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Abstra
t. Sto
hasti
 Well Formed Nets (SWNs) are a powerful Petri

Net model whi
h allows the 
omputation of performan
e indi
es with

an aggregation method. De
omposition methods initiated by B. Plateau

are another way to redu
e the 
omplexity of su
h a 
omputation. We

have shown in a previous work, how to 
ombine these two approa
hes

for systems with syn
hronous 
omposition. Despite similarities between

the asyn
hronous and syn
hronous 
ases, it turns out that the former

presents spe
i�
ities that need theoreti
al foundations. We undertake

this task in the present paper. We derive ne
essary 
onditions on the

modeled systems that allow for the two methods to be 
ombined. For

parallel systems satisfying these ne
essary 
onditions we develop a model

with the 
orresponding algorithm. This model, based upon syn
hroniza-

tion of "global" tokens moving a
ross submodels, 
overs a large range

of real life systems. An example shows the intuitive ideas behind these

developments.

Introdu
tion

It is well known that 
omplex systems with syn
hronization forbid the use of

analyti
al results to �nd the steady state probabilities of the 
orresponding

sto
hasti
 models. We have then to work at the Markov 
hain level or to use

approximate methods.

Our work deals with Markov 
hains. In this 
ase, be
ause of the huge size of

the state spa
e, one is lead to �nd e�
ient methods that avoid the building of

the whole 
hain. The most e�e
tive methods are based upon the stru
ture of the

models generating the Markov 
hain. Two main methods follow this approa
h,

aggregation and de
omposition using tensor produ
ts.

The aggregation method builds a partition of the state spa
e 
ompatible with

sto
hasti
 behaviour to get a new Markov 
hain on the 
lasses of the partition

with mu
h fewer states. Then this 
hain is solved providing steady state prob-

abilities of the aggregates and the results are possibly used to �nd the steady

state probabilities of the original 
hain. This method is very e�e
tive sin
e, for

instan
e, with the Sto
hasti
 Well formed Net (SWN) model ([3℄), we 
an build



the partition a priori, and furthermore it has an interpretation at the system

level (a 
lass is a set of states for whi
h a 
ondition is satis�ed, : : :).

The de
omposition method des
ribes the state spa
e as a produ
t of smaller

state spa
es and from this, gives an expression of the in�nitesimal generator of

the Markov 
hain using only generators on these smaller spa
es and operators

from tensor algebra. The 
hain is then solved using dire
tly this expression whi
h


ontains only "small" matri
es. This method, introdu
ed by Plateau [11℄, with

the Sto
hasti
 Automata Network (SAN) model was extended to Generalized

Sto
hasti
 Petri Nets (GSPN) by Donatelli [6℄ and Bu
hholz [2℄.

The purpose of our work is to merge these two methods keeping the bene�ts

of both. We have shown in [8℄ how to 
ombine the SWN model and the Plateau

approa
h for syn
hronous 
omposition of subsystems. In this paper, we show how

to develop the same 
ombination in the asyn
hronous 
ase already ta
kled by

Bu
hholz for GSPNs. As shown by Bu
hholz in several papers, the asyn
hronous


omposition needs the de�nition of the environment of ea
h subnet: we propose

the formally de�ned notion of abstra
t view of a subnet, based on qualitative


riteria, whi
h allows appli
ation of the de
omposition method.

However, as in the syn
hronous 
ase, we �rst point out the two main di�-


ulties of the 
ombination approa
h, that is to say the spe
i�
ation problem of

external/internal syn
hronization and the resolution problem of syn
hronization

memory. If we have a system with several obje
ts of the same kind (pro
esses for

instan
e), whi
h are syn
hronized together (through 
ommon resour
es sharing

for instan
e), we may design a model of this system as a syn
hronized produ
t

of models of the a
tivities of these obje
ts, but this produ
t does not allow any

aggregation; the syn
hronization o

urs between obje
ts and there are no obje
t


lasses. We say in this 
ase that the system exhibits an internal syn
hronization.

Therefore we fo
us on systems with external syn
hronization, that is to say with

syn
hronization between obje
ts of di�erent kinds. In this 
ontext, we observe

the syn
hronization memory phenomenon: the su

essive �rings of syn
hroniza-

tion transitions 
hange the state spa
e in su
h a way that, as a general rule, the

original 
hain 
annot be lumped as 
omposition of smaller aggregated 
hains,

preventing the 
ombination of the two methods.

Fortunately, for models involving syn
hronization memory, whi
h is the gen-

eral 
ase, we show that a 
ontrol of the syn
hronization memory may be managed

for restri
ted asyn
hronous 
omposition of SWNs. We derive the steady state

probabilities 
omputation algorithm whi
h is 
omposed of four stages: de�nition

of an abstra
t view of ea
h 
omponent (subnet), de�nition of enlarged SWNs,

derivation of a tensor expression of the generator of the model, 
omputation of

steady state probabilities via iterative methods with that expression.

The outline of the paper is as follows: in Se
t. 1 we remind the reader of the

methods we want to merge and review related works. We then summarize the

basi
 problems and our proposed framework in Se
t. 2 before giving theoreti
al

results together with an illustrative example in Se
t. 3. For 
on
ision of the

paper, proofs of results are 
arried over to appendix A and de�nitions about



�ows and impli
it pla
es may be found in App. B.

1 General framework and related works

In this presentation, we restri
t ourselves for the sake of simpli
ity to Continous

Time Markov Chain (CTMC).

1.1 Aggregation and de
omposition

Let us re
all that aggregation methods may be summarized in the following

steps: given a CTMC with state spa
e E and in�nitesimal generator Q = [q

ij

℄:

� �nd a partition of the state spa
e E, say (E

(k)

)

k=1;:::;K

, so that the behaviour

of states belonging to the same E

(k)

are sto
hasti
ally equivalent, that is to

say:

8k; h 2 f1; : : : ;Kg; 8e; e

0

2 E

(k)

X

e

h

2E

(h)

q

e;e

h

=

X

e

h

2E

(h)

q

e

0

;e

h

= eq

k;h

(1)

� 
onstru
t a new CTMC with state spa
e

e

E = fE

(k)

j k = 1; : : : ;Kg, and

in�nitesimal generator

e

Q = [eq

k;h

℄,

� solve this CTMC,

� possibly 
ompute the probabilities of the states e

k

2 E

(k)

using the previous

solution (note that this step requires additional information about the e

k

).

