class of ordinary
markings, where the equivalence relation is deduced from a set of "admissible

permutations of colors". The admissible permutations operate on classes. They
preserve (1) the static subclasses and (2) the successor relation on class, when
defined.

In the next section, a significant example is used to demonstrate the limits of this
method, in case of partial symmetries. Then, the last paragraphs of this section
present the construction principles of the "Extended Symbolic Reachability Graphs".

2.1. Example : a Critical Section

Let consider a set of processes which may access to a critical section. A process is in
one of the following four states: "idle", "wait", "global select" or “CS” (i.e. critical
section).

Each process may send a request for the access  of a critical section and each one
may know the other requests. Hence, each process evaluates independently which
one will have the access. The  conflict management is based on the identities of
processes such as the largest identification number is always the most important.
When a process accesses to the critical section, the other ones cannot issue a request.
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     Figure 2.1: critical section

The Well-formed Petri net of Figure
2.1 models the management of
requests. The WN formal definition is
recalled in annex.

Let C1={<1>,<2>,<3>} a class

of three processes. Let

C1
1={<1>}, C1

2={<2>} and

C1
3={<3>} be the three

elementary static subclasses of C1

(elementary means that each

subclass has only one element).

Moreover, X and Y are

projections of codomain C1; S-X

allows the testing of all the

objects of C1 , except of the one

which is represented by  X.

For sake of clarity, we limit the

number of nodes in the

reachability graph, by assuming

that t3 and t4 transitions have a

higher priority order than that of

t1.

The "idle" state is the initial state for all the processes. The conflict management is
modeled by three (shared) places: the "free" place is used to store the identities of the
processes which have not sent a request, the "wait" place models the current requests
in terms of process identities; the "global select" place is used to solve conflicts. The
access  to the critical section is modeled by the “CS” place.  Initially, the "free" place
is set to all the colors of processes meaning that there is no request.

The t1 transition models the sending of a request from any X process, therefore its
firing removes an X color from the "idle" and "free" places and adds the same color
into the "wait" place. The t2 transition models the fact that a request becomes known
by the whole set of processes: its firing removes an X color from the "wait" place and
adds it into the "global select" place. The conflict management is modeled by two
transitions: t3 and t4. In case of several colors in the "global select" place, only the t4
transition is firable; its goal is to compare two process identities of the  "global
select" place such as the color having the largest number is kept, while the other
changes to update the "free" and "idle" places. When there is only one token in the
"global select" place and all the other colors are in the "free" place, only the t3
transition is firable. This last transition models the access to the critical section by
the selected X process, therefore its firing removes an X color from the "global
select" place, removes the other ones from the "free" places and adds the X color into
the “CS” place. The t5 transition models the end of the access, therefore its firing
resets the "free" and "idle" places to their initial marking.



It is worth noting that all the processes have symmetrical behaviors, except when the
t4 transition become firable. Indeed, this transition is the only one, the firing of
which depends on the process identities. Let us compute the set of "admissible
permutations of colors", with regards to the C1 class and the guard of the t4
transition:

The t4 guard is defined by guard[t4]:   C1 × C1 →{T, F}

   (x,y) → x < y
Let s be a permutation of the C1's colors. Accordingly to [8],

the s permutation is enabled if and only if guard[t4]ο<s,s>= guard[t4].
But: guard[t4] ο <s,s>: (x,y) → s(x) < s(y)
and there is only one permutation which preserves an ordering over a set:
the identity function.

We conclude that the set of admissible permutations for the C1 class is reduced to the
identity function. This leads us to define as many static subclasses as the C1
cardinality is. Such a splitting is very penalizing because each equivalence class will
have only one element. Hence, the resulting standard symbolic reachability graph
will have the same size as the ordinary reachability graph. This drawback is common
to all the current symmetrical techniques [1][8].

In this paper, we propose to cope with this problem by distinguishing the
"asymmetrical" part from the remainder of the net. Such an idea seems to be
interesting with regards to our claiming that very often the symmetrical part of a
model is larger than the asymmetrical one. We now introduce the notion of Extended

Symbolic Reachability Graph (ESRG).

2.2. Presentation of Extended Symbolic Reachability Graphs

Our method is based on the structural detection of "distinguished classes", which are
classes for which asymmetrical behaviors occur. In the following, only one
distinguished class is considered since the extension to several of these classes do not
present any theoretical difficulty. Moreover, we assume that the distinguished class is
is partition in as many static subclasses as the number of objects in the class.

 In order to present our method, we now follow the following four stages:
- the partitioning of the net in a symmetrical part and an asymmetrical part,
- the representation of extended symbolic markings,
- the representation of the extended symbolic firing rule,
- the technique to build Extended Symbolic Reachability Graphs.

