ASYNCHRONOUS COMPOSITION OF
HIGH LEVEL PETRI NETS:
A QUANTITATIVE APPROACH

Serge Haddad Patrice Moreaux

LAMSADE - URA CNRS 825, Université Paris Dauphine, Place du Maréchal de
Lattre de Tassigny, 75775 PARIS Cedex 16, FRANCE

Abstract. Stochastic Well Formed Nets (SWNs) are a powerful Petri
Net model which allows the computation of performance indices with
an aggregation method. Decomposition methods initiated by B. Plateau
are another way to reduce the complexity of such a computation. We
have shown in a previous work, how to combine these two approaches
for systems with synchronous composition. Despite similarities between
the asynchronous and synchronous cases, it turns out that the former
presents specificities that need theoretical foundations. We undertake
this task in the present paper. We derive necessary conditions on the
modeled systems that allow for the two methods to be combined. For
parallel systems satisfying these necessary conditions we develop a model
with the corresponding algorithm. This model, based upon synchroniza-
tion of "global" tokens moving across submodels, covers a large range
of real life systems. An example shows the intuitive ideas behind these
developments.

Introduction

It is well known that complex systems with synchronization forbid the use of
analytical results to find the steady state probabilities of the corresponding
stochastic models. We have then to work at the Markov chain level or to use
approximate methods.

Our work deals with Markov chains. In this case, because of the huge size of
the state space, one is lead to find efficient methods that avoid the building of
the whole chain. The most effective methods are based upon the structure of the
models generating the Markov chain. Two main methods follow this approach,
aggregation and decomposition using tensor products.

The aggregation method builds a partition of the state space compatible with
stochastic behaviour to get a new Markov chain on the classes of the partition
with much fewer states. Then this chain is solved providing steady state prob-
abilities of the aggregates and the results are possibly used to find the steady
state probabilities of the original chain. This method is very effective since, for
instance, with the Stochastic Well formed Net (SWN) model ([3]), we can build

the partition a priori, and furthermore it has an interpretation at the system
level (a class is a set of states for which a condition is satisfied, ...).

The decomposition method describes the state space as a product of smaller
state spaces and from this, gives an expression of the infinitesimal generator of
the Markov chain using only generators on these smaller spaces and operators
from tensor algebra. The chain is then solved using directly this expression which
contains only "small" matrices. This method, introduced by Plateau [11], with
the Stochastic Automata Network (SAN) model was extended to Generalized
Stochastic Petri Nets (GSPN) by Donatelli [6] and Buchholz [2].

The purpose of our work is to merge these two methods keeping the benefits
of both. We have shown in [8] how to combine the SWN model and the Plateau
approach for synchronous composition of subsystems. In this paper, we show how
to develop the same combination in the asynchronous case already tackled by
Buchholz for GSPNs. As shown by Buchholz in several papers, the asynchronous
composition needs the definition of the environment of each subnet: we propose
the formally defined notion of abstract view of a subnet, based on qualitative
criteria, which allows application of the decomposition method.

However, as in the synchronous case, we first point out the two main diffi-
culties of the combination approach, that is to say the specification problem of
external/internal synchronization and the resolution problem of synchronization
memory. If we have a system with several objects of the same kind (processes for
instance), which are synchronized together (through common resources sharing
for instance), we may design a model of this system as a synchronized product
of models of the activities of these objects, but this product does not allow any
aggregation; the synchronization occurs between objects and there are no object
classes. We say in this case that the system exhibits an internal synchronization.
Therefore we focus on systems with external synchronization, that is to say with
synchronization between objects of different kinds. In this context, we observe
the synchronization memory phenomenon: the successive firings of synchroniza-
tion transitions change the state space in such a way that, as a general rule, the
original chain cannot be lumped as composition of smaller aggregated chains,
preventing the combination of the two methods.

Fortunately, for models involving synchronization memory, which is the gen-
eral case, we show that a control of the synchronization memory may be managed
for restricted asynchronous composition of SWNs. We derive the steady state
probabilities computation algorithm which is composed of four stages: definition
of an abstract view of each component (subnet), definition of enlarged SWNs,
derivation of a tensor expression of the generator of the model, computation of
steady state probabilities via iterative methods with that expression.

The outline of the paper is as follows: in Sect. 1 we remind the reader of the
methods we want to merge and review related works. We then summarize the
basic problems and our proposed framework in Sect. 2 before giving theoretical
results together with an illustrative example in Sect. 3. For concision of the
paper, proofs of results are carried over to appendix A and definitions about

flows and implicit places may be found in App. B.

