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Abstrat. Stohasti Well Formed Nets (SWNs) are a powerful Petri

Net model whih allows the omputation of performane indies with

an aggregation method. Deomposition methods initiated by B. Plateau

are another way to redue the omplexity of suh a omputation. We

have shown in a previous work, how to ombine these two approahes

for systems with synhronous omposition. Despite similarities between

the asynhronous and synhronous ases, it turns out that the former

presents spei�ities that need theoretial foundations. We undertake

this task in the present paper. We derive neessary onditions on the

modeled systems that allow for the two methods to be ombined. For

parallel systems satisfying these neessary onditions we develop a model

with the orresponding algorithm. This model, based upon synhroniza-

tion of "global" tokens moving aross submodels, overs a large range

of real life systems. An example shows the intuitive ideas behind these

developments.

Introdution

It is well known that omplex systems with synhronization forbid the use of

analytial results to �nd the steady state probabilities of the orresponding

stohasti models. We have then to work at the Markov hain level or to use

approximate methods.

Our work deals with Markov hains. In this ase, beause of the huge size of

the state spae, one is lead to �nd e�ient methods that avoid the building of

the whole hain. The most e�etive methods are based upon the struture of the

models generating the Markov hain. Two main methods follow this approah,

aggregation and deomposition using tensor produts.

The aggregation method builds a partition of the state spae ompatible with

stohasti behaviour to get a new Markov hain on the lasses of the partition

with muh fewer states. Then this hain is solved providing steady state prob-

abilities of the aggregates and the results are possibly used to �nd the steady

state probabilities of the original hain. This method is very e�etive sine, for

instane, with the Stohasti Well formed Net (SWN) model ([3℄), we an build



the partition a priori, and furthermore it has an interpretation at the system

level (a lass is a set of states for whih a ondition is satis�ed, : : :).

The deomposition method desribes the state spae as a produt of smaller

state spaes and from this, gives an expression of the in�nitesimal generator of

the Markov hain using only generators on these smaller spaes and operators

from tensor algebra. The hain is then solved using diretly this expression whih

ontains only "small" matries. This method, introdued by Plateau [11℄, with

the Stohasti Automata Network (SAN) model was extended to Generalized

Stohasti Petri Nets (GSPN) by Donatelli [6℄ and Buhholz [2℄.

The purpose of our work is to merge these two methods keeping the bene�ts

of both. We have shown in [8℄ how to ombine the SWN model and the Plateau

approah for synhronous omposition of subsystems. In this paper, we show how

to develop the same ombination in the asynhronous ase already takled by

Buhholz for GSPNs. As shown by Buhholz in several papers, the asynhronous

omposition needs the de�nition of the environment of eah subnet: we propose

the formally de�ned notion of abstrat view of a subnet, based on qualitative

riteria, whih allows appliation of the deomposition method.

However, as in the synhronous ase, we �rst point out the two main di�-

ulties of the ombination approah, that is to say the spei�ation problem of

external/internal synhronization and the resolution problem of synhronization

memory. If we have a system with several objets of the same kind (proesses for

instane), whih are synhronized together (through ommon resoures sharing

for instane), we may design a model of this system as a synhronized produt

of models of the ativities of these objets, but this produt does not allow any

aggregation; the synhronization ours between objets and there are no objet

lasses. We say in this ase that the system exhibits an internal synhronization.

Therefore we fous on systems with external synhronization, that is to say with

synhronization between objets of di�erent kinds. In this ontext, we observe

the synhronization memory phenomenon: the suessive �rings of synhroniza-

tion transitions hange the state spae in suh a way that, as a general rule, the

original hain annot be lumped as omposition of smaller aggregated hains,

preventing the ombination of the two methods.

Fortunately, for models involving synhronization memory, whih is the gen-

eral ase, we show that a ontrol of the synhronization memory may be managed

for restrited asynhronous omposition of SWNs. We derive the steady state

probabilities omputation algorithm whih is omposed of four stages: de�nition

of an abstrat view of eah omponent (subnet), de�nition of enlarged SWNs,

derivation of a tensor expression of the generator of the model, omputation of

steady state probabilities via iterative methods with that expression.

The outline of the paper is as follows: in Set. 1 we remind the reader of the

methods we want to merge and review related works. We then summarize the

basi problems and our proposed framework in Set. 2 before giving theoretial

results together with an illustrative example in Set. 3. For onision of the

paper, proofs of results are arried over to appendix A and de�nitions about



�ows and impliit plaes may be found in App. B.

1 General framework and related works

In this presentation, we restrit ourselves for the sake of simpliity to Continous

Time Markov Chain (CTMC).

1.1 Aggregation and deomposition

Let us reall that aggregation methods may be summarized in the following

steps: given a CTMC with state spae E and in�nitesimal generator Q = [q

ij

℄:

� �nd a partition of the state spae E, say (E

(k)

)

k=1;:::;K
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� onstrut a new CTMC with state spae

e

E = fE

(k)

j k = 1; : : : ;Kg, and

in�nitesimal generator

e

Q = [eq

k;h

℄,

� solve this CTMC,

� possibly ompute the probabilities of the states e

k

2 E

(k)

using the previous

solution (note that this step requires additional information about the e

k

).

Kemeny and Snell ([10℄) showed (�rst for Disret Time Markov Chain (DTMC),

the result was later on extended to CTMC) that the strong lumpability ondi-

tion (1) is neessary and su�ient for the aggregated proess to be markovian

hene a CTMC. Usually we have K �

P

k

jE

(k)

j so the omputation of the

steady state probabilities is easier for

e

Q than for Q. SWN ([3℄) is a Petri Net

model whih supports suh a method.