2.2.1 Partition the Transitions

The use of the operators: "<", "≤", ">" and "≥" cause asymmetrical behaviors, since
they need to distinguish the objects of the tested classes. In terms of well-formed
nets, such operators are expressed with membership tests, according to static
subclasses. So the asymmetrical property of the Well-formed Nets can be featured by
the specification of expressions, namely asymmetrical expressions, having
membership tests.

In WN, the instances of variables are local to transitions, therefore, we use the term
of  asymmetrical variable with respect to a transition. This means that the
considered variable is used in an asymmetrical expression, either in predicate
functions associated with the arcs adjacent to the transition or in the transition's
guard. Such a transition is called an asymmetrical transition. A transition which is
not asymmetric is called a symmetrical transition. The partition of the set of
transitions will allow us to consider two subnets, sharing the same places: the
asymmetrical subnet  and the symmetrical subnet. The two subnets differ from the
type of their transitions, either symmetrical or asymmetrical, and from the fact that a
specific symbolic firing rule is associated with each of them (see section 2.2.3).



Example of transition partition

In the net of Figure 2.1, X and Y are asymmetrical variables, with respect to the

guard of t4 and its "<" operator. The t1, t2, t3 and t5 are symmetrical transitions.

2.2.2 Extended Symbolic Markings

An extended symbolic marking (ESM) may be viewed as a symbolic marking,
optionally associated with a set of eventualities.

A standard symbolic marking is a marking, the colors of which are gathered into
equivalence classes, forgetting the identity of colors but keeping the cardinality of
each represented equivalence class. Such collections are defined from the notion of
dynamic subclasses, which are dynamic decompositions of static subclasses of
objects, in order to take into account the distribution of objects between places. In
this approach, any marking is defined in terms of tuples made of dynamic subclasses,
but no more in terms of colors. The formal definition of symbolic markings may be
found in [1][4].

A set of eventualities are the set of possible partial instances, with respect to a
standard symbolic marking and to a distinguished class. Hence, one has the ability to
represent the behaviors of partially symmetrical systems.

Example

Figure 2.2 represents an example of extended symbolic marking, which corresponds

to the WN of Figure 2.1. It is composed of two parts:

   Figure 2.2:

  An extended

symbolic marking

( Z  , 0  , Z  , 0,  Z )1

|Z |=11

2

|Z |=22

E1 Z ={1,2}2Z ={3}1

E2 Z ={1,3}2Z ={2}1

E3 Z ={2,3}2Z ={1}1

1

(idle,wait,g.select,CS,free)

• The grey part corresponds to the classical

representation of a symbolic marking. The C1 class is

split into two dynamic subclasses, Z1 and Z2 , of

cardinality 1 and 2 respectively.  This means that two

processes have sent a request (see "global select")

while the third one is in the idle state (see the "idle"

and "free"). Thus, there is only one process that has

not sent a request.

• The white part of the extended symbolic marking

corresponds to the three associated eventualities: E1,

E2 and E3. The Z1 and Z2 dynamic subclasses are

instantiated, since the C1 class is a distinguished

class. This leads to three representations E1, E2 and

E3, called eventualities.

It is worth noting that eventualities are not markings, but partial instances of ESMs.
However, one of our aim is to represent them only when it is required. In fact, the
necessity to represent them is conducted by the fact that two cases may occur, with
respect to an extended symbolic marking,:
(1) some asymmetrical transitions are enabled from at least one of the eventualities;
(2) some of the eventualities are not reachable.



In order to decide of the construction of ESM eventualities, we now define the notion
of saturation and uniformity which are checked during the construction of each
ESM:

 Definition 2.1.: Saturated and Uniform ESMs

An ESM is said to be saturated if and only if all its eventualities are

reachable; it is said to be uniform if and only if the objects of the distinguished

class are gathered in the same place.

The following property highlights two cases for which the eventuality representation
of ESMs can be useless. In this paper and for reasons of clarity, the initial ESM is
assumed to be uniform.

Property 2.1.:

An ESM can be represented by its underlying symbolic marking if one of the

two following conditions hold:

(1) an ESM is saturated and there is no asymmetrical transition enabled from

it ,

(2) an ESM is uniform.

Effectively, in the first condition the whole set of eventualities of the ESM are
reachable and enabled by the same symbolic instances of (symmetrical) transitions,
hence, the underlying symbolic marking represents the ESM completely; in the
second case, all the elements of the distinguished class are gathered in the same
dynamic subclass, leading to reduce the set of eventualities to only one item.

The following property, which is directly inherited from the SMG theory, will be
used in the general algorithm for the construction of ESRGs.

Property 2.2.: Propagation of Saturation

An ESM which is reached from a saturated ESM, by means of a symmetrical

transition firing, is also saturated.

2.2.3 Extended Symbolic Firing Rules

As for standard symbolic markings, the construction of an extended symbolic
marking can be performed without computing the underlying reachable marking.
The condition is that the extended symbolic firing rule takes an ESM into account, in
order to build the resulting ESM representations directly.