1 General framework and related works

In this presentation, we restrict ourselves for the sake of simplicity to Continous
Time Markov Chain (CTMC).

1.1 Aggregation and decomposition

Let us recall that aggregation methods may be summarized in the following
steps: given a CTMC with state space £ and infinitesimal generator @ = [g;;]:
— find a partition of the state space E, say (E(’“))k:17,,.71{, so that the behaviour
of states belonging to the same E(*) are stochastically equivalent, that is to
say:

Vk,he{l,....K}, Ve, € E® > g0 = Y gee, =Gen (1)
en€EM) en€E()

— construct a new CTMC with state space E = {E(’“) | k=1,...,K}, and
infinitesimal generator Q = [Gk.n],
— solve this CTMC,
— possibly compute the probabilities of the states e, € E(*) using the previous
solution (note that this step requires additional information about the ey).
Kemeny and Snell ([10]) showed (first for Discret Time Markov Chain (DTMC),
the result was later on extended to CTMC) that the strong lumpability condi-
tion (1) is necessary and sufficient for the aggregated process to be markovian
hence a CTMC. Usually we have K < Y, |[E®| so the computation of the
steady state probabilities is easier for @ than for Q. SWN ([3]) is a Petri Net
model which supports such a method.

Now, the basic steps in decomposition methods are:

— describe the CTMC state space E as a subset of a cartesian product of smaller
spaces, say E C Hle Ey,

— use this decomposition to get an expression of @) as function f(Q1,...,QK),
where @)}, is the infinitesimal generator of the CTMC restricted to Ey,

— compute the solution 7 with 7.f(Q1,...,Qk) =0.

In our context, the functions f are sums of tensor products of the @y, (see [5]
and [11] for details about tensor algebra and its use in the area of stochastic
transition systems).

The main interest of this method is to enable the steady state probabilities
computation without computing the () matriz but instead, directly using the
tensor expression of (.

Trying to merge the two methods above means: from a CTMC C' with state
space E and infinitesimal generator (), get an aggregated CTMC of C as a
"tensor composition" of smaller aggregated CTMCs. Hence, the successive steps
for such a method are:

— build a state space decomposition of E, getting E C E' = H,If:l Ey,

— use an aggregation method verifying the strong lumpability condition (1) on
each of the CTMCs (E, Q) leading to Ep = {E,(c]) |7 =1,...,nt} and
infinitesimal generators ka, . . -

— build the product (E' = Hle Ei, Q = f(Q1, ...,Qk)) of the aggregated
CTMCs and define the aggregated image ECE of E.

Unfortunately, as a general rule, (E, Q) is not an aggregation of (E, Q) veri-
fying (1). So the problem is to find additional conditions on the initial CTMC C
which ensure that the combination satisfies the condition (1). We give in Sect. 3
a solution for SWNs models, using tensor expression for the function f.

1.2 GSPNs asynchronous composition

Asynchronous composition of Petri nets models communicating subsystems (sub-
nets), with entities (tokens) moving from one subsystem to another one. The
communication links between subnets are common places which are not input
places of transitions of the source net (the POy places in the source, the input
places in the destination) and transitions from the source subnet with at least one
output place in the destination subnet. The formal expression of asynchronous
composition for a given class of Petri nets (GSPN, SWN, ...) is summarized in
the following

Definition 1. The Petri net N = (P,T,...) is the asynchronous composition of
the nets (Nk = (Pk,Tk, .. -))keK iffl
— For all k there is a subset POy, of Py, s.t. Vi € Ty, *t(\ POy, = ((the set
of output places); we denote 70Oy = {t € T} s.t. t*(POy # 0} the set
of output transitions of Ny, and TO = [, cx TOk the set of all output
transitions,
— P= UkeKPk and Pk ﬂPkr g [POk ﬂ (Pk/\POkr)] U [(Pk\POk) ﬂPOk/] for
k # k' (the set of places and the input/output places),
— T = Upex Tr and Ty Ty = 0 for k # k' (the set of transitions); T\T'O is
the set of local transitions,
— Each additional parameter of N for the class of nets involved (designated by
...) is such that its restriction to Ny is the corresponding parameter of Nj.
In the rest of the paper, for any marking M of N, we denote My, = M (Py\POy,),
so that M = (Mk)keK-

P. Buchholz studied the asynchronous composition of GSPNs and other kinds
of Petri nets in several papers. His approach may be summarized as follows.