Kemeny and Snell ([10℄) showed (�rst for Dis
ret Time Markov Chain (DTMC),

the result was later on extended to CTMC) that the strong lumpability 
ondi-

tion (1) is ne
essary and su�
ient for the aggregated pro
ess to be markovian

hen
e a CTMC. Usually we have K �

P

k

jE

(k)

j so the 
omputation of the

steady state probabilities is easier for

e

Q than for Q. SWN ([3℄) is a Petri Net

model whi
h supports su
h a method.

Now, the basi
 steps in de
omposition methods are:

� des
ribe the CTMC state spa
eE as a subset of a 
artesian produ
t of smaller

spa
es, say E �

Q

K

k=1

E

k

,

� use this de
omposition to get an expression of Q as fun
tion f(Q

1

; : : : ; Q

K

),

where Q

k

is the in�nitesimal generator of the CTMC restri
ted to E

k

,

� 
ompute the solution � with �:f(Q

1

; : : : ; Q

K

) = 0.

In our 
ontext, the fun
tions f are sums of tensor produ
ts of the Q

k

(see [5℄

and [11℄ for details about tensor algebra and its use in the area of sto
hasti


transition systems).

The main interest of this method is to enable the steady state probabilities


omputation without 
omputing the Q matrix but instead, dire
tly using the

tensor expression of Q.

Trying to merge the two methods above means: from a CTMC C with state

spa
e E and in�nitesimal generator Q, get an aggregated CTMC of C as a

"tensor 
omposition" of smaller aggregated CTMCs. Hen
e, the su

essive steps

for su
h a method are:



� build a state spa
e de
omposition of E, getting E � E

0

=

Q

K

k=1

E

k

,

� use an aggregation method verifying the strong lumpability 
ondition (1) on

ea
h of the CTMCs (E

k

; Q

k

) leading to

f

E

k

= fE

(j)

k

j j = 1; : : : ; n

k

g and

in�nitesimal generators

f

Q

k

,

� build the produ
t (

e

E

0

=

Q

K

k=1

f

E

k

;

e

Q = f(

f

Q

1

; : : : ;

g

Q

K

)) of the aggregated

CTMCs and de�ne the aggregated image

e

E �

e

E

0

of E.

Unfortunately, as a general rule, (

e

E;

e

Q) is not an aggregation of (E;Q) veri-

fying (1). So the problem is to �nd additional 
onditions on the initial CTMC C

whi
h ensure that the 
ombination satis�es the 
ondition (1). We give in Se
t. 3

a solution for SWNs models, using tensor expression for the fun
tion f .

1.2 GSPNs asyn
hronous 
omposition

Asyn
hronous 
omposition of Petri nets models 
ommuni
ating subsystems (sub-

nets), with entities (tokens) moving from one subsystem to another one. The


ommuni
ation links between subnets are 
ommon pla
es whi
h are not input

pla
es of transitions of the sour
e net (the PO

k

pla
es in the sour
e, the input

pla
es in the destination) and transitions from the sour
e subnet with at least one

output pla
e in the destination subnet. The formal expression of asyn
hronous


omposition for a given 
lass of Petri nets (GSPN, SWN, : : :) is summarized in

the following

De�nition 1. The Petri net N = (P; T; : : :) is the asyn
hronous 
omposition of

the nets (N

k

= (P

k

; T

k

; : : :))

k2K

i�

1

� For all k there is a subset PO

k

of P

k

s.t. 8t 2 T

k

�

t

T

PO

k

= ; (the set

of output pla
es); we denote TO

k

= ft 2 T

k

s.t. t

�

T

PO

k

6= ;g the set

of output transitions of N

k

, and TO =

S

k2K

TO

k

the set of all output

transitions,

� P =

S

k2K

P

k

and P

k

T

P

k

0

� [PO

k

T

(P

k

0

nPO

k

0

)℄

S

[(P

k

nPO

k

)

T

PO

k

0

℄ for

k 6= k

0

(the set of pla
es and the input/output pla
es),

� T =

S

k2K

T

k

and T

k

T

T

k

0

= ; for k 6= k

0

(the set of transitions); TnTO is

the set of lo
al transitions,

� Ea
h additional parameter of N for the 
lass of nets involved (designated by

: : :) is su
h that its restri
tion to N

k

is the 
orresponding parameter of N

k

.

In the rest of the paper, for any markingM of N , we denoteM

k

=M(P

k

nPO

k

),

so that M = (M

k

)

k2K

.

P. Bu
hholz studied the asyn
hronous 
omposition of GSPNs and other kinds

of Petri nets in several papers. His approa
h may be summarized as follows.

The global net N is de
omposed in K subnets N

k

as de�ned above. For ea
h

subnet, one de�ne an aggregated view, dis
arding lo
al behaviour of the subnet

(in his papers he proposed several de�nitions of su
h aggregated views and we

refer here to the one proposed in [1, 2℄: a virtual pla
e p

k

and a virtual transition

t

k

summarize the global behaviour of the subnet).

1

from now on, we shall use for ease of writing, K as set of k indexes or as maximal k

index when no 
onfusion 
an arise.



The global behaviour of the net is summarized in the net N

0


omposed with

aggregated views of all the subnets and is studied for itself giving a Rea
hability

Set (RS) RS

0

.

The RS RS

k

of the subnet k is 
omputed using N

k

and the behaviour of all

other subnets, also summarized with a single virtual pla
e transition pair. RS

k

is de
omposed in partition (RS

k

(m

k

)), all markings of RS

k

(m

k

) providing the

same marking of the virtual pla
e p

k

.

Bu
hholz has proved that the generator of the CTMC of the tangible states

of N may be expressed as linear 
ombinations of tensor produ
ts of three kinds

of matri
es: Q

k

(m

k

) giving lo
al transition �rings of N

k

, U

k

(n;m

k

) for marking


hanges due to in
oming bags n in N

k

and S

k

(m

k

; 
) for those due to �rings

of output transitions of N

k

for a 
olour 
. So, to 
ompute the steady state

probabilities, it is su�
ient to use these "small" matri
es.