Our method to define a suitable symbolic firing rule is based on the idea that the
subclasses of the distinguished class must be introduced only to deal with
asymmetrical transitions. Thus, we choose to build the standard symbolic marking of
any ESM without considering the decomposition of the distinguished class in static
subclasses, however, when necessary, another standard symbolic representation can
be computed from it by considering any given eventuality. Hence, the enabling test
can always be performed from a standard symbolic representation of ESMs,

The extended symbolic firing rule will be used to build a graph in which the nodes
are the reachable ESMs . The extended firing rule will be used to define the arcs
linking those nodes. From a graph point of view, an ESM must be viewed as a set of
nodes: one for each standard symbolic marking or eventuality. Thus, there are four
possibilities of links between ESMs: from a SM to another SM, from an E to a SM,
from an E to another E and from an SM to an E.



Three types of rules are defined:

• the generic symmetrical firing occurs for symmetrical transitions, if the extended
symbolic marking to take into account is saturated. This case directly relates from the
standard symbolic firing; the source and the target are standard symbolic markings;

• the instantiated symmetrical firing occurs also for symmetrical transitions, but in
case of an absence of saturation. In this case, the source is a reachable eventuality,
while the target is either an eventuality or a standard symbolic marking , depending
on the ability to make the eventualities absent or not. Due to the symmetrical
property of the transition, any reachable eventuality has the same ability of firings
and reaches the same extended symbolic markings.

• the (instantiated) asymmetrical firing occurs for asymmetrical transitions; here
again, the source is a reachable eventuality, while the target is either an eventuality
or a standard symbolic marking. Due to the asymmetrical property of the transition,
the eventualities of an ESM may not have the same ability of firings (mixed
existence of dead and live eventualities, target nodes may be different...).

Table 2.4 summarizes the types of firings according to types of transitions and
marking conditions.

      type of transitions

marking conditions

symmetrical asymmetrical

saturated generic symmetrical (instantiated) asymmetrical

not saturated instantiated symmetrical (instantiated) asymmetrical

Table 2.4: Use of Firing Types

Example

In Figure 2.5, Me4, Me5 and Me10 are assumed to be reachable ESMs of the net

of Figure 2.1. Me4 and Me5 are assumed to be saturated, therefore their eventualities

are not represented.
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3
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|Z |=11
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|Z |=22

E 1 Z ={1,2}2Z ={3}1

E 2 Z ={1,3}2Z ={2}1

E 3 Z ={2,3}2Z ={1}1

1
1t2,Z

Figure 2.5:

    Example of Extended Symbolic Firings

From Me4, the t2 symmetrical transition is

enabled. Since there is no asymmetrical

transition enabled from Me4, a generic

symmetrical firing can occur by t2. Hence,

the firing of t2 takes into account one item

of Z1, isolated in the Z11 dynamic subclass.

From Me5, the t4 asymmetrical transition

is enabled, therefore the Me5's

eventualities must be considered. Each of

these eventualities is the source of a firing

of t4: from E1: X=<1> and Y=<2>, from

E2: X=<1> and Y=<3>, from E3: X=<2>

and Y=<3>.



2.2.4. Extended Symbolic Reachability Graph

The definitions of extended symbolic markings and extended symbolic firing rules
allow us to build Extended Symbolic Reachability Graphs (see an efficient algorithm
in section 3.4).

Example

Figure 2.6 represents the extended symbolic graph of the model depicted in Figure
2.1. There are two types of arcs: symbolic arcs (see bold arcs) link two symbolic
markings, while instantiated arcs (see standard arcs) link an eventuality of an
extended symbolic marking to another node.
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There are 11 nodes in this graph while the corresponding Symbolic Reachability
Graph contains 30 markings. In this graph, all the extended symbolic markings are
saturated. Indeed, each one is the target of a saturated symbolic node. Only, the Me5,
Me6 and Me7 extended symbolic markings make the t4 transition firable, therefore

all the arcs are symbolic, except of Me5 to Me10, Me6 to Me7 and Me7 to Me8,

which are instantiated arcs. Moreover, on can note that Me0, Me3 and Me6 are

uniform. Since it is the case for Me6, only the eventualities of Me5 and Me7 have to

be represented.
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ESRG of the net

  of Figure 2.1



3. Extended Symbolic Reachability Graph

In this part, we define formally the stages for the construction of an Extended
Symbolic Reachability Graph.

3.1. Partition of Well-formed Nets

The formal definition of Well-formed Nets is recalled in appendix. We first
define the notion of "asymmetrical variables", which are variables used in
membership tests. This leads to define the notions of "asymmetrical transition"
and "asymmetrical subnet" of the WN. The other part of the net and its
transitions are named "symmetrical". Let us recall that the decomposition in
static subclasses for the distinguished class is not considered in the symmetrical
subnet.

Definition 3.1 Asymmetrical Variable With Respect to a Predicate Function or
a Guard

Let Cd be the distinguished class.