The global net N is decomposed in K subnets N as defined above. For each
subnet, one define an aggregated view, discarding local behaviour of the subnet
(in his papers he proposed several definitions of such aggregated views and we
refer here to the one proposed in [1, 2|: a virtual place py and a virtual transition
tr summarize the global behaviour of the subnet).

! from now on, we shall use for ease of writing, K as set of k indexes or as maximal k
index when no confusion can arise.

The global behaviour of the net is summarized in the net Ny composed with
aggregated views of all the subnets and is studied for itself giving a Reachability
Set (RS) RSy.

The RS RS} of the subnet k is computed using Ny, and the behaviour of all
other subnets, also summarized with a single virtual place transition pair. RS}
is decomposed in partition (RSk(my)), all markings of RSy (my) providing the
same marking of the virtual place pg.

Buchholz has proved that the generator of the CTMC of the tangible states
of N may be expressed as linear combinations of tensor products of three kinds
of matrices: Qr(my) giving local transition firings of Ny, Ui (n,m;,) for marking
changes due to incoming bags n in N and Si(my,c) for those due to firings
of output transitions of Ny for a colour c. So, to compute the steady state
probabilities, it is sufficient to use these "small" matrices.

The main advantages of this method are:

— reduced data structures allow the study of large nets
— elimination of vanishing states may be done at the subnet level which reduces
both state space sizes and time computation w.r.t to global elimination
— aggregated views may be defined at different levels leading to hierarchical
decomposition from coarsest views to more detailed ones.
These works also point out the very important fact that the study of a subnet
in isolation requires to define its environment. We propose in Sect. 3.1 such a
definition for SWNs in a formal way.

However the following points must be highlighted:

— although [2] deals with SWNs, only Tangible Reachability Graphs (TRG)
— not Symbolic Reachability Graph (SRG) — are used to compute the solu-
tion, the Well Formed aspects of the net being used only to compute ordinary
markings and firings: the) matrix relates to the unfolded net, and no ag-
gregation —in the stochastic meaning— is exploited.

— no automatic method to build aggregated views based upon the net descrip-
tion is provided, which may lead, as pointed out by the author ([1]), to
consistency problems.

The present work provides solutions for these two important problems.

2 Theoretical Context

In this section we first set the framework of our research in order to extend the
results that we have reviewed above, then point out the key problems about
such extensions. Let us recall that we want to develop an aggregation method
based upon the SWN formalism while keeping the advantages of the decompo-
sition methods for asynchronous composition of subsystems. Because of space
constraint, we refer the reader to [3] for a detailled presentation of SWN and
SRG, and to [7] for a complete study.

Fig.1. GSPN and SWN of a logical token ring

2.1 The specification problem

The first problem with this approach relates to the kind of synchronization
found at the system specification level: if several objects of the same "type"
(processes for instance) are synchronized together, then we may build a model
with a product structure , each of the terms of this synchronized product being
a model of one object behaviour, leading to a product of CTMCs; but then, as
we modelize one object behaviour with one subnet, there is no object class at
all, and therefore we cannot use aggregation. In these situations, we say that the
system exhibits internal synchronization, "internal" meaning "between objects
of the same kind". Alternatively, we may also build SWN models of such systems,
and we get an aggregated CTMC of the whole model, but no decomposition may
be used.

We say that the system exhibits external synchronization if there is synchro-
nization between objects of different classes.

A simple example of internal synchronization is a system of sites executing
sequential code with a section in mutual exclusion, the enabling of critical section
execution being allocated in a cyclic manner to each site (logical token ring).
The GSPN and SWN of this system (with 4 sites) is shown in Fig. 1: starting
from the idle state, each site does a first job (first transition) and then waits
for the mutual exclusion token to continue its work (second transition). When
the critical section work is done, it releases the mutual exclusion token (fourth
transition) and returns to idle state. In the SWN model, we have only one basic
class Cs for the Sites. The S marking indicates that all sites are idle in the initial
state and the Z! dynamic marking means that this place holds any single token
of the colour class Cj.

As we see, the SWN is the "folding" of the GSPN and the synchronization
between sites is embedded in it; on the other side, we could try to decompose
the GSPN as two by two synchronization between four identical GSPNs (one
example of which is drawn in bold in Fig. 1).