The main advantages of this method are:

� redu
ed data stru
tures allow the study of large nets

� elimination of vanishing states may be done at the subnet level whi
h redu
es

both state spa
e sizes and time 
omputation w.r.t to global elimination

� aggregated views may be de�ned at di�erent levels leading to hierar
hi
al

de
omposition from 
oarsest views to more detailed ones.

These works also point out the very important fa
t that the study of a subnet

in isolation requires to de�ne its environment. We propose in Se
t. 3.1 su
h a

de�nition for SWNs in a formal way.

However the following points must be highlighted:

� although [2℄ deals with SWNs, only Tangible Rea
hability Graphs (TRG)

� not Symboli
 Rea
hability Graph (SRG) � are used to 
ompute the solu-

tion, the Well Formed aspe
ts of the net being used only to 
ompute ordinary

markings and �rings: the Q matrix relates to the unfolded net, and no ag-

gregation �in the sto
hasti
 meaning� is exploited.

� no automati
 method to build aggregated views based upon the net des
rip-

tion is provided, whi
h may lead, as pointed out by the author ([1℄), to


onsisten
y problems.

The present work provides solutions for these two important problems.

2 Theoreti
al Context

In this se
tion we �rst set the framework of our resear
h in order to extend the

results that we have reviewed above, then point out the key problems about

su
h extensions. Let us re
all that we want to develop an aggregation method

based upon the SWN formalism while keeping the advantages of the de
ompo-

sition methods for asyn
hronous 
omposition of subsystems. Be
ause of spa
e


onstraint, we refer the reader to [3℄ for a detailled presentation of SWN and

SRG, and to [7℄ for a 
omplete study.
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Fig. 1. GSPN and SWN of a logi
al token ring

2.1 The spe
i�
ation problem

The �rst problem with this approa
h relates to the kind of syn
hronization

found at the system spe
i�
ation level: if several obje
ts of the same "type"

(pro
esses for instan
e) are syn
hronized together, then we may build a model

with a produ
t stru
ture , ea
h of the terms of this syn
hronized produ
t being

a model of one obje
t behaviour, leading to a produ
t of CTMCs; but then, as

we modelize one obje
t behaviour with one subnet, there is no obje
t 
lass at

all, and therefore we 
annot use aggregation. In these situations, we say that the

system exhibits internal syn
hronization, "internal" meaning "between obje
ts

of the same kind". Alternatively, we may also build SWN models of su
h systems,

and we get an aggregated CTMC of the whole model, but no de
omposition may

be used.

We say that the system exhibits external syn
hronization if there is syn
hro-

nization between obje
ts of di�erent 
lasses.

A simple example of internal syn
hronization is a system of sites exe
uting

sequential 
ode with a se
tion in mutual ex
lusion, the enabling of 
riti
al se
tion

exe
ution being allo
ated in a 
y
li
 manner to ea
h site (logi
al token ring).

The GSPN and SWN of this system (with 4 sites) is shown in Fig. 1: starting

from the idle state, ea
h site does a �rst job (�rst transition) and then waits

for the mutual ex
lusion token to 
ontinue its work (se
ond transition). When

the 
riti
al se
tion work is done, it releases the mutual ex
lusion token (fourth

transition) and returns to idle state. In the SWN model, we have only one basi



lass C

s

for the Sites. The S marking indi
ates that all sites are idle in the initial

state and the Z

1

dynami
 marking means that this pla
e holds any single token

of the 
olour 
lass C

s

.



As we see, the SWN is the "folding" of the GSPN and the syn
hronization

between sites is embedded in it; on the other side, we 
ould try to de
ompose

the GSPN as two by two syn
hronization between four identi
al GSPNs (one

example of whi
h is drawn in bold in Fig. 1).

So, in su
h situations, we have to 
hoose between two models for the spe
i�-


ation of the system: keeping a whole SWN or unfolding the net to get a GSPN

or SAN de
omposition.

In systems with external syn
hronization, obje
ts of di�erent 
lasses are syn-


hronized and, following the general method presented in Se
t. 1.1, we want to

build a "syn
hronized produ
t" of subnets su
h that ea
h subnet modelizes the

behaviour of an obje
t 
lass. In this way, we 
ould use aggregation at the subnets

level using the SWN model and at the same time, a 
omposition of the CTMCs

underlying these SWNs, at the global level.
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Fig. 2. Asyn
hronous 
omposition of SWNs without 
ombined aggregation and de
om-

position

2.2 The resolution problem

Given a system with external syn
hronization only, we 
an modelize it as a SWN

N , asyn
hronous 
omposition of SWNs (N

k

)

k2K

ea
h N

k

being a SWN model of

an obje
t 
lass. Unfortunately, as a general rule, a dire
t extension of the GSPNs


omposition 
annot be used to solve the initial CTMC be
ause 
omposition (i.e.


artesian produ
t) of aggregates provided by the SRGs of theN

k

does not provide

an aggregation of the whole CTMC of the model verifying the strong lumpability


ondition (1). The main reason for this is that syn
hronization of 
oloured tokens

is not preserved in su
h a dire
t 
omposition.



t

1


t

1


t

1


t

1


t

3


t

3


t

3


t

3


t

2


t

2


t

4


t

4


t

1


t

3


t

3


t

1


1


2


3


4
 5


6


<Z
1
>.p

1

 + <Z
2
>.p


2

 +


<Z
1
>.p

3

 + <Z
2
>.p


4

 +


<Z
1
>.p

5


<Z
1
>.p

1

 + <Z
2
>.p


2

 +


<Z
2
>.p

3

 + <Z
1
>.p


4

 +


<Z
2
>.p

5


<Z
1
>.p

1

 + <Z
2
>.p


2

 +


<Z
1
>.p

3

 + <Z
2
>.p


4

 +


<Z
2
>.p

5


<Z
1
>.p

1

 + <Z
2
>.p


2

 +


<Z
2
>.p

3

 + <Z
1
>.p


4

 +


<Z
1
>.p

5


<Z
1
>.p

1

 + <Z
2
>.p


2

 + p


6

 +


<Z
2
>.p

3

 + <Z
1
>.p


4


<Z
1
>.p

1

 + <Z
2
>.p


2

 + p


6

 +


<Z
1
>.p

3

 + <Z
2
>.p


4


Fig. 3. SRG of the net of Fig. 2

Let us give an example of this problem with the SWN of Fig. 2. N is the


omposition of 2 SWNs N

1

and N

2

. The 
olour domain of all pla
es ex
ept p

6

and all transitions is a single ordered 
olour 
lass C with jCj = 2. Firing of t

1

(t

3

) ex
hanges the 
olour of pla
es p

2

and p

1

(p

4

and p

3

). Firing of t

2

provides

the 
olour of p

2

to p

5

and �ring of t

4

returns an non 
oloured token in p

6

when

p

4

and p

5

have the same token 
olour. The SRG of N is given in Fig. 3: symboli


markings 1 and 2 are the only ones with one token in p

6

and they di�er by the


olour of tokens in p

2

and p

4

(same � Z

2

� or di�erent � Z

1

and Z

2

� 
olours).