A variable X defined on Cd is said to be asymmetrical if and only if there

exists a predicate function or a guard such that one of the two following
conditions hold:

(i)  the belonging of X to any static subclass of Cd is tested,
(ii) X is in relation with an asymmetrical variable, by the use of one of the
following Well-formed Net's operator: =,≠,⊕.

In the following, such predicate function or guard are said to be asymmetrical.

Definition 3.2 Asymmetrical and Symmetrical transitions
Let t be a transition of a Well-formed Net

t is said to be asymmetrical  if and only if one of the three following
conditions hold:
(i) there is a place p of P such that there is an asymmetrical predicate

function in W-(p,t) or in W+(p,t) .
(ii) the guard of t is asymmetrical .

(iii) there is a place p of P such that there is a diffusion function in W-(p,t)

or in W+(p,t), defined on the distinguished class.

   t is said to be symmetrical  if and only if t is not asymmetrical .

Definition 3.3 Asymmetrical Subnet and Symmetrical Subnet of WN

Let WN=<P,Tasym∪Tsym,C,W-,W+,φ,π,M0>.

- The symmetrical subnet of WN is the <P,Tsym,C,W-,W+,φ,π,M0> tuple, in

which the partition of WN classes in static subclasses is preserved, except for
Cd. In that subnet, Cd is considered without static subclass decomposition.

- The asymmetrical subnet of WN is the <P,Tasym,C,W-,W+,φ,π,M0> tuple,

in which the partition of WN classes  in static subclasses is preserved.

3.2. Extended Symbolic Markings

An extended symbolic marking is an equivalence class of markings. Like symbolic
marking, the definition of equivalence is based on the constraint of "admissible
permutations of objects", meaning that permutations must preserve the belonging to
static subclasses". So, two markings are equivalent if and only if they are equal,
according to any admissible permutation. Unlike standard symbolic marking, this
constraint does not concern the distinguished classes, inducing the definition of
bigger equivalence classes. One may report to [1][4] in order to have a formal
definition of such equivalence relation.



The representation of an extended symbolic marking is composed of two parts: a
representation close from this of standard symbolic marking and optionally, a set of
"eventualities" which are defined as instances of the standard symbolic marking over
the distinguished class.

Definition 3.4 Representation of an Extended Symbolic Marking
Let Me be an extended symbolic marking.

A representation of Me is a pair: Re = <R, E> where,

(i)    R= <m,card,d,marq> is the representation of a standard symbolic
marking;

  let us recall that:
- m maps each class in an index of "dynamic subclasses". Dynamic subclasses
partition the objects of any Ci class according to a distribution of these objects

in places, with respect to a marking. Their names are built as follows: Zi
j

denotes the jth of the Ci class. Moreover, the set of the dynamic subclasses of

Cd is denoted:

d C  = {Zi
j: 0<j�m(d)} .

- card features the number of objects represented by each dynamic subclass.
- d maps each dynamic subclass in a number qualifying the corresponding
static subclass (if there is some).
- marq maps each place in a tuple of dynamic subclasses;

(ii) 
  

  E  =  { E  : C d →  Cd  /   | -1(Zd
j
)| =  card (Zd

j
) }    or = ∅EE

In the following:
An extended symbolic marking is denoted by a pair Me=<M,E> where M is the

underlying standard symbolic marking and E is the associated set of

eventualities. Moreover, Me.M, Me.E denotes the components of Me. Similarly,

R.m,  R.card, R.d, R.marq denotes the components of R.

One of the major property of standard symbolic markings is that a canonical
expression can be defined for each one, allowing easy comparisons. A canonical
expression can be also defined for an extended symbolic marking:

Property 3.1 Canonical Representation
Let Me=<M,E> be an extended symbolic marking.

 Re = <R, E> is the canonical representation of Me if and only if R is the
canonical expression of M.

The proof is obvious since E is either empty or may be defined from M, without
ambiguity. As a consequence, the comparison of two ESMs is performed directly
on their corresponding standard symbolic markings.



3.3. Extended Symbolic Firing Rules

We now show the extensions of the standard symbolic firing rule, with respect to the
symmetrical subnet and to the asymmetrical one of a Well-formed Net. All the
symbolic firing definitions are based on the notion of symbolic instances which is
recalled in appendix.  Let I be the set of class indexes and J  be the set of class
indexes except of "d".

 Like the standard symbolic firing rule, all the types of firings are performed in four
stages from an extended symbolic marking: the first stage is the splitting of the
marking representation, in order to isolate any combination of symbolic colors that
may be used for a firing, the second stage consists in the effective firings, with
respect to symbolic colors of transitions, yielding for each one an extended symbolic
marking; during the third stage, a minimal representation is obtained, by grouping
dynamical subclasses of a same class if they have the same distribution on places; the
fourth stage computes the canonical representations for each resulting marking.