Now, the basi steps in deomposition methods are:

� desribe the CTMC state spaeE as a subset of a artesian produt of smaller

spaes, say E �

Q

K

k=1

E

k

,

� use this deomposition to get an expression of Q as funtion f(Q

1

; : : : ; Q

K

),

where Q

k

is the in�nitesimal generator of the CTMC restrited to E

k

,

� ompute the solution � with �:f(Q

1

; : : : ; Q

K

) = 0.

In our ontext, the funtions f are sums of tensor produts of the Q

k

(see [5℄

and [11℄ for details about tensor algebra and its use in the area of stohasti

transition systems).

The main interest of this method is to enable the steady state probabilities

omputation without omputing the Q matrix but instead, diretly using the

tensor expression of Q.

Trying to merge the two methods above means: from a CTMC C with state

spae E and in�nitesimal generator Q, get an aggregated CTMC of C as a

"tensor omposition" of smaller aggregated CTMCs. Hene, the suessive steps

for suh a method are:



� build a state spae deomposition of E, getting E � E

0

=

Q

K

k=1

E

k

,

� use an aggregation method verifying the strong lumpability ondition (1) on

eah of the CTMCs (E

k

; Q

k

) leading to

f
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= fE

(j)
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j j = 1; : : : ; n
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g and

in�nitesimal generators

f

Q
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� build the produt (

e
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=

Q
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f
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;

e

Q = f(

f

Q

1

; : : : ;

g

Q
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)) of the aggregated

CTMCs and de�ne the aggregated image

e

E �

e

E

0

of E.

Unfortunately, as a general rule, (

e

E;

e

Q) is not an aggregation of (E;Q) veri-

fying (1). So the problem is to �nd additional onditions on the initial CTMC C

whih ensure that the ombination satis�es the ondition (1). We give in Set. 3

a solution for SWNs models, using tensor expression for the funtion f .

1.2 GSPNs asynhronous omposition

Asynhronous omposition of Petri nets models ommuniating subsystems (sub-

nets), with entities (tokens) moving from one subsystem to another one. The

ommuniation links between subnets are ommon plaes whih are not input

plaes of transitions of the soure net (the PO

k

plaes in the soure, the input

plaes in the destination) and transitions from the soure subnet with at least one

output plae in the destination subnet. The formal expression of asynhronous

omposition for a given lass of Petri nets (GSPN, SWN, : : :) is summarized in

the following

De�nition 1. The Petri net N = (P; T; : : :) is the asynhronous omposition of

the nets (N

k
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k
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k

; : : :))
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[(P
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0

(the set of plaes and the input/output plaes),

� T =

S

k2K

T

k

and T

k

T

T

k

0

= ; for k 6= k

0

(the set of transitions); TnTO is

the set of loal transitions,

� Eah additional parameter of N for the lass of nets involved (designated by

: : :) is suh that its restrition to N

k

is the orresponding parameter of N

k

.

In the rest of the paper, for any markingM of N , we denoteM

k

=M(P

k

nPO

k

),

so that M = (M

k

)

k2K

.

P. Buhholz studied the asynhronous omposition of GSPNs and other kinds

of Petri nets in several papers. His approah may be summarized as follows.

The global net N is deomposed in K subnets N

k

as de�ned above. For eah

subnet, one de�ne an aggregated view, disarding loal behaviour of the subnet

(in his papers he proposed several de�nitions of suh aggregated views and we

refer here to the one proposed in [1, 2℄: a virtual plae p

k

and a virtual transition

t

k

summarize the global behaviour of the subnet).

1

from now on, we shall use for ease of writing, K as set of k indexes or as maximal k

index when no onfusion an arise.



The global behaviour of the net is summarized in the net N

0

omposed with

aggregated views of all the subnets and is studied for itself giving a Reahability

Set (RS) RS

0

.

The RS RS

k

of the subnet k is omputed using N

k

and the behaviour of all

other subnets, also summarized with a single virtual plae transition pair. RS

k

is deomposed in partition (RS

k

(m

k

)), all markings of RS

k

(m

k

) providing the

same marking of the virtual plae p

k

.

Buhholz has proved that the generator of the CTMC of the tangible states

of N may be expressed as linear ombinations of tensor produts of three kinds

of matries: Q

k

(m

k

) giving loal transition �rings of N

k

, U

k

(n;m

k

) for marking

hanges due to inoming bags n in N

k

and S

k

(m

k

; ) for those due to �rings

of output transitions of N

k

for a olour . So, to ompute the steady state

probabilities, it is su�ient to use these "small" matries.

The main advantages of this method are:

� redued data strutures allow the study of large nets

� elimination of vanishing states may be done at the subnet level whih redues

both state spae sizes and time omputation w.r.t to global elimination

� aggregated views may be de�ned at di�erent levels leading to hierarhial

deomposition from oarsest views to more detailed ones.

These works also point out the very important fat that the study of a subnet

in isolation requires to de�ne its environment. We propose in Set. 3.1 suh a

de�nition for SWNs in a formal way.

However the following points must be highlighted:

� although [2℄ deals with SWNs, only Tangible Reahability Graphs (TRG)

� not Symboli Reahability Graph (SRG) � are used to ompute the solu-

tion, the Well Formed aspets of the net being used only to ompute ordinary

markings and �rings: the Q matrix relates to the unfolded net, and no ag-

gregation �in the stohasti meaning� is exploited.