Let us emphasis that these two markings 
annot be aggregated be
ause the �ring

of t

2

produ
es the markings (3 and 4) from whi
h t

4

is enabled (in 3) or nor

(in 4). Figure 4 shows two subnets N

1

and N

2

whi
h are extensions of N

1

and

N

2

with an abstra
t view of the 
omplementary net redu
ed to one pla
e and

one transition and Fig. 5 gives the SRGs of N

1

, N

2

and their "produ
t". The

marking 12 
orresponds to markings 1 and 2 in the original SRG. The key point

is that the abstra
t view does not 
at
h the 
olour syn
hronization whi
h will

append in t

4

, and it is easy to see that no other abstra
t view 
ould do it.

Furthermore, even if we 
an de�ne a "syn
hronized produ
t" of SRGs, we

have to �nd how to express the label asso
iated with an output transition, that

is to say its rate, with information provided by these SRGs.

All of the following work 
onsists of building nets in whi
h the 
olour syn-


hronization are never 
onditioned by earlier �rings in more than one subnet.

This is done through:

� the de�nition of an abstra
t view of ea
h 
omponent (subnet),
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Fig. 5. SRGs of N

1

, N

2

(Fig. 4) and their "produ
t"



� the de�nition of modi�ed � that is to say enlarged � SWNs (denoted N

k

) of

the subsystems in
luding a representation of their environment via abstra
t

views of all other subnets.

From the SRGs of these SWNs we derive of a tensor expression of the genera-

tor of the model, and we 
ompute performan
e measures with iterative methods.

3 Asyn
hronous 
omposition of SWNs

In the present work we assume that ea
h transition has exponential �ring time,

so that the sto
hasti
 pro
ess de�ned by N is a CTMC, and that the transition

rate is marking independent (future work will partially relax these 
onditions).
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Fig. 6. Example of asyn
hronous 
omposition of SWNs

We give in Fig. 6 an example of asyn
hronous 
omposition of SWNs to whi
h

we shall refer throughout this se
tion to explain our de�nitions and results. A

brief explanation of the system is as follows: we have a 
lient-server system in

whi
h 
lients are initially lo
ated in N

1

(pla
e p

13

) and servers in N

2

(pla
e p

25

).

Clients emit a server request by pairs of neighbour (variables X and

L

X , the


lient 
lass C




is ordered). The requests are treated in N

2

where servers (
lass

C

s

) exe
ute the requests (transitions t

21

, t

22

and t

23

). A server may fails: in this


ase it must be repaired with two jobs lo
ated in N

3

(transitions t

31

, t

32

and

t

33

).

The basi
 
olour 
lasses are hen
e C




and C

s

and the 
olour domains of ea
h

node (not shown in the �gure for ease of reading) are: C




for p

11

, p

12

, p

13

, p

21

,



p

22

, t

11

,t

12

and t

13

, C

s

for p

25

, p

31

, p

32

, p

33

, p

34

, t

24

, t

31

, t

32

and t

33

, C




� C

s

for p

23

, p

24

, t

21

and t

22

, C




� C

2

s

for t

23

.

3.1 The abstra
tion pro
ess

As we have seen in previous se
tions, the �rst problem is to be able to de�ne

subnets N

k

embedding N

k

and an aggregated view of its environment. This

means that the modelizer has to de�ne an abstra
t view of ea
h N

k

whi
h will

be used in the des
ription of the environment of other subnets.

An abstra
t view has to enfor
e a set of 
onstraints:

� it allows to hide details of behaviour of the subnet.

� it is 
onsistent, that is to say: if M [ÆiM

0

with a sequen
e of �rings Æ =

�

�

1

��

�

2


omposed of lo
al �rings �

�

1

and �

�

2

to be hidden, then we must have:

a(M)[�ia(M

0

) with a(M) the abstra
tion of the marking M .

� it must let "visible" intera
tions between global entities.

� it has to be formally de�ned from the net des
ription.

� it is 
ompatible with a 
ombined aggregation/de
omposition method.

To take into a

ount the previous 
onstraints, this abstra
tion should be

guided by qualitative 
onsiderations, espe
ially by observing intera
tions between

global entities (
olour 
lasses) inside ea
h subnet keeping these intera
tions "vis-

ible" in the abstra
tion.

Furthermore, more generally and unlike Bu
hholz, it does not seem possible

to abstra
t a subnet with only one pla
e: we need at least one pla
e to modelize

entities of ea
h basi
 
olour 
lass moving from one subnet to another one.

We propose to de�ne ea
h pla
e through a partial semi�ow

2

to ensure 
on-

sisten
y of the abstra
tion and deal with formal de�nitions dedu
ed from the

net des
ription.

De�nition 2. An abstra
tion semi�ow f of N

k

is a partial semi�ow of N with

respe
t to T

k

nTO

k

s.t.:

� there is a 
olour 
lass C

i

s.t. C(f) = C

i

.

� 8p 2 P

k

nPO

k

, f

p

is 0 or b times a proje
tion (with b a positive 
onstant).

Let F

k

be a set of abstra
tion semi�ows of N

k

. The abstra
t view of N

k

w.r.t F

k

is the set of pla
es PA

k

= fp

f

; f 2 F

k

g with:

� C(p

f

) = C(f) (the 
olour domain of p

f

).

� M

0

(p

f

) =

P

p2P

k

nPO

k

f(M

0

(p)) (the initial marking of p

f

).