A generic symmetrical firing occurs from a standard symbolic marking to another
one, therefore its definition refers to the standard symbolic firing rule.  An example
of such classical firing can be extracted from Figure 3.1 by only considering the
underlying symbolic markings of represented ESMs and bold arcs.

Definition 3.5 Generic Symmetrical Firing
Let Me=<M,E> and Me'=<M',E'> be two  extended symbolic markings.

Let t be a symmetrical transition such that   : C(t)=ΠCα(i) ,

           
i∈Bag(I)

We say that Me'.M' is reached from Me.M by the firing of t for the

(ΠZα(i)
λ(i),µ(i)) symbolic instance (i∈Bag(I)),  if and only if

Me.M[ (t, ΠZα(i)
λ(i),µ(i)) >Me'.M' is a standard symbolic firing.

We denote this extended symbolic firing by : Me.M [(t,c)> Mec'.M',

where Mec' is the canonical representation of Me',

and where c is a product of dynamic  subclasses.

 The following definition concerns the instantiated symmetrical firing. It occurs
from an eventuality of an ESM and reaches an eventuality of another ESM. Despite
the fact that the static subclasses of Cd are not considered in the symmetrical subnet,

such type of firing deals with eventualities, causing us to isolate the dynamic
subclasses of Cd during the firing.

Definition 3.6 Instantiated Symmetrical Firing
Let Me=<M,E> and Me'=<M',E'> be two  extended symbolic markings.

Let E (resp. E') be an eventuality of Me.E (resp. Me'.E').

Let t be a symmetrical transition such that: C(t)=ΠCα(j) x (Cd)n,  (j∈Bag(J)).

We say that Me'.E' is reached from Me.E by the firing of t for the

(ΠZα(j)
λ(j),µ(j) xΠcδ(k)) instance (j∈Bag(J), k∈1..n), if and only if  the four

following points hold :

(1) cδ(k) ∈Cd,

(2) M[ (t, ΠZα(j)
λ(j),µ(j) x ΠZd

λ(k),β(k)) >M' ,

(3) E(cδ(k)) = Zd
λ(k),β(k)

(4) cδ(k) = cδ(k') if and only if  β(k)=β(k').

We denote this extended symbolic firing by : Me.E [(t,c)> Mec'.{Ec'},

where Mec' and Ec' are the canonical representations of Me' and E',

and where c is a product of dynamic  subclasses.



Comments :
(3) means that the M' standard symbolic marking is reached from M by the standard

symbolic firing of the t transition for the (ΠZα(j)
λ(j),µ(j) x ΠZd

λ(k),β(k)) instance;

(4) means that the kth instance on the Cd class corresponds to the kth instanciated

dynamic  subclass of Cd; (5) means that some of the Cd's instances may correspond

to the same color.

The operational scheme for the former definition needs an algorithmic expression
which is not reported in this paper. However, we explain it through the following
example.

Example:

Let us consider the net a Figure 3.1 with its t1 symmetrical transition. Let us
consider the Me current marking of Figure 3.2. Let us assume that only the E1
eventuality is reachable from the initial extended symbolic marking (Me is not
saturated).
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Comments: To the E1 eventuality, corresponds the two Es1 and Es2 eventualities

in the Mes split representation. Since the t1 symmetrical transition is enabled from

Mes.Ms for the Z1
1 symbolic instance, it is also enabled from any eventuality of

Mes.E, in particular Es1 and Es2.  Z1
1 refers respectively to {c} in Es1 and to {b} in

Es2. So, the canonical Mec extended symbolic marking may be reached from Me, by

one of the two (instantiated) symmetrical firings of t1, one for the instance <b> and

the other for <c>.

We now present the firing rule for an asymmetrical transition. It occurs from an
eventuality of an ESM to another eventuality of an ESM. The static subclasses of the
distinguished class are taken into account to test the transition, therefore, we
introduce first the notion of split marking with respect to an ESM.

Definition 3.7 Split marking wrt. an eventuality
Let Me=<M,E> be an  extended symbolic marking.

Let E be an eventuality of Me.E.
M is a symbolic marking of the symmetrical net, therefore M may be
transformed by partitioning the static subclasses of Cd in dynamic subclasses

(one for each color).
ME is called the split representation of Me.M wrt. E.

  Definition 3.8 Asymmetrical firing
Let Me=<M,E> and Me'=<M',E'> be two  extended symbolic markings.

Let E (resp. E') be an eventuality of Me.E (resp. Me'.E).

Let t be an asymmetrical transition such that C(t)=Π Cα(i),
We say that Me'.E' is reached from Me.E by the firing of t for the

(ΠZα(j)
λ(j),µ(j) x ΠCd

δ(k)) symbolic instance,  if and only if  the three

following points hold :
(1) i∈Βag(I), j∈Βag(J)

(2) ME[ (t, ΠZα(i)
λ(i),µ(i) x ΠCd

δ(k)) >M'E'c
,

(3) M'E'c is the canonical representation of M'E'.