� no automati method to build aggregated views based upon the net desrip-

tion is provided, whih may lead, as pointed out by the author ([1℄), to

onsisteny problems.

The present work provides solutions for these two important problems.

2 Theoretial Context

In this setion we �rst set the framework of our researh in order to extend the

results that we have reviewed above, then point out the key problems about

suh extensions. Let us reall that we want to develop an aggregation method

based upon the SWN formalism while keeping the advantages of the deompo-

sition methods for asynhronous omposition of subsystems. Beause of spae

onstraint, we refer the reader to [3℄ for a detailled presentation of SWN and

SRG, and to [7℄ for a omplete study.



sitest
2

t
1

t
4

t
3

⊕ X

card(Z1)=1

X

X
X

X

X

X

X X

Z1

S

X

site

1

site

3

site

2

site

4

Fig. 1. GSPN and SWN of a logial token ring

2.1 The spei�ation problem

The �rst problem with this approah relates to the kind of synhronization

found at the system spei�ation level: if several objets of the same "type"

(proesses for instane) are synhronized together, then we may build a model

with a produt struture , eah of the terms of this synhronized produt being

a model of one objet behaviour, leading to a produt of CTMCs; but then, as

we modelize one objet behaviour with one subnet, there is no objet lass at

all, and therefore we annot use aggregation. In these situations, we say that the

system exhibits internal synhronization, "internal" meaning "between objets

of the same kind". Alternatively, we may also build SWN models of suh systems,

and we get an aggregated CTMC of the whole model, but no deomposition may

be used.

We say that the system exhibits external synhronization if there is synhro-

nization between objets of di�erent lasses.

A simple example of internal synhronization is a system of sites exeuting

sequential ode with a setion in mutual exlusion, the enabling of ritial setion

exeution being alloated in a yli manner to eah site (logial token ring).

The GSPN and SWN of this system (with 4 sites) is shown in Fig. 1: starting

from the idle state, eah site does a �rst job (�rst transition) and then waits

for the mutual exlusion token to ontinue its work (seond transition). When

the ritial setion work is done, it releases the mutual exlusion token (fourth

transition) and returns to idle state. In the SWN model, we have only one basi

lass C

s

for the Sites. The S marking indiates that all sites are idle in the initial

state and the Z

1

dynami marking means that this plae holds any single token

of the olour lass C

s

.



As we see, the SWN is the "folding" of the GSPN and the synhronization

between sites is embedded in it; on the other side, we ould try to deompose

the GSPN as two by two synhronization between four idential GSPNs (one

example of whih is drawn in bold in Fig. 1).

So, in suh situations, we have to hoose between two models for the spei�-

ation of the system: keeping a whole SWN or unfolding the net to get a GSPN

or SAN deomposition.

In systems with external synhronization, objets of di�erent lasses are syn-

hronized and, following the general method presented in Set. 1.1, we want to

build a "synhronized produt" of subnets suh that eah subnet modelizes the

behaviour of an objet lass. In this way, we ould use aggregation at the subnets

level using the SWN model and at the same time, a omposition of the CTMCs

underlying these SWNs, at the global level.
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Fig. 2. Asynhronous omposition of SWNs without ombined aggregation and deom-

position

2.2 The resolution problem

Given a system with external synhronization only, we an modelize it as a SWN

N , asynhronous omposition of SWNs (N

k

)

k2K

eah N

k

being a SWN model of

an objet lass. Unfortunately, as a general rule, a diret extension of the GSPNs

omposition annot be used to solve the initial CTMC beause omposition (i.e.

artesian produt) of aggregates provided by the SRGs of theN

k

does not provide

an aggregation of the whole CTMC of the model verifying the strong lumpability

ondition (1). The main reason for this is that synhronization of oloured tokens

is not preserved in suh a diret omposition.
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Let us give an example of this problem with the SWN of Fig. 2. N is the

omposition of 2 SWNs N

1

and N

2

. The olour domain of all plaes exept p

6

and all transitions is a single ordered olour lass C with jCj = 2. Firing of t

1

(t

3

) exhanges the olour of plaes p

2

and p

1

(p

4

and p

3

). Firing of t

2

provides

the olour of p

2

to p

5

and �ring of t

4

returns an non oloured token in p

6

when

p

4

and p

5

have the same token olour. The SRG of N is given in Fig. 3: symboli

markings 1 and 2 are the only ones with one token in p

6

and they di�er by the

olour of tokens in p

2

and p

4

(same � Z

2

� or di�erent � Z

1

and Z

2

� olours).

Let us emphasis that these two markings annot be aggregated beause the �ring

of t

2

produes the markings (3 and 4) from whih t

4

is enabled (in 3) or nor

(in 4). Figure 4 shows two subnets N

1

and N

2

whih are extensions of N

1

and

N

2

with an abstrat view of the omplementary net redued to one plae and

one transition and Fig. 5 gives the SRGs of N

1

, N

2

and their "produt". The

marking 12 orresponds to markings 1 and 2 in the original SRG. The key point

is that the abstrat view does not ath the olour synhronization whih will

append in t

4

, and it is easy to see that no other abstrat view ould do it.

Furthermore, even if we an de�ne a "synhronized produt" of SRGs, we

have to �nd how to express the label assoiated with an output transition, that

is to say its rate, with information provided by these SRGs.

All of the following work onsists of building nets in whih the olour syn-

hronization are never onditioned by earlier �rings in more than one subnet.