For any marking M = (M

k

)

k2K

of N , the abstra
t marking of M

k

is am(M

k

)

= (

P

p2P

k

nPO

k

f(M(p)))

f2F

k

, also denoted am

k

(M) or M(PA

k

) (the values of

the semi�ows of F

k

in the marking M

k

)

The global 
olours of N

k

are fC(f) ; f 2 F

k

g.

2

f is a partial semi�ow on N = (P; T; : : :) w.r.t a set T

0

� T of transitions i� f is a

semi�ow on the net N

0

= (P; T

0

; : : :)



The obje
ts of the global 
lasses of the (N

k

) are the only ones whi
h move

between subnets. Let us note that a global 
lass for N

k

may be a non global one

for another N

k

0

. Su
h 
lasses may be renamed with di�erent names in ea
h N

k

where it is non global. From now on, we assume that su
h a renaming has been

done.

In our example SWN, we have two partial semi�ows in N

2

(f

2


= X:p

21

+

X:p

23

+X:p

22

+X:p

24

and f

2s

= X:p

25

+Y:p

23

+Y:p

24

) and one partial semi�ow

in N

3

(f

3s

= X:p

31

+X:p

33

).

We 
an now de�ne the modi�ed subnets allowing de
omposition under appro-

priate 
onditions, set additional notations and de�ne the aggregation fun
tion

we shall use. In the sequel, the abstra
tions of the (N

k

) are given.
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Fig. 7. Subnet N

1

for the example SWN

De�nition 3. Let N be an asyn
hronous 
omposition of the (N

k

)

k2K

. The ex-

tension N

k

of N

k

is the SWN (P

k

; T

k

; C; J; W

�

k

;W

+

k

; �; !; M

0;k

; �

k

) with:

� P

k

= (P

k

nPO

k

)

S

k

0

6=k

PA

k

0

(For ea
h marking M of N , the 
orresponding

marking of N

k

is M

k

= (M

k

; (M(PA

k

0

))

k

0

6=k

)).

� T

k

= T

k

S

k

0

6=k

TO

k

0

� 8p 2 P

k

nPO

k

, 8t 2 T

k

, W

�

k

(p; t) =W

�

k

(p; t) and W

+

k

(p; t) =W

+

k

(p; t)

� 8p

f

2 PA

k

0

, 8t 2 T

k

:

W

�

(p

f

; t) =

P

p

0

2

�

t

f

p

0

ÆW

�

(p

0

; t) and W

+

(p

f

; t) =

P

p

0

2t

�

f

p

0

ÆW

+

(p

0

; t)

M

k

(PA

k

0

) is still named the abstra
t marking of N

k

0

(in M

k

).



Fig. 7 shows the extension N

1

of N

1

. We see that in PA

2

we have only two

pla
es p

2x

and p

2y

for the 
olours C




and C

s

, and in PA

3

one pla
e for C

s

. The

transitions t

13

, t

23

, t

24

and t

33

are also modi�ed a

ordingly with our de�nition.

We 
ould also de�ne a full abstra
t view N of N with abstra
t views only

of all subnets, useful in a hierar
hi
al design pro
ess, however our method does

not use N .

Notations

� SRS

k

(resp. SRG

k

) is the SRS (resp. the SRG) of N

k

,

� XSRS =

Q

k2K

SRS

k

.

� M

k

is the symboli
 marking of M

k

in SRS

k

and M = (M

k

)

k2K

2 XSRS.

� D(XSRS) = fM j 9M 2 XSRS s.t. 8k 2 K; M

k

2M

k

g

De�nition 4. Let N be an asyn
hronous 
omposition of the (N

k

)

k2K

. The ag-

gregation fun
tion A is: A(M) = (M

k

)

k2K

=M2 XSRS

3.2 Synta
ti
 
onditions of aggregation

In order to be able to apply a 
ombined aggregation/de
omposition method of

resolution, we have to add synta
ti
 
onditions to the model: roughly speaking,

they mean that for ea
h global 
olour 
lass and every marking, the subsets of


olours in the abstra
t views are a partition of this 
lass.

We give a �rst set of 
onditions for whi
h the algorithm proposed below

may be used to 
ompute performan
e measures of N . As usual with (sto
hasti
)

Petri nets, su
h 
onditions must be expressed at the synta
ti
 level that is to

say relative to either stru
tural properties like 
olour domains, in
iden
e fun
tion

expressions, : : : or to properties whi
h may be 
he
ked only using these stru
tural

properties like semi�ows, : : :, to avoid 
he
king of the RG of N .

De�nition 5. We say that N ful�lls the synta
ti
 
onditions of aggregation i�

8k 2 K we have the following properties:

1. 8p 2

�

TO

k

with C(p) =

Q

i2I

C

e

i

i

, 8i 2 I s.t. C

i

is a global 
olour of N

k

and e

i

> 0 we have: 81 � j � e

i

, X

j

i

(the jth proje
tion on C

i

) is in one

abstra
tion semi�ow f 2 F

k

.

2. 8t 2 TO

k

8X 2 V ar(t) 
orresponding to a global 
olour 
lass of N

k

, X is in

a positive term of some W

�

(p; t):

3. 8p 2 PA

k

with C(p) = C

i

, 8k

0

6= k, 8p

0

2 P

k

0

with C(p

0

) =

Q

i2I

C

e

0

i

i

:

8 1 � j

0

� e

0

i

there is a semi�ow g = (g

q

)

q2P

k

0

on C

i

in N

k

0

, s.t. 8M g(M) =

S

i

with:

g

q

=

8

<

:

0 or a proje
tion if q 6= p; q 6= p

0

Identity if q = p

j

0

th proje
tion if q = p

0

Condition 1 ensures that the abstra
t view of N

k

is not too 
oarse and mem-

orizes 
olours moving between 
omponents: the basi
 
olour 
lasses involved in



the �rings of t 2 TO

k

have to be in the 
olour domain of PA

k

. Condition 2

means that the �ring 
olours of t 2 TO

k

must be in the input pla
es of t. At

last, 
ondition 3 implies that in ea
h marking, we have a partition of ea
h o
-


urren
e of ea
h global 
olour C

i

, between 
olours usable to �re t and 
olours in

other subnets N

k

0

.

It is easy to show that our example SWN ful�lls these 
onditions.

Let us noti
e these 
onditions are ful�lled for many nets whi
h are models of

systems with several 
omponents ea
h having some kind of autonomy.