So, in such situations, we have to choose between two models for the specifi-
cation of the system: keeping a whole SWN or unfolding the net to get a GSPN
or SAN decomposition.

In systems with external synchronization, objects of different classes are syn-
chronized and, following the general method presented in Sect. 1.1, we want to
build a "synchronized product" of subnets such that each subnet modelizes the
behaviour of an object class. In this way, we could use aggregation at the subnets
level using the SWN model and at the same time, a composition of the CTMCs
underlying these SWNs, at the global level.

Fig. 2. Asynchronous composition of SWNs without combined aggregation and decom-
position

2.2 The resolution problem

Given a system with external synchronization only, we can modelize it as a SWN
N, asynchronous composition of SWNs (N)rex each Ni being a SWN model of
an object class. Unfortunately, as a general rule, a direct extension of the GSPNs
composition cannot be used to solve the initial CTMC because composition (i.e.
cartesian product) of aggregates provided by the SRGs of the Ny, does not provide
an aggregation of the whole CTMC of the model verifying the strong lumpability
condition (1). The main reason for this is that synchronization of coloured tokens
is not preserved in such a direct composition.

® t ®
<Z'>p,+<Z%p,+ LN <Z'>p,+<Z%p,+
<Z%p,+<Z'>p,+ <Z'>py+<Zp,+
<22>.p5 j‘ T <Z‘>.p5
7y 2
tg fs
ts iy
3 3 ®
t
t <Z'>p,+<Z%>.p,+ U 7(<Z'>p,+<Z%.p,+
<Z'>p,+<ZPp,+ <Z%p,+<Z'>p,+
<Z%.pg < <Z'>pg

<Z'>p +<ZZp,+pg+
<22>.p3 +<Z ‘>.p4

Fig. 3. SRG of the net of Fig. 2

Let us give an example of this problem with the SWN of Fig. 2. N is the
composition of 2 SWNs N; and N,. The colour domain of all places except pg
and all transitions is a single ordered colour class C' with |C| = 2. Firing of ¢,
(t3) exchanges the colour of places ps and p; (ps and ps). Firing of ¢» provides
the colour of ps to ps and firing of ¢4 returns an non coloured token in pg when
p4 and ps have the same token colour. The SRG of N is given in Fig. 3: symbolic
markings 1 and 2 are the only ones with one token in pg and they differ by the
colour of tokens in ps and py (same — Z2 — or different — Z' and Z2 — colours).
Let us emphasis that these two markings cannot be aggregated because the firing
of to produces the markings (3 and 4) from which ty is enabled (in 3) or nor
(in 4). Figure 4 shows two subnets N, and N, which are extensions of N; and
N> with an abstract view of the complementary net reduced to one place and
one transition and Fig. 5 gives the SRGs of N, N5 and their "product". The
marking 12 corresponds to markings 1 and 2 in the original SRG. The key point
is that the abstract view does not catch the colour synchronization which will
append in t4, and it is easy to see that no other abstract view could do it.

Furthermore, even if we can define a "synchronized product” of SRGs, we
have to find how to express the label associated with an output transition, that
is to say its rate, with information provided by these SRGs.

All of the following work consists of building nets in which the colour syn-
chronization are never conditioned by earlier firings in more than one subnet.
This is done through:

— the definition of an abstract view of each component (subnet),

Fig. 4. Subnets N1 and N for the net of Fig. 2

<Z'>p,+
<Z%p,+
<Z'>pg

<Z'sp,+<Z%>p,+
<Z'>pg

<Z'>p,+<Z?p,+
<Z%>pg

Fig. 5. SRGs of N, N» (Fig. 4) and their "product"

— the definition of modified — that is to say enlarged — SWNs (denoted Ni) of
the subsystems including a representation of their environment via abstract
views of all other subnets.

From the SRGs of these SWNs we derive of a tensor expression of the genera-
tor of the model, and we compute performance measures with iterative methods.

3 Asynchronous composition of SWNs

In the present work we assume that each transition has exponential firing time,
so that the stochastic process defined by N is a CTMC, and that the transition
rate is marking independent (future work will partially relax these conditions).

local work remote work

ox |

vy |
1

Fig. 6. Example of asynchronous composition of SWNs

We give in Fig. 6 an example of asynchronous composition of SWNs to which
we shall refer throughout this section to explain our definitions and results. A
brief explanation of the system is as follows: we have a client-server system in
which clients are initially located in N; (place p13) and servers in No (place pos).
Clients emit a server request by pairs of neighbour (variables X and @ X, the
client class C. is ordered). The requests are treated in N, where servers (class
() execute the requests (transitions to1, t2o and t23). A server may fails: in this
case it must be repaired with two jobs located in N3 (transitions t31, t32 and
t33).