This is done through:

� the de�nition of an abstrat view of eah omponent (subnet),
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� the de�nition of modi�ed � that is to say enlarged � SWNs (denoted N

k

) of

the subsystems inluding a representation of their environment via abstrat

views of all other subnets.

From the SRGs of these SWNs we derive of a tensor expression of the genera-

tor of the model, and we ompute performane measures with iterative methods.

3 Asynhronous omposition of SWNs

In the present work we assume that eah transition has exponential �ring time,

so that the stohasti proess de�ned by N is a CTMC, and that the transition

rate is marking independent (future work will partially relax these onditions).
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Fig. 6. Example of asynhronous omposition of SWNs

We give in Fig. 6 an example of asynhronous omposition of SWNs to whih

we shall refer throughout this setion to explain our de�nitions and results. A

brief explanation of the system is as follows: we have a lient-server system in

whih lients are initially loated in N

1

(plae p

13

) and servers in N

2

(plae p

25

).

Clients emit a server request by pairs of neighbour (variables X and

L

X , the

lient lass C



is ordered). The requests are treated in N

2

where servers (lass

C

s

) exeute the requests (transitions t

21

, t

22

and t

23

). A server may fails: in this

ase it must be repaired with two jobs loated in N

3

(transitions t

31

, t

32

and

t

33

).

The basi olour lasses are hene C



and C

s

and the olour domains of eah

node (not shown in the �gure for ease of reading) are: C



for p

11

, p

12

, p

13

, p

21

,



p

22

, t

11

,t

12

and t

13

, C

s

for p

25

, p

31

, p

32

, p

33

, p

34

, t

24

, t

31

, t

32

and t

33

, C



� C

s

for p

23

, p

24

, t

21

and t

22

, C



� C

2

s

for t

23

.

3.1 The abstration proess

As we have seen in previous setions, the �rst problem is to be able to de�ne

subnets N

k

embedding N

k

and an aggregated view of its environment. This

means that the modelizer has to de�ne an abstrat view of eah N

k

whih will

be used in the desription of the environment of other subnets.

An abstrat view has to enfore a set of onstraints:

� it allows to hide details of behaviour of the subnet.

� it is onsistent, that is to say: if M [ÆiM

0

with a sequene of �rings Æ =

�

�

1

��

�

2

omposed of loal �rings �

�

1

and �

�

2

to be hidden, then we must have:

a(M)[�ia(M

0

) with a(M) the abstration of the marking M .

� it must let "visible" interations between global entities.

� it has to be formally de�ned from the net desription.

� it is ompatible with a ombined aggregation/deomposition method.

To take into aount the previous onstraints, this abstration should be

guided by qualitative onsiderations, espeially by observing interations between

global entities (olour lasses) inside eah subnet keeping these interations "vis-

ible" in the abstration.

Furthermore, more generally and unlike Buhholz, it does not seem possible

to abstrat a subnet with only one plae: we need at least one plae to modelize

entities of eah basi olour lass moving from one subnet to another one.

We propose to de�ne eah plae through a partial semi�ow

2

to ensure on-

sisteny of the abstration and deal with formal de�nitions dedued from the

net desription.

De�nition 2. An abstration semi�ow f of N

k

is a partial semi�ow of N with

respet to T

k

nTO

k

s.t.:

� there is a olour lass C

i

s.t. C(f) = C

i

.

� 8p 2 P

k

nPO

k

, f

p

is 0 or b times a projetion (with b a positive onstant).

Let F

k

be a set of abstration semi�ows of N

k

. The abstrat view of N

k

w.r.t F

k

is the set of plaes PA

k

= fp

f

; f 2 F

k

g with:

� C(p

f

) = C(f) (the olour domain of p

f

).

� M

0

(p

f

) =

P

p2P

k

nPO

k

f(M

0

(p)) (the initial marking of p

f

).

For any marking M = (M

k

)

k2K

of N , the abstrat marking of M

k

is am(M

k

)

= (

P

p2P

k

nPO

k

f(M(p)))

f2F

k

, also denoted am

k

(M) or M(PA

k

) (the values of

the semi�ows of F

k

in the marking M

k

)

The global olours of N

k

are fC(f) ; f 2 F

k

g.

2

f is a partial semi�ow on N = (P; T; : : :) w.r.t a set T

0

� T of transitions i� f is a

semi�ow on the net N

0

= (P; T

0

; : : :)



The objets of the global lasses of the (N

k

) are the only ones whih move

between subnets. Let us note that a global lass for N

k

may be a non global one

for another N

k

0

. Suh lasses may be renamed with di�erent names in eah N

k

where it is non global. From now on, we assume that suh a renaming has been

done.

In our example SWN, we have two partial semi�ows in N

2

(f

2

= X:p

21

+

X:p

23

+X:p

22

+X:p

24

and f

2s

= X:p

25

+Y:p

23

+Y:p

24

) and one partial semi�ow

in N

3

(f

3s

= X:p

31

+X:p

33

).

We an now de�ne the modi�ed subnets allowing deomposition under appro-

priate onditions, set additional notations and de�ne the aggregation funtion

we shall use. In the sequel, the abstrations of the (N

k

) are given.