3.3 Performan
e measures 
omputation algorithm

As in the syn
hronous 
ase, the basis of the algorithm is a 
ombination of the

tensor expression of the generator Q of the CTMC of the syn
hronized produ
t

of the SRG

k

and of the regular 
omputation for SWNs.

The CTMC transitions 
ome from the �ring of a transition t 2 TnTO hen
e


hanging only the kth 
omponent of the global state, or from the �ring of an

output transition t 2 TO 
hanging several 
omponents k

1

; : : : ; k

l

of the state.

As transition �ring rates depend only on the stati
 sub
lasses of the 
hosen


olors, the rate r(t) from M to another M

0

sums the rates r(t; d; h�; �i) of

all symboli
 �rings h�; �i of t whi
h �t the 
hoi
e d, for all given 
olor stati


sub
lasses 
hoi
es d. Moreover r(t; d; h�; �i) is 
ard(F) (also denoted jFj) times

the mean �ring time �(t; d) of t for d where F is the set of ordinary �rings of t

from any ordinary marking of M to ordinary markings of the symboli
 marking

M

0

.

It 
an be shown then, that the matrix Q of the CTMC 
an be written as

sub-matrix of

Q

0

=

K

M

k=1

Q

0

k

+

X

t2TO

X

d

�(t; d)

"

K

O

k=1

C

k

(t; d)�

K

O

k=1

A

k

(t; d)

#

(2)

where d = (d

j

i

)

e

i

(t)

n

(with n

i

the number of stati
 sub
lasses of C

i

and 1 � d

ij

�

n

i

) is a 
hoi
e of stati
 sub
lasses for the symboli
 �rings of t ((a

j

i

)

b

i

n

denotes

the tuple (a

1

1

; : : : ; a

b

1

1

; : : : ; a

1

i

; : : : ; a

b

i

i

; : : : ; a

1

n

; : : : ; a

b

n

n

)).

The Q

0

k

matri
es 
ome from the generator of the CTMC of the N

k

nets

in isolation using only lo
al transitions: they 
an be built from 
lassi
al SWN

te
hni
s, dis
arding any output transition e�e
t.

The

L

operator means that these CTMCs are independent sto
hasti
 pro-


esses. The A

k

and C

k

matri
es are obtained as 
onsequen
e of output transition

�rings: any su
h �ring produ
es a state 
hange in ea
h 
omponent N

k

involved

in the marking 
hange.

By sub-matrix we mean that non zero terms (for same pair of states) of

Q equal those of Q

0

and that if M is rea
hable and M

0

is unrea
hable then

q

0

M;M

0

= 0.

The C

k

(t; d) and A

k

(t; d) matri
es are 
omputed by the algorithm below.

Let us denote:



� 8 h�; �i (instantiation fun
tions in N

k

for t), M

k

and M

0

k

in SRS

k

:

1

(t;d;h�;�i;M

k

;M

0

k

)

=

8

<

:

1 if d = (d(Z

�

i

(j)

i

))

e

i

(t)

n

and M

k

[t(h�; �i)iM

0

k

0 else

1

(t;d;M

k

;M

0

k

)

=

_

h�;�i

1

(t;d;h�;�i;M

k

;M

0

k

)

with

W

denoting the Boolean addition (logi
al or).

� for t 2 TO

k

F

(h�;�i;M

k

;M

0

k

)

=

h

Y

i=1

m

i

Y

j=1


ard(Z

j

i

)!

(
ard(Z

j

i

)� �

j

i

)!

with h the highest index of non ordered basi
 
olour 
lasses of C(t).

Then we have the following algorithm.

Algorithm:

1. for ea
h k 2 K 
ompute SRG

k

(hen
e SRS

k

) (r

k

= jSRS

k

j)

2. for ea
h k 2 K 
ompute the Q

0

k

matri
es from SRG

k

, using only lo
al

transitions

3. for ea
h t 2 TO (say t 2 TO

k

)

for ea
h h 2 K 
ompute C

h

(t; d) and A

h

(t; d) from SRG

h

:

if h 6= k and t

�

T

P

h

= ; then C

h

(t; d) = A

h

(t; d) = I

r

h

if h = k then 


h

(t; d)

M

h

;M

0

h

=

P

h�;�i

1

(t;d;h�;�i;M

h

;M

0

h

)

F

(h�;�i;M

h

;M

0

h

)

if h 6= k and t

�

T

P

h

6= ; then 


h

(t; d)

M

h

;M

0

h

= 1

(t;d;M

h

;M

0

h

)

a

h

(t; d)

M

h

;M

0

h

=

(

P

M

00

h




h

(t; d)

M

h

;M

00

h

if M

h

=M

0

h

0 else

4. 
ompute the performan
e measure using the tensor expression of Q

0

.

To use the tensor expression of Q

0

, the numeri
al method 
omputing a given

measure has to verify the 
onditions:

� only linear fun
tions of produ
ts V:Q

m

are used, with V a ve
tor

� no unrea
hable state is involved in the 
omputation

Let us emphasize that su
h 
omputations never use Q

0

dire
tly but instead

the Q

0

k

, C

k

and A

k

matri
es.

An important example of performan
e measure is the steady state proba-

bility distribution ve
tor of the aggregated CTMC. We 
an then use iterative

methods like the power method or the faster GMRES method ([12℄) to 
ompute

these probabilities with the proposed algorithm. However, to ensure the above


onditions, the initial ve
tor must have non zero 
omponents for rea
hable states

only: we 
an for instan
e, 
hoose the ve
tor v

(0)

with v

(0)

M

0

= 1 and v

(0)

M

= 0 if

M 6=M

0

.

We state in the following theorem the results giving the 
orre
tness of the

algorithm.



Theorem6. Let N be an asyn
hronous 
omposition of the (N

k

)

k2K

, then:

1. RS � D(XSRS)

2. the fun
tion A de�ned by A(M) = (M

k

)

k2K

=M 2 XSRS is an aggrega-

tion fun
tion verifying the strong lumpability 
ondition (1)

3. the transition rate from any marking M of XSRS is given in the previous

algorithm.

The proof is given in App.A.