The basic colour classes are hence C. and C and the colour domains of each
node (not shown in the figure for ease of reading) are: C. for p11, p12, P13, P21,

D22, t11 ,t12 and t13, C, for pos, p31, P32, P33, P34, toa, 31 , t32 and t33, C. x O
for pag, pa4, to1 and taz, Ce X C? for tas.

3.1 The abstraction process

As we have seen in previous sections, the first problem is to be able to define
subnets N, embedding N, and an aggregated view of its environment. This
means that the modelizer has to define an abstract view of each N}, which will
be used in the description of the environment of other subnets.

An abstract view has to enforce a set of constraints:

— it allows to hide details of behaviour of the subnet.

— it is consistent, that is to say: if M[0)M' with a sequence of firings 6 =
1oy composed of local firings 77" and 75 to be hidden, then we must have:
a(M)[o)a(M") with a(M) the abstraction of the marking M.

— it must let "visible" interactions between global entities.

— it has to be formally defined from the net description.

— it is compatible with a combined aggregation/decomposition method.

To take into account the previous constraints, this abstraction should be
guided by qualitative considerations, especially by observing interactions between
global entities (colour classes) inside each subnet keeping these interactions "vis-
ible" in the abstraction.

Furthermore, more generally and unlike Buchholz, it does not seem possible
to abstract a subnet with only one place: we need at least one place to modelize
entities of each basic colour class moving from one subnet to another one.

We propose to define each place through a partial semiflow? to ensure con-
sistency of the abstraction and deal with formal definitions deduced from the
net description.

Definition 2. An abstraction semiflow f of Ny is a partial semiflow of N with
respect to T, \T'Oy, s.t.:

— there is a colour class C; s.t. C(f) = C;.

— Vp € P \POy, fp is 0 or b times a projection (with b a positive constant).
Let F}, be a set of abstraction semiflows of IVi,. The abstract view of N;, w.r.t F},
is the set of places PA, = {py ; f € F}} with:

— C(py) = C(f) (the colour domain of py).

— Mo(py) = EpePk\POk f(My(p)) (the initial marking of py).

For any marking M = (My)rex of N, the abstract marking of M, is am(M})
= (X peparo, f(M(p)))rer,, also denoted amy, (M) or M (PA) (the values of
the semiflows of Fy in the marking Mj,)

The global colours of Ny, are {C(f); f € Fy}.

% f is a partial semiflow on N = (P,T,...) w.r.t a set T' C T of transitions iff f is a
semiflow on the net N' = (P, T",...)

The objects of the global classes of the (Ny) are the only ones which move
between subnets. Let us note that a global class for Vi, may be a non global one
for another Ny . Such classes may be renamed with different names in each Vg
where it is non global. From now on, we assume that such a renaming has been
done.

In our example SWN, we have two partial semiflows in Ny (far = X.po1 +
X.p23 + X.p22 + X.p24 and f23 = X.p25 + Y.p23 + Y.p24) and one partial semiflow
in N3 (fss = X.p31 + X.p33).

We can now define the modified subnets allowing decomposition under appro-
priate conditions, set additional notations and define the aggregation function
we shall use. In the sequel, the abstractions of the (N) are given.

Fig. 7. Subnet N, for the example SWN

Definition 3. Let N be an asynchronous composition of the (Ng)rex . The ez-
tension Ny of Ny is the SWN (Py,, T, C, J, W;,WZ_, ®,w, My, 0)) with:
— P = (P\POy) Uy 4y, PAr (For each marking M of N, the corresponding
Qarking of Nk is Mk = (Mk, (M(PAkr))kr;ék)).
~ Tt = Tk Uy 2 TOw
~ Vp € P\POx, Yt € T, W (p,8) = W, (p,) and Wy (p,1) = W, (p, 1)
- fo € PAy, VYt € T:

— _ =+
W (py,t) = Zp,e.t fp o W=(p',t) and W' (py,t) = Ep,et. fp o WT(p',t)
M (PAy) is still named the abstract marking of Ny (in My,).