S
c

p
11

p
12

p
13

t
11

t
12

t
13

p
2x

p
2y

t
23

t
24

p
3y

t
33

_

N
1

X X

X X

X

Y

Y

Y Y

Y1 + Y2

Y1 + Y2

S
s

X+⊕ X X+⊕ X

X+⊕ X

⊕ X

Fig. 7. Subnet N

1

for the example SWN

De�nition 3. Let N be an asynhronous omposition of the (N

k

)

k2K

. The ex-

tension N

k

of N

k

is the SWN (P

k

; T

k

; C; J; W

�

k

;W

+

k

; �; !; M

0;k

; �

k

) with:

� P

k

= (P

k

nPO

k

)

S

k

0

6=k

PA

k

0

(For eah marking M of N , the orresponding

marking of N

k

is M

k

= (M

k

; (M(PA

k

0

))

k

0

6=k

)).

� T

k

= T

k

S

k

0

6=k

TO

k

0

� 8p 2 P

k

nPO

k

, 8t 2 T

k

, W

�

k

(p; t) =W

�

k

(p; t) and W

+

k

(p; t) =W

+

k

(p; t)

� 8p

f

2 PA

k

0

, 8t 2 T

k

:

W

�

(p

f

; t) =

P

p

0

2

�

t

f

p

0

ÆW

�

(p

0

; t) and W

+

(p

f

; t) =

P

p

0

2t

�

f

p

0

ÆW

+

(p

0

; t)

M

k

(PA

k

0

) is still named the abstrat marking of N

k

0

(in M

k

).



Fig. 7 shows the extension N

1

of N

1

. We see that in PA

2

we have only two

plaes p

2x

and p

2y

for the olours C



and C

s

, and in PA

3

one plae for C

s

. The

transitions t

13

, t

23

, t

24

and t

33

are also modi�ed aordingly with our de�nition.

We ould also de�ne a full abstrat view N of N with abstrat views only

of all subnets, useful in a hierarhial design proess, however our method does

not use N .

Notations

� SRS

k

(resp. SRG

k

) is the SRS (resp. the SRG) of N

k

,

� XSRS =

Q

k2K

SRS

k

.

� M

k

is the symboli marking of M

k

in SRS

k

and M = (M

k

)

k2K

2 XSRS.

� D(XSRS) = fM j 9M 2 XSRS s.t. 8k 2 K; M

k

2M

k

g

De�nition 4. Let N be an asynhronous omposition of the (N

k

)

k2K

. The ag-

gregation funtion A is: A(M) = (M

k

)

k2K

=M2 XSRS

3.2 Syntati onditions of aggregation

In order to be able to apply a ombined aggregation/deomposition method of

resolution, we have to add syntati onditions to the model: roughly speaking,

they mean that for eah global olour lass and every marking, the subsets of

olours in the abstrat views are a partition of this lass.

We give a �rst set of onditions for whih the algorithm proposed below

may be used to ompute performane measures of N . As usual with (stohasti)

Petri nets, suh onditions must be expressed at the syntati level that is to

say relative to either strutural properties like olour domains, inidene funtion

expressions, : : : or to properties whih may be heked only using these strutural

properties like semi�ows, : : :, to avoid heking of the RG of N .

De�nition 5. We say that N ful�lls the syntati onditions of aggregation i�

8k 2 K we have the following properties:

1. 8p 2

�

TO

k

with C(p) =

Q

i2I

C

e

i

i

, 8i 2 I s.t. C

i

is a global olour of N

k

and e

i

> 0 we have: 81 � j � e

i

, X

j

i

(the jth projetion on C

i

) is in one

abstration semi�ow f 2 F

k

.

2. 8t 2 TO

k

8X 2 V ar(t) orresponding to a global olour lass of N

k

, X is in

a positive term of some W

�

(p; t):

3. 8p 2 PA

k

with C(p) = C

i

, 8k

0

6= k, 8p

0

2 P

k

0

with C(p

0

) =

Q

i2I

C

e

0

i

i

:

8 1 � j

0

� e

0

i

there is a semi�ow g = (g

q

)

q2P

k

0

on C

i

in N

k

0

, s.t. 8M g(M) =

S

i

with:

g

q

=

8

<

:

0 or a projetion if q 6= p; q 6= p

0

Identity if q = p

j

0

th projetion if q = p

0

Condition 1 ensures that the abstrat view of N

k

is not too oarse and mem-

orizes olours moving between omponents: the basi olour lasses involved in



the �rings of t 2 TO

k

have to be in the olour domain of PA

k

. Condition 2

means that the �ring olours of t 2 TO

k

must be in the input plaes of t. At

last, ondition 3 implies that in eah marking, we have a partition of eah o-

urrene of eah global olour C

i

, between olours usable to �re t and olours in

other subnets N

k

0

.

It is easy to show that our example SWN ful�lls these onditions.

Let us notie these onditions are ful�lled for many nets whih are models of

systems with several omponents eah having some kind of autonomy.

3.3 Performane measures omputation algorithm

As in the synhronous ase, the basis of the algorithm is a ombination of the

tensor expression of the generator Q of the CTMC of the synhronized produt

of the SRG

k

and of the regular omputation for SWNs.

The CTMC transitions ome from the �ring of a transition t 2 TnTO hene

hanging only the kth omponent of the global state, or from the �ring of an

output transition t 2 TO hanging several omponents k

1

; : : : ; k

l

of the state.

As transition �ring rates depend only on the stati sublasses of the hosen

olors, the rate r(t) from M to another M

0

sums the rates r(t; d; h�; �i) of

all symboli �rings h�; �i of t whih �t the hoie d, for all given olor stati

sublasses hoies d. Moreover r(t; d; h�; �i) is ard(F) (also denoted jFj) times

the mean �ring time �(t; d) of t for d where F is the set of ordinary �rings of t

from any ordinary marking of M to ordinary markings of the symboli marking

M

0

.