We denote this extended symbolic firing by : Me.E [(t,c)> Mec'.Ec',

where Mec' and Ec' are the canonical representations of Me' and E',

and c is a product of dynamic  subclasses.

 The asymmetrical firing stages are similar to these of the instantiated symmetrical
firing. Therefore one may refer to Figure 5.2 in order to have an example.

3.4. Construction of Extended Symbolic Reachability Graph

Our algorithm to build a standard symbolic reachability graph consists of computing
the resulting enabled firings and the resulting symbolic marking, from any reachable
symbolic marking. The implicit stack of a recursive function call is used to store the
computed SMs before analyzing them. The canonical representation of symbolic
markings allows one to decide whether a computed SM has been already computed.
Such algorithm ends when all the different computed SM are analyzed.



The construction of an ESRG with the same strategy may cause redundancies of
reachability. Effectively, an instantiated symmetrical firing may be computed before
having the ability to produce a generic symmetrical firing, covering it. To cope with
this problem, we propose to privilege generic symmetrical firings with respect to the
other kinds of firings. Our technique consists of handling an explicit stack of ESM to
store any new ESM. The implicit stack of the recursion is used to store ESMs once
the firings of corresponding symmetrical transitions are achieved.

The algorithm is the following, with respect to a global variable G, representing the
computed graph:

Compute_ESRG(Me0 )

 Put Me0 in G

Develop_ESM(Me0)

Remove_unreachable_E(G)

End_Compute_ESRG.

Comments:

Me0 is put in G, then the "Develop_ESM" function develops the graph. The

Remove_unreachable_E functions removes the unreachable eventualities of the

computed ESM. Indeed, one cannot decide of the reachability of eventualities during

the construction of an ESM, with some exceptions due to saturation or uniformity

properties.

Develop_ESM(Me)

for_all t such that symmetrical(t) For_all (t,c) such_that 
M  .M ' t, ĉ

e M  .M e
(     ) ' 

begin if saturated(Me) or uniform(Me)

  
then begin add_in_G (

M  .M ' t, ĉ
e M  .M e

(     ) ' 
)

if saturated(Me) then saturated(Me') end

  
else if uniform(Me') then for_all E of s add_in_G (

M  .M ' t, ĉ
e M  .M e

(     ) ' 
)

else
 
add_in (G,

M  .M ' t, ĉ
e M  .{E } e

(     ) ' 
)

  if new_in_G(Me') then push_in_stack(Me')

end (for_all)

while not empty_stack() do begin pop_from_stack(Me')

Develop_ESM(Me')
end (while)



For_all asymmetrical(t) For_all (t,c) such_that 
M  .M ' t, ĉ

e M  .M e
(     ) ' 

begin if uniform(Me) then  if uniform(Me')

 
then

 
begin add_in_G(

M  .M ' t, ĉ
e M  .M e

(     ) ' 
)

   if saturated(Me) then saturated(Me') end

else add_in_G(
M  .M 

t, ĉ
e

(     )
M  ..E ' e ' 

)
 

else if uniform(Me')  then begin add_in_G(
M  .E 

t, ĉ
e

(     )
M  .M ' e ' 

)

   if saturated(Me) then saturated(Me') end

else add_in_G(
M  .E 

t, ĉ
e

(     )
' M  .Ee ' 

)

if new_in_G(Me') then Develop_ESM(Me')

end(For_all)

if saturated(Me) and if no t such_that enabled(Me,t) then

for_all Me
.
E such_that no

M  .E 
t, ĉ

e
(     )

M  .M ' e ' 
 do remove_node(E)

End_Develop_ESM

Comments: "Develop_ESM" is a recursive function, dealing first with enabled

symmetrical transitions. Any new enabled firing is added in G as well as the

resulting marking if it is a new one. Any new marking is stored in the explicit stack.

Before dealing with enabled asymmetrical firings, an explicit stack is emptied to

search markings having other symmetrical firings. Lastly, if there is no enabled

asymmetrical transition from a current ESM, The ESM's eventualities are removed.

In order to prepare the Remove_unreachable_E call, an input arc counter is
associated with any eventuality or uniform ESM, is updated during the
Develop_ESM call. With the assumption that the initial extended symbolic marking
is uniform, we can associate with a counter, the value of which is 1.

Remove_unreachable_E()
while_there_exists S such_that cnt(S)=0 do

remove_node(S)

For_all S'such_that S→S' decrement_cnt(S)
if no_eventuality(S) then remove_ESM(S)

End_Remove_unreachable_E

Example

Let us perform the ESRG of Figure 2.6:
From the Me0 initial extended symbolic marking, the 1 to 8 firings allow the

construction of the six following ESMs: Me1, Me8, Me2, Me10, Me3, Me4, Me5 and

Me6. All these firings are of generic symmetrical type. Since Me6 does not lead to

any symmetrical firing, the computation deals with Me10. Number 9 firing is then

performed, leading to Me7. Since Me7 does not lead to any symmetrical firing, the

computation deals with Me8. Number 10 firing yields Me9, then number 11 firing

reaches the initial Me0. At this step, all the symmetrical firings are completed and

the computation may deal with the asymmetrical firing from Me5, Me6 and Me7.