Con
lusion

In this paper we have shown how to 
ombine two methods, aggregation and

de
omposition, to deal with the in
reasing 
omplexity of parallel systems. The

studied systems are 
omposed of subsystems 
ommuni
ating via entities moving

between them. De
omposition expresses the state spa
e of the system as a 
arte-

sian produ
t of smaller spa
es. Aggregation redu
es the state spa
e by grouping

states and solving the Markov 
hain on the set of state 
lasses; the SWN model

moreover enables the redu
tion dire
tly from the net des
ription.

We have shown that in the 
ase of internal syn
hronization, we have to 
hoose

between either de
omposition or aggregation to spe
ify the studied system. Now,

in the 
ase of external syn
hronization, we have shown that it is the syn
hro-

nization memory phenomenon whi
h allows or disallows the merging of the two

methods to solve its Markov 
hain.

We have given a new method, allowing a 
ombined aggregation�
omposition

approa
h: we 
onstru
t new subnets, built from original ones and abstra
t views

of the others to deal with syn
hronization memory � 
apturing the syn
hroniza-

tion memory � and we apply the de
omposition approa
h on their SRGs. We

have established a set of synta
ti
 
onditions under whi
h su
h a method 
an be

used.

Future work will extend the results to SWNs with immediate transitions and

will experiment the method for large nets with a Petri net tool ([4℄).

A Proof of the algorithm

The proof

3

of theorem 6 is established in several steps:

� de�nition of a set of semanti
 
onditions, that is to say at the marking level

(de�nition 8) for whi
h

� we prove that they verify the strong lumpability 
ondition (1) (theorem 10

based upon lemma 9).

� proof that the synta
ti
 
onditions of aggregation imply those semanti
 
on-

ditions (theorem 11).

� proof that the generator of the aggregated CTMC is a submatrix of Q

0

given

in the algorithm.

3

This se
tion may be skipped by readers how have no interest in theoreti
al

developments



We use a semanti
 intermediate level in this proof. The reason of whi
h is

threefold:

� the semanti
 
onditions allow a stru
tured de�nition of synta
ti
 
onditions:

for ea
h of the �rst one, we try to �nd a synta
ti
 translation.

� given the same set of semanti
 
onditions, we shall be able to �nd other sets

of synta
ti
 
onditions, for spe
ial 
lasses of nets, redu
ing the new proof to

the fa
t that synta
ti
 
onditions imply semanti
 
onditions.

� the 
orre
tness of the expression of Q

0

depends on synta
ti
, not semanti
,


onditions.

A.1 Semanti
 
onditions of aggregation

We now exhibit the marking level 
onditions under whi
h we 
an de�ne a 
om-

bined aggregation and de
omposition. From the above aggregation fun
tion def-

inition, two markings M and M

0

will be in the same aggregate if there is a

K-tuple of admissible permutations s

k

su
h that 8k 2 K, s

k

(M

k

) = M

0

k

. How-

ever, for any marking, the (s

k

) must be equal on the markings of the 
ommon

abstra
t pla
es of the (N

k

) so we introdu
e the de�nition:

De�nition 7. Two admissible permutations s and r are 
ompatible w.r.t. M

k

(or M

k

) i� s(am(M

k

)) = r(am(M

k

)).

A 
ompatible family of permutations s = (s

k

)

k2K

w.r.t M is a family of admis-

sible permutations s

k

s.t. for any k; k

0

; k", s

k

and s

k

0

are 
ompatible w.r.t. M

k

00

;

for su
h a family we denote s(M) = (s

k

(M

k

))

k2K

.

De�nition 8. We say that N ful�lls the semanti
 
onditions of aggregation i�

for every k and every rea
hable marking M

k

we 
an �nd a subset C

i;k

of every

C

i

2 C with the following properties:

1. for every admissible permutation s:

s(am(M

k

)) = am(M

k

) ) (8i 2 I s(C

i;k

) = C

i;k

).

2. 8 t 2 TO

k

: if M

k

[t(
)i then 
 is 
omposed of 
olours of (C

i;k

)

i2I

.

3. for every 
ompatible permutations r and s w.r.t M

k

s.t. 8i 2 I r

jC

i

nC

i;k

=

s

jC

i

nC

i;k

, we have:

8k

0

, 8M

0

k

0

: M

0

k

0

(PA

k

) = am(M

k

) ) r(M

0

k

0

) = s(M

0

k

0

).

Intuitively, 
ondition 2 means that the C

i;k

are the set of basi
 
olours en-

abling the �rings of t 2 TO

k

. Condition 1 ensures that the abstra
t view of M

k

is 
onsistent with respe
t to �rings of t 2 TO

k

. Condition 3 expresses the fa
t

that only 
olours not in the C

i;k

are relevant outside M

k

.

Lemma9. Let N ful�ll the semanti
 
onditions above and M s.t. 8k 2 K M

k

is rea
hable in N

k

. Let s = (s

k

)

k2K

be a 
ompatible family of permutations w.r.t

M .

If M [t(
)iM

0

then there is a permutation r and a 
ompatible family q =

(q

k

)

k2K

w.r.t M

0

s.t. s(M)[t(r(
))iq(M

0

), with r depending only upon t and s.



Proof. We have to �nd r and q su
h that 8k 2 K, s

k

(M

k

)[t(r(
))iq

k

(M

0

k

). From

the de�nition of the (M

k

)

k2K

and the 
ompatibility of the (s

k

)

k2K

, it is equiv-

alent to show: 8k 2 K, s

k

(M

k

)[t(r(
))iq

k

(M

0

k

).

� First 
ase: t 2 T

k

0

nTO

k

0

is a lo
al transition.

We have then 8k 6= k

0

M

0

k

= M

k

; and t =2 T

k

) s

k

(M

k

)[t(s

k

0

(
))is

k

(M

k

)

= s

k

(M

0

k

).

As s

k

0

is admissible s

k

0

(M

k

0

)[t(s

k

0

(
))is

k

0

(M

0

k

0

).

The result follows with r = s

k

0

and 8k 2 K q

k

= s

k

i.e. q = s.

� Se
ond 
ase: t 2 TO

k

0

is an output transition.

We apply the semanti
 
onditions with s

k

0

(M

k

0

) and show that we 
an 
hoose

r = s

k

0

.

Sin
e s

k

0

is admissible, s

k

0

(M

k

0

)[t(s

k

0

(
))is

k

0

(M

0

k

0

)

We now prove that for ea
h k 6= k

0

we have s

k

(M

k

)[t(s

k

0

(
))iq

k

(M

0

k

) with

adapted q

k

.