It an be shown then, that the matrix Q of the CTMC an be written as

sub-matrix of

Q

0

=

K

M

k=1

Q

0

k

+

X

t2TO

X

d

�(t; d)

"

K

O

k=1

C

k

(t; d)�

K

O

k=1

A

k

(t; d)

#

(2)

where d = (d

j

i

)

e

i

(t)

n

(with n

i

the number of stati sublasses of C

i

and 1 � d

ij

�

n

i

) is a hoie of stati sublasses for the symboli �rings of t ((a

j

i

)

b

i

n

denotes

the tuple (a

1

1

; : : : ; a

b

1

1

; : : : ; a

1

i

; : : : ; a

b

i

i

; : : : ; a

1

n

; : : : ; a

b

n

n

)).

The Q

0

k

matries ome from the generator of the CTMC of the N

k

nets

in isolation using only loal transitions: they an be built from lassial SWN

tehnis, disarding any output transition e�et.

The

L

operator means that these CTMCs are independent stohasti pro-

esses. The A

k

and C

k

matries are obtained as onsequene of output transition

�rings: any suh �ring produes a state hange in eah omponent N

k

involved

in the marking hange.

By sub-matrix we mean that non zero terms (for same pair of states) of

Q equal those of Q

0

and that if M is reahable and M

0

is unreahable then

q

0

M;M

0

= 0.

The C

k

(t; d) and A

k

(t; d) matries are omputed by the algorithm below.

Let us denote:



� 8 h�; �i (instantiation funtions in N

k

for t), M

k

and M

0

k

in SRS

k

:

1

(t;d;h�;�i;M

k

;M

0

k

)

=

8

<

:

1 if d = (d(Z

�

i

(j)

i

))

e

i

(t)

n

and M

k

[t(h�; �i)iM

0

k

0 else

1

(t;d;M

k

;M

0

k

)

=

_

h�;�i

1

(t;d;h�;�i;M

k

;M

0

k

)

with

W

denoting the Boolean addition (logial or).

� for t 2 TO

k

F

(h�;�i;M

k

;M

0

k

)

=

h

Y

i=1

m

i

Y

j=1

ard(Z

j

i

)!

(ard(Z

j

i

)� �

j

i

)!

with h the highest index of non ordered basi olour lasses of C(t).

Then we have the following algorithm.

Algorithm:

1. for eah k 2 K ompute SRG

k

(hene SRS

k

) (r

k

= jSRS

k

j)

2. for eah k 2 K ompute the Q

0

k

matries from SRG

k

, using only loal

transitions

3. for eah t 2 TO (say t 2 TO

k

)

for eah h 2 K ompute C

h

(t; d) and A

h

(t; d) from SRG

h

:

if h 6= k and t

�

T

P

h

= ; then C

h

(t; d) = A

h

(t; d) = I

r

h

if h = k then 

h

(t; d)

M

h

;M

0

h

=

P

h�;�i

1

(t;d;h�;�i;M

h

;M

0

h

)

F

(h�;�i;M

h

;M

0

h

)

if h 6= k and t

�

T

P

h

6= ; then 

h

(t; d)

M

h

;M

0

h

= 1

(t;d;M

h

;M

0

h

)

a

h

(t; d)

M

h

;M

0

h

=

(

P

M

00

h



h

(t; d)

M

h

;M

00

h

if M

h

=M

0

h

0 else

4. ompute the performane measure using the tensor expression of Q

0

.

To use the tensor expression of Q

0

, the numerial method omputing a given

measure has to verify the onditions:

� only linear funtions of produts V:Q

m

are used, with V a vetor

� no unreahable state is involved in the omputation

Let us emphasize that suh omputations never use Q

0

diretly but instead

the Q

0

k

, C

k

and A

k

matries.

An important example of performane measure is the steady state proba-

bility distribution vetor of the aggregated CTMC. We an then use iterative

methods like the power method or the faster GMRES method ([12℄) to ompute

these probabilities with the proposed algorithm. However, to ensure the above

onditions, the initial vetor must have non zero omponents for reahable states

only: we an for instane, hoose the vetor v

(0)

with v

(0)

M

0

= 1 and v

(0)

M

= 0 if

M 6=M

0

.

We state in the following theorem the results giving the orretness of the

algorithm.



Theorem6. Let N be an asynhronous omposition of the (N

k

)

k2K

, then:

1. RS � D(XSRS)

2. the funtion A de�ned by A(M) = (M

k

)

k2K

=M 2 XSRS is an aggrega-

tion funtion verifying the strong lumpability ondition (1)

3. the transition rate from any marking M of XSRS is given in the previous

algorithm.

The proof is given in App.A.

Conlusion

In this paper we have shown how to ombine two methods, aggregation and

deomposition, to deal with the inreasing omplexity of parallel systems. The

studied systems are omposed of subsystems ommuniating via entities moving

between them. Deomposition expresses the state spae of the system as a arte-

sian produt of smaller spaes. Aggregation redues the state spae by grouping

states and solving the Markov hain on the set of state lasses; the SWN model

moreover enables the redution diretly from the net desription.

We have shown that in the ase of internal synhronization, we have to hoose

between either deomposition or aggregation to speify the studied system. Now,

in the ase of external synhronization, we have shown that it is the synhro-

nization memory phenomenon whih allows or disallows the merging of the two

methods to solve its Markov hain.