4. Properties of the Extended Symbolic Reachability Graph

In this section, the main properties of the Extended Symbolic Reachability Graph are
enumerated. From a graph point of view, the inclusion of eventualities according to
some symbolic markings induces the existence of implicit arcs. Therefore, we must
re-define the classical notions of the paths and circuits in a ESRG, before studying
the preservation of the major properties of reachable reachability graphs. In a first
time, we analyze the firing sequence property and the reachability property. Then,
the property on states and on transitions are considered. For sake of concision, the
proves are not reported in this paper: see [12]. Moreover, similar proofs may be
found in [4][11]. The properties are given, with respect to a given Well-formed Net.

4.1. Paths of an ESRG

The following property expresses that an extended symbolic path is built from the
arcs of the ESRG and from the relation of inclusion between eventualities and
symbolic markings.

Definition 4.1 Extended symbolic path and circuit  in ESRG
Let us consider the following ordered set of arcs of the ESRG:

ϕ={S0 →S1 , S1'→S2 , ... , S'n-1→Sn }

The ϕ set is said to be a path of the ESRG if and only if one of the three
properties hold:
∀Si , Si', i∈1..n,

-  Si = Si'
 ,

-  Si is an eventuality of Si'
 ,

-  Si' is an eventuality of Si
 .

Moreover, the ϕ set is a circuit if and only if the two properties hold:

-  ϕ  is a path
-  S0 = Sn.

Notation
Let t be a transition, and S and S'  be two nodes of the ESRG.

t, ĉ
S S ' (     )

represents a extended symbolic arc reaching S' from S, labeled by (t,c).

S Sϕ ' 
 
represents an extended symbolic path, ϕ, reaching S ' from S.

M(δ > M' represents a sequence of standard symbolic firings, δ,  reaching M’ from M .

M[(t,c) > M' represents a standard symbolic firing of t for the c instance, reaching M’

from M .

M� S means that M is an ordinary marking and it is represented by the S node of the
ESRG.
M[(t,c) > M' represents an ordinary firing, reaching M' from M.

M[σ > M' represents a sequence of ordinary firings, reaching M' from M.
[M0> is the set of reachable marking from M0. Me0 is the initial extended marking.



4.2. Firing and Reachability Properties

The first property expresses that any ordinary firing sequence is represented by an
extended symbolic path. The second states the relationship between extended
symbolic arc and ordinary  firing.

Proposition 4.1 Preservation of firing sequences
Let  M and M' be two ordinary markings and
let  σ be such that: M[σ>M',

then, ∃:
S Sϕ ' 

 with M∈S and M'∈S' .

Proposition 4.2 Relationship between extended symbolic arc and ordinary

firing.

Let 

t, ĉ
S S ' (     )

 
be an arc of the ESRG, then:

∀M∈S , ∃M'∈S' , ∃c∈C(t)  | M[(t,c)>M'.

Remark

Unlike to SMG, the knowledge of an extended symbolic firing sequence in a
ESRG does not allow to find the equivalent ordinary firing sequences. In fact, the
ability to preserve firing sequences concerns transitions, but not their instances.
This is due to our wishes of concision in the representation of ESRG and to our
focusing on the preservation of the major property which is the reachability
property. However, this leads us to define only sufficient conditions for more
accurate properties (see property on states §4.3 and on transitions §4.4).

The following property expresses that any ordinary marking of a ESM is reachable
from any marking belonging to the initial ESM.

Proposition 4.3 Reachability

Let  S be a node of the ESRG.

∀M∈S , ∃ σ such that: M0[σ>M.

The former properties, on reachability and firing sequence, can be summarized as
follows:

Proposition 4.4 Reachability equivalence
An ordinary marking is reachable if and only if it is represented by a node of
the ESRG.



4.3. Properties on States

In this section, we study "home space properties" and "dead marking" properties. Let
us recall the following definitions: (1) a set of markings is said to be "home space",
if and only if from any node, one of its marking is reachable; (2) a marking is said to
be a dead marking, if and only if it does not have any successor (i.e. there is no
enabled transition from it). The following property expresses a sufficient condition
for a node to represent a home space of markings.

Proposition 4.5 Home space of markings

 Let S be a node of the ESRG and M(S) the set of ordinary markings

represented by S.

M(S) is said to be a home space if the following path belongs to the ESRG:

{S '= S Sϕg S ' S '= S}ϕi
,m m n1 with,

- ϕg is a path, the arcs of which corresponds to generic symmetrical firings;
- ϕi is a path, any arc of which corresponds to either an instantiated
symmetrical firing or an asymmetrical firing.
- Optionally, ϕg or ϕi may not exist.