Fig. 7 shows the extension N, of N;. We see that in PA, we have only two
places pa, and poy for the colours C. and Cy, and in PAj3 one place for Cs. The
transitions t13, t23, t24 and t33 are also modified accordingly with our definition.

We could also define a full abstract view N of N with abstract views only
of all subnets, useful in a hierarchical design process, however our method does
not use V.

Notations
— SRSy, (resp. SRGY,) is the SRS (resp. the SRG) of Ny,
— XSRS = [[hex SRSk.
— My, is the symbolic marking of M}, in SRSy and M = (My)rex € XSRS.
~ D(XSRS) ={M |3IM € XSRS s.t.Vk € K, M}, € My}

Definition 4. Let N be an asynchronous composition of the (Ni)kek . The ag-
gregation function A is: A(M) = (My)rex = M € XSRS

3.2 Syntactic conditions of aggregation

In order to be able to apply a combined aggregation/decomposition method of
resolution, we have to add syntactic conditions to the model: roughly speaking,
they mean that for each global colour class and every marking, the subsets of
colours in the abstract views are a partition of this class.

We give a first set of conditions for which the algorithm proposed below
may be used to compute performance measures of N. As usual with (stochastic)
Petri nets, such conditions must be expressed at the syntactic level that is to
say relative to either structural properties like colour domains, incidence function
expressions, . .. or to properties which may be checked only using these structural
properties like semiflows, ..., to avoid checking of the RG of N.

Definition 5. We say that N fulfills the syntactic conditions of aggregation iff
Vk € K we have the following properties:

1. Vp € *TOy, with C(p) = [[;c; Ci*, Vi € I s.t. C; is a global colour of Ny
and e; > 0 we have: V1 < j < ¢, Xij (the jth projection on C;) is in one
abstraction semiflow f € F}.

2. YVt € TO, YX € Var(t) corresponding to a global colour class of N, X is in
a positive term of some W~ (p,t).

3. Vp € PAy, with C(p) = Cy, VK' # k, Vp' € Py with C(p') = [[;e; C':

V1<)" < e there is a semiflow g = (gq), 5, on Ci in Ny, s.t. YM g(M) =
S; with:
0 or a projection if ¢ # p,q#p'
gq = { Identity if g=p
j'th projection if g =p'
Condition 1 ensures that the abstract view of Ny is not too coarse and mem-
orizes colours moving between components: the basic colour classes involved in

the firings of ¢ € T'O, have to be in the colour domain of PAj. Condition 2
means that the firing colours of ¢ € T'Oy must be in the input places of t. At
last, condition 3 implies that in each marking, we have a partition of each oc-
currence of each global colour C;, between colours usable to fire ¢ and colours in
other subnets Ny .

It is easy to show that our example SWN fulfills these conditions.

Let us notice these conditions are fulfilled for many nets which are models of
systems with several components each having some kind of autonomy.

3.3 Performance measures computation algorithm

As in the synchronous case, the basis of the algorithm is a combination of the
tensor expression of the generator () of the CTMC of the synchronized product
of the SRG} and of the regular computation for SWNs.

The CTMC transitions come from the firing of a transition ¢ € T\T'O hence
changing only the kth component of the global state, or from the firing of an
output transition ¢ € TO changing several components k1, ..., k; of the state.

As transition firing rates depend only on the static subclasses of the chosen
colors, the rate r(t) from M to another M’ sums the rates r(t,d, (A, u)) of
all symbolic firings (A, p) of ¢ which fit the choice d, for all given color static
subclasses choices d. Moreover r(t,d, (A, u)) is card(F) (also denoted |F|) times
the mean firing time 6(t,d) of ¢ for d where F is the set of ordinary firings of t
from any ordinary marking of M to ordinary markings of the symbolic marking
M.

It can be shown then, that the matrix @ of the CTMC can be written as
sub-matrix of

K

K K
Q=Pai+ D D 0td Q) Crlt,d) — Q) Ax(t,d) (2)
k=1 k=1

teTO d k=1

where d = (d{)f{'(t) (with n; the number of static subclasses of C; and 1 < d;; <

n;) is a choice of static subclasses for the symbolic firings of ¢ ((af)’;; denotes
the tuple (a},...,al, ... a},...,a}, ... ak, ... al)).

The @), matrices come from the generator of the CTMC of the Ny nets
in isolation using only local transitions: they can be built from classical SWN
technics, discarding any output transition effect.

The € operator means that these CTMCs are independent stochastic pro-
cesses. The Ay and C}, matrices are obtained as consequence of output transition
firings: any such firing produces a state change in each component N involved
in the marking change.