We have given a new method, allowing a ombined aggregation�omposition

approah: we onstrut new subnets, built from original ones and abstrat views

of the others to deal with synhronization memory � apturing the synhroniza-

tion memory � and we apply the deomposition approah on their SRGs. We

have established a set of syntati onditions under whih suh a method an be

used.

Future work will extend the results to SWNs with immediate transitions and

will experiment the method for large nets with a Petri net tool ([4℄).

A Proof of the algorithm

The proof

3

of theorem 6 is established in several steps:

� de�nition of a set of semanti onditions, that is to say at the marking level

(de�nition 8) for whih

� we prove that they verify the strong lumpability ondition (1) (theorem 10

based upon lemma 9).

� proof that the syntati onditions of aggregation imply those semanti on-

ditions (theorem 11).

� proof that the generator of the aggregated CTMC is a submatrix of Q

0

given

in the algorithm.

3

This setion may be skipped by readers how have no interest in theoretial

developments



We use a semanti intermediate level in this proof. The reason of whih is

threefold:

� the semanti onditions allow a strutured de�nition of syntati onditions:

for eah of the �rst one, we try to �nd a syntati translation.

� given the same set of semanti onditions, we shall be able to �nd other sets

of syntati onditions, for speial lasses of nets, reduing the new proof to

the fat that syntati onditions imply semanti onditions.

� the orretness of the expression of Q

0

depends on syntati, not semanti,

onditions.

A.1 Semanti onditions of aggregation

We now exhibit the marking level onditions under whih we an de�ne a om-

bined aggregation and deomposition. From the above aggregation funtion def-

inition, two markings M and M

0

will be in the same aggregate if there is a

K-tuple of admissible permutations s

k

suh that 8k 2 K, s

k

(M

k

) = M

0

k

. How-

ever, for any marking, the (s

k

) must be equal on the markings of the ommon

abstrat plaes of the (N

k

) so we introdue the de�nition:

De�nition 7. Two admissible permutations s and r are ompatible w.r.t. M

k

(or M

k

) i� s(am(M

k

)) = r(am(M

k

)).

A ompatible family of permutations s = (s

k

)

k2K

w.r.t M is a family of admis-

sible permutations s

k

s.t. for any k; k

0

; k", s

k

and s

k

0

are ompatible w.r.t. M

k

00

;

for suh a family we denote s(M) = (s

k

(M

k

))

k2K

.

De�nition 8. We say that N ful�lls the semanti onditions of aggregation i�

for every k and every reahable marking M

k

we an �nd a subset C

i;k

of every

C

i

2 C with the following properties:

1. for every admissible permutation s:

s(am(M

k

)) = am(M

k

) ) (8i 2 I s(C

i;k

) = C

i;k

).

2. 8 t 2 TO

k

: if M

k

[t()i then  is omposed of olours of (C

i;k

)

i2I

.

3. for every ompatible permutations r and s w.r.t M

k

s.t. 8i 2 I r

jC

i

nC

i;k

=

s

jC

i

nC

i;k

, we have:

8k

0

, 8M

0

k

0

: M

0

k

0

(PA

k

) = am(M

k

) ) r(M

0

k

0

) = s(M

0

k

0

).

Intuitively, ondition 2 means that the C

i;k

are the set of basi olours en-

abling the �rings of t 2 TO

k

. Condition 1 ensures that the abstrat view of M

k

is onsistent with respet to �rings of t 2 TO

k

. Condition 3 expresses the fat

that only olours not in the C

i;k

are relevant outside M

k

.

Lemma9. Let N ful�ll the semanti onditions above and M s.t. 8k 2 K M

k

is reahable in N

k

. Let s = (s

k

)

k2K

be a ompatible family of permutations w.r.t

M .

If M [t()iM

0

then there is a permutation r and a ompatible family q =

(q

k

)

k2K

w.r.t M

0

s.t. s(M)[t(r())iq(M

0

), with r depending only upon t and s.



Proof. We have to �nd r and q suh that 8k 2 K, s

k

(M

k

)[t(r())iq

k

(M

0

k

). From

the de�nition of the (M

k

)

k2K

and the ompatibility of the (s

k

)

k2K

, it is equiv-

alent to show: 8k 2 K, s

k

(M

k

)[t(r())iq

k

(M

0

k

).

� First ase: t 2 T

k

0

nTO

k

0

is a loal transition.

We have then 8k 6= k

0

M

0

k

= M

k

; and t =2 T

k

) s

k

(M

k

)[t(s

k

0

())is

k

(M

k

)

= s

k

(M

0

k

).

As s

k

0

is admissible s

k

0

(M

k

0

)[t(s

k

0

())is

k

0

(M

0

k

0

).

The result follows with r = s

k

0

and 8k 2 K q

k

= s

k

i.e. q = s.

� Seond ase: t 2 TO

k

0

is an output transition.

We apply the semanti onditions with s

k

0

(M

k

0

) and show that we an hoose

r = s

k

0

.

Sine s

k

0

is admissible, s

k

0

(M

k

0

)[t(s

k

0

())is

k

0

(M

0

k

0

)

We now prove that for eah k 6= k

0

we have s

k

(M

k

)[t(s

k

0

())iq

k

(M

0

k

) with

adapted q

k

.

Let us denote M

00

= s

k

0

(M) and (C

i;k

0

)

i2I

the subsets from the semanti

onditions w.r.t. M

00

k

0

.