Proposition 4.6 Unavoidable home space of markings

Let S be a node of the ESRG and M(S) the set of ordinary markings

represented by S.
 M(S) is said to be an unavoidable home space if the two following points
hold :
- M(S) is a home space of markings ,
- S belongs to all the circuits of the ESRG.

Proposition 4.7 Dead marking (i.e. pseudo liveness)

Let M be an ordinary marking reachable from M0.

M is said to be dead if and only if there is no output arc from the eventuality or
the standard symbolic marking which represent it.

4.4. Properties on Transitions

Several definitions of liveness exist. In this section, we deal with transition and their
properties of liveness and quasi-liveness. Let us recall that: a transition is quasi-live
if and only if it is enabled from at least one ordinary reachable marking; a transition
is "live" if and only if, from any ordinary reachable marking, there is a sequence of
enabled firings containing it.

Proposition 5.7 Quasi-liveness
Let t be a transition.
t is quasi-live if there is an arc , the label of which contains t.

Proposition 5.8 Liveness
Let t be a transition.
t is live if the three following points hold: (1) t  is quasi-live; (2) M0 is

uniform; (3) M0 represents a home space of markings.



5. Conclusion

The technique of Extended Symbolic Reachability Graphs (ESRG) is derived from
the symbolic theory, based on Well-formed Nets. By relaxing the notion of
admissible permutations of objects in static subclasses, we have extended the notion
of equivalence classes of objects, to take into account the asymmetrical behavior
caused by some classes. Hence, symbolic markings may be partially unfolded to fire
asymmetrical transitions in an instantiated way, while symmetrical transitions are
fired generically. The fact that the unfolding technique is only partial and
dynamically performed (only when necessary) induces that the ESRG theory allows
one to build more reduce graphs than with the classical symbolic theory.

Like for standard Symbolic Reachability Graph, an algorithm which computes
ESRG, automatically and efficiently, has been highlighted. Finally, we have shown
that the reachability property of markings is preserved on such graph, hence, all the
safety properties can be directly checked. However, the wished concise representation
of ESRGs has caused that we can obtain only sufficient conditions for more accurate
properties like home space and liveness properties. Our aim is now to enlarge the
field of the preserved properties, keeping the same ability to deal with partially
symmetrical systems.
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Appendix

Definition Well-formed Nets

A Well-formed Net is a height tuple WN=<P,T,C,W-,W+,φ,π, M0>.

Let us recall that P is the set of places, T if the set of transitions,

C={C1,...,Ck} is the set of classes of objects, W-and W+, are respectively the

backward and the forward incidence functions, featuring the input and output

arcs of transitions, φ features the guards of transitions, π is a transition
priority function, M0 is the initial marking function.

Let C(r)=ΠCr(α) be the color domain of any r element of P∪T. Moreover, let

us recall that a multiset b, over a set A, is a function from A to  , i.e. b∈ (A
→ ) and that Bag(A) denotes the set of all the multisets over A. Hence, the

following definitions hold:  W- and W+ map C(t) in Bag(C(p)), for all t of T

and p of P; φ maps C(t) in {true,false}; π  maps T in the set of integer values
and M0(p) associates with each p of P a multiset of Bag(C(p)).

Let us consider that any Ci class of objects is partitioned in static subclasses,

the names of which is Ci
j if j is the jth subclass of Ci. For reasons on clarity,

we assume in this paper, that the considered classes are not ordered.

A colour function is defined as a linear combination of tuples of functions.
Such last functions are defined on classes and are either constant functions,
identity functions, diffusion functions (i.e. the codomain is all the elements of
the considered class) or successor functions (for ordered classes).
The set of variables bound to a transition is the union of the variables used in
the colour functions which valuates the arcs incident to the transition. The
colour domain of any t transition may be defined using such notion of
variables: C(t)=Πv� Variables(t)C(v) , where C(v)� C is the definition domain

of the v variable and where variables(t) is the set of variables bound to  t. An
element of C(t) is called an instance of t.

Definition Standard symbolic instances
Let I be the set of class indexes Let t be a transition, the color domain of which
is   C(t) = ΠCα(i) (i∈Bag(I) is used to index the products and Cα(i)∈C). Let M

be a standard symbolic marking and R a symbolic representation of M.

We say that (ΠZα(i)
λ(i),µ(i))  is  a symbolic instance for t wrt. R, if and only if

the following points hold :

- α(i)≤k , is an index of class.

- λ(i)≤R.m(α(i)) , is an index of dynamic  subclass, wrt. Cα(i).

- µ(i)≤R.card(Zα(i)
λ(i)) , is a number of object, wrt. Zα(i)

λ(i).

Thus, a symbolic instance for a transition is a product of dynamic subclasses. A

dynamic subclass may occur several times: if some µ values are equal, with

respect to the same dynamic subclasses, then the same object is referred . In

practise, one can note that (λ) and (µ) are precised only if necessary.