By sub-matrix we mean that non zero terms (for same pair of states) of
@ equal those of ' and that if M is reachable and M is unreachable then
1 _
qﬂ,ﬂ’ =0.

The C(t,d) and A (t,d) matrices are computed by the algorithm below.

Let us denote:

— V (A,) (instantiation functions in Ny, for ¢), M} and ﬂ; in SRS}:

1 if (d(g ())) i(t)
L aoom) = and Mk[t((1)) My,
0 else

Ly am xy) = \/ Loy M R

(Am)
with \/ denoting the Boolean addition (logical or).
— for t € TOy,
o card(Z
F bt St WA
(), M, M I[ljl_ll card(ZJ Nz)

with h the highest index of non ordered basic colour classes of C(t).
Then we have the following algorithm.

Algorithm:
1. for each k € K compute SRG, (hence SRS}) (1, = |SRSk|)
2. for each k € K compute the Q) matrices from SRGj, using only local
transitions
3. for each t € TO (say t € TOy,)
for each h € K compute Cy(t,d) and Ay (t,d) from SRG:
it h # k and t* (P, = 0 then Ci(t,d) = An(t,d) = I,
if h =k then ea(t, d)z7, 77, = Lo Lea O m,_h)F«A) T 3,)
1fh7ék:andt'ﬂPh;é[Z)thench(td)M 7, (thh,M)

(t d)M = EM” Ch(t d)M M” if Mh = Mh
bk 0 else
4. compute the performance measure using the tensor expression of)'.

To use the tensor expression of @', the numerical method computing a given
measure has to verify the conditions:
— only linear functions of products V.Q™ are used, with V' a vector
— no unreachable state is involved in the computation

Let us emphasize that such computations never use)’ directly but instead
the @Q},, C and Ay matrices.

An important example of performance measure is the steady state proba-
bility distribution vector of the aggregated CTMC. We can then use iterative
methods like the power method or the faster GMRES method ([12]) to compute
these probabilities with the proposed algorithm. However, to ensure the above
conditions, the initial vector must have non zero components for reachable states
only: we can for instance, choose the vector v(®) with vﬁ?jg =1 and 1;5&) =0if

M # M.

We state in the following theorem the results giving the correctness of the
algorithm.

Theorem 6. Let N be an asynchronous composition of the (Ni)kek , then:

1. RS C D(XSRS)

2. the function A defined by A(M) = (My)rex = M € XSRS is an aggrega-
tion function verifying the strong lumpability condition (1)

3. the transition rate from any marking M of XSRS is given in the previous
algorithm.

The proof is given in App.A.

Conclusion

In this paper we have shown how to combine two methods, aggregation and
decomposition, to deal with the increasing complexity of parallel systems. The
studied systems are composed of subsystems communicating via entities moving
between them. Decomposition expresses the state space of the system as a carte-
sian product of smaller spaces. Aggregation reduces the state space by grouping
states and solving the Markov chain on the set of state classes; the SWN model
moreover enables the reduction directly from the net description.

We have shown that in the case of internal synchronization, we have to choose
between either decomposition or aggregation to specify the studied system. Now,
in the case of external synchronization, we have shown that it is the synchro-
nization memory phenomenon which allows or disallows the merging of the two
methods to solve its Markov chain.

We have given a new method, allowing a combined aggregation—composition
approach: we construct new subnets, built from original ones and abstract views
of the others to deal with synchronization memory — capturing the synchroniza-
tion memory — and we apply the decomposition approach on their SRGs. We
have established a set of syntactic conditions under which such a method can be
used.

Future work will extend the results to SWNs with immediate transitions and
will experiment the method for large nets with a Petri net tool ([4]).

A Proof of the algorithm

The proof® of theorem 6 is established in several steps:

— definition of a set of semantic conditions, that is to say at the marking level
(definition 8) for which

— we prove that they verify the strong lumpability condition (1) (theorem 10
based upon lemma 9).

— proof that the syntactic conditions of aggregation imply those semantic con-
ditions (theorem 11).

— proof that the generator of the aggregated CTMC is a submatrix of " given

___in the algorithm.

3 This section may be skipped by readers how have no interest in theoretical
developments

We use a semantic intermediate level in this proof. The reason of which is
threefold:

— the semantic conditions allow a structured definition of syntactic conditions:
for each of the first one, we try