For eah k 6= k

0

, let us denote u

k

= s

k

Æ s

�1

k

0

. As s is a ompatible family

and by de�nition of M

00

k

0

and u

k

, we have

4

: u

k

(am(M

00

k

0

)) = am(u

k

(M

00

k

0

)) =

am(s

k

(M

k

0

)) = am(s

k

0

(M

k

0

)) = am(M

00

k

0

). So we have, from semanti ondi-

tion 1, u

k

(C

i;k

0

) = C

i;k

0

for every i.

Let us now de�ne the permutation v

k

:

8i 2 I , v

k

jC

i;k

0

= Id

C

i;k

0

and v

k

jC

i

nC

i;k

0

= u

k

jC

i

nC

i;k

0

. It is lear that v

k

is

admissible, hene so is v

k

Æ s

k

0

and v

k

Æ s

k

0

(M

k

)[ t(v

k

Æ s

k

0

())i v

k

Æ s

k

0

(M

0

k

)

From semanti ondition 2, s

k

0

is omposed of olours from the C

i;k

0

, hene,

by de�nition of v

k

, v

k

Æ s

k

0

() = s

k

0

().

We have for every i 2 I , v

k

jC

i

nC

i;k

0

= u

k

jC

i

nC

i;k

0

. Applying the semanti

ondition 3, we get v

k

(M

00

k

) = u

k

(M

00

k

), that is to say v

k

(M

00

k

) = s

k

(M

k

), and

�nally s

k

(M

k

)[t(s

k

0

())iq

k

(M

0

k

) with q

k

= v

k

Æ s

k

0

(k 6= k

0

) and q

k

0

= s

k

0

(q = (q

k

)

k2K

is learly a ompatible family w.r.t M

0

).

From this lemma we dedue the following theorem:

Theorem10. Let N ful�ll the semanti onditions above. Then the aggregation

funtion A ful�lls the strong lumpability ondition (1) on D(XSRS).

Proof is omitted (see [9℄).

A.2 From syntati onditions to semanti onditions

Theorem11. Let N ful�ll the syntati onditions of aggregation. Then N ful-

�lls the semanti onditions of aggregation.

4

from the de�nition of the �ows f 2 F

k

, s(am(M

k

)) = am(s(M

k

)) for any admissible

permutation s.



Sketh of proof (see [9℄ for a detailed proof): Let k and M

k

be given. We de�ne

the partition of the semanti onditions as: C

i;k

= folours of C

i

in am(M

k

)g

(let us remark that C

i;k

= ; for any non global olour of N

k

).

We then prove suessively the semanti ondition 1 from the de�nition

above, the seond semanti ondition from syntati onditions 1 and 2 and

the third semanti ondition from syntati ondition 3.

A.3 Generator of the aggregated CTMC

The sketh of the proof is the following (see [9℄ for a detailed proof):

Let �(M;M

0

) be the rate from the reahable stateM to the reahable state

M

0

in the aggregated CTMC. We have �(M;M

0

) =

P

t

P

d

�(t; d)jU

t;d

j with

U

t;d

= fM

t()

�!

M

0

j M

0

2 M

0

; d() = dg and �(t; d) the rate of the transition t

for any olour with stati partition d and M �xed in M.

For t =2 TO it is lear that

L

K

k=1

Q

0

k

gives the orret rates.

For t 2 TO

h

we rewrite U

t;d

with �ring sets of the (N

k

)

k2K

whih leads to

the expression of the algorithm.

B Flows, semi�ows and impliit plaes in WNs

Flows are strutural invariant of Petri nets: to eah �ow is assoiated a onstant

sum of weighed markings of plaes whih gives information about the behaviour

of the net. For oloured PN, the de�nition of �ows uses plae olour funtions

instead of onstants hene the name symboli �ows.

De�nition 12. Let N be a WN with plaes P and inidene matrixW (of linear

funtions from Bag

Q

(C(t)) to Bag

Q

(C(p))). Let A be a set. A (symboli) �ow

of N on A is a vetor f = (f

p

)

p2P

6= 0 of linear funtions from Bag

Q

(C(p)) to

Bag

Q

(A) s.t.:

8t 2 T;

X

p2P

f

p

ÆW (p; t) = 0

For any reahable marking M , we have then:

X

p2P

f

p

(M(p)) =

X

p2P

f

p

(M

0

(p)) =

X

a2A

�(a):a (a onstant)

A semi�ow is a �ow with positive funtions f

p

: 8a 2 A; 8 2 Bag(C(p));

f

p

()(a) � 0

For WNs, following linear funtions play an important role (for a plae p with

olour domain

Q

i2I

C

e

i

i

and a olour  of p):

� Identity: Id() =  (and also n:Id with n a onstant number)

� Projetions: for a olour lass C

i

the jth projetion is Proj

j

i

() = 

j

i

An impliit plae with respet to a set P

0

of plaes, does not disable the

�ring of any transition for whih preonditions are satis�ed in P

0

.



De�nition 13. A plae p of a oloured Petri net N = (P; T; : : :) is impliit w.r.t.

P

0

� P (p =2 P

0

) i�:

1. there is a symboli �ow f with domain C(p) s.t.: f

p

= Id and 8q 2 P

0

,

f

q

< 0

2. 8t 2 T , we have 8 2 C(t):

f

p

(M

0

(p)) +

X

q2P

0

f

q

(M

0

(q)) � f

p

(W

�

(p; t)()) +

X

q2P

0

f

q

(W

�

(q; t)())

An impliit plae is an impliit plae w.r.t some P

0

.
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