Let us denote M

00

= s

k

0

(M) and (C

i;k

0

)

i2I

the subsets from the semanti



onditions w.r.t. M

00

k

0

.

For ea
h k 6= k

0

, let us denote u

k

= s

k

Æ s

�1

k

0

. As s is a 
ompatible family

and by de�nition of M

00

k

0

and u

k

, we have

4

: u

k

(am(M

00

k

0

)) = am(u

k

(M

00

k

0

)) =

am(s

k

(M

k

0

)) = am(s

k

0

(M

k

0

)) = am(M

00

k

0

). So we have, from semanti
 
ondi-

tion 1, u

k

(C

i;k

0

) = C

i;k

0

for every i.

Let us now de�ne the permutation v

k

:

8i 2 I , v

k

jC

i;k

0

= Id

C

i;k

0

and v

k

jC

i

nC

i;k

0

= u

k

jC

i

nC

i;k

0

. It is 
lear that v

k

is

admissible, hen
e so is v

k

Æ s

k

0

and v

k

Æ s

k

0

(M

k

)[ t(v

k

Æ s

k

0

(
))i v

k

Æ s

k

0

(M

0

k

)

From semanti
 
ondition 2, s

k

0

is 
omposed of 
olours from the C

i;k

0

, hen
e,

by de�nition of v

k

, v

k

Æ s

k

0

(
) = s

k

0

(
).

We have for every i 2 I , v

k

jC

i

nC

i;k

0

= u

k

jC

i

nC

i;k

0

. Applying the semanti



ondition 3, we get v

k

(M

00

k

) = u

k

(M

00

k

), that is to say v

k

(M

00

k

) = s

k

(M

k

), and

�nally s

k

(M

k

)[t(s

k

0

(
))iq

k

(M

0

k

) with q

k

= v

k

Æ s

k

0

(k 6= k

0

) and q

k

0

= s

k

0

(q = (q

k

)

k2K

is 
learly a 
ompatible family w.r.t M

0

).

From this lemma we dedu
e the following theorem:

Theorem10. Let N ful�ll the semanti
 
onditions above. Then the aggregation

fun
tion A ful�lls the strong lumpability 
ondition (1) on D(XSRS).

Proof is omitted (see [9℄).

A.2 From synta
ti
 
onditions to semanti
 
onditions

Theorem11. Let N ful�ll the synta
ti
 
onditions of aggregation. Then N ful-

�lls the semanti
 
onditions of aggregation.

4

from the de�nition of the �ows f 2 F

k

, s(am(M

k

)) = am(s(M

k

)) for any admissible

permutation s.



Sket
h of proof (see [9℄ for a detailed proof): Let k and M

k

be given. We de�ne

the partition of the semanti
 
onditions as: C

i;k

= f
olours of C

i

in am(M

k

)g

(let us remark that C

i;k

= ; for any non global 
olour of N

k

).

We then prove su

essively the semanti
 
ondition 1 from the de�nition

above, the se
ond semanti
 
ondition from synta
ti
 
onditions 1 and 2 and

the third semanti
 
ondition from synta
ti
 
ondition 3.

A.3 Generator of the aggregated CTMC

The sket
h of the proof is the following (see [9℄ for a detailed proof):

Let �(M;M

0

) be the rate from the rea
hable stateM to the rea
hable state

M

0

in the aggregated CTMC. We have �(M;M

0

) =

P

t

P

d

�(t; d)jU

t;d

j with

U

t;d

= fM

t(
)

�!

M

0

j M

0

2 M

0

; d(
) = dg and �(t; d) the rate of the transition t

for any 
olour with stati
 partition d and M �xed in M.

For t =2 TO it is 
lear that

L

K

k=1

Q

0

k

gives the 
orre
t rates.

For t 2 TO

h

we rewrite U

t;d

with �ring sets of the (N

k

)

k2K

whi
h leads to

the expression of the algorithm.

B Flows, semi�ows and impli
it pla
es in WNs

Flows are stru
tural invariant of Petri nets: to ea
h �ow is asso
iated a 
onstant

sum of weighed markings of pla
es whi
h gives information about the behaviour

of the net. For 
oloured PN, the de�nition of �ows uses pla
e 
olour fun
tions

instead of 
onstants hen
e the name symboli
 �ows.

De�nition 12. Let N be a WN with pla
es P and in
iden
e matrixW (of linear

fun
tions from Bag

Q

(C(t)) to Bag

Q

(C(p))). Let A be a set. A (symboli
) �ow

of N on A is a ve
tor f = (f

p

)

p2P

6= 0 of linear fun
tions from Bag

Q

(C(p)) to

Bag

Q

(A) s.t.:

8t 2 T;

X

p2P

f

p

ÆW (p; t) = 0

For any rea
hable marking M , we have then:

X

p2P

f

p

(M(p)) =

X

p2P

f

p

(M

0

(p)) =

X

a2A

�(a):a (a 
onstant)

A semi�ow is a �ow with positive fun
tions f

p

: 8a 2 A; 8
 2 Bag(C(p));

f

p

(
)(a) � 0

For WNs, following linear fun
tions play an important role (for a pla
e p with


olour domain

Q

i2I

C

e

i

i

and a 
olour 
 of p):

� Identity: Id(
) = 
 (and also n:Id with n a 
onstant number)

� Proje
tions: for a 
olour 
lass C

i

the jth proje
tion is Proj

j

i

(
) = 


j

i

An impli
it pla
e with respe
t to a set P

0

of pla
es, does not disable the

�ring of any transition for whi
h pre
onditions are satis�ed in P

0

.



De�nition 13. A pla
e p of a 
oloured Petri net N = (P; T; : : :) is impli
it w.r.t.

P

0

� P (p =2 P

0

) i�:

1. there is a symboli
 �ow f with domain C(p) s.t.: f

p

= Id and 8q 2 P

0

,

f

q

< 0

2. 8t 2 T , we have 8
 2 C(t):

f

p

(M

0

(p)) +

X

q2P

0

f

q

(M

0

(q)) � f

p

(W

�

(p; t)(
)) +

X

q2P

0

f

q

(W

�

(q; t)(
))

An impli
it pla
e is an impli
it pla
e w.r.t some P

0

.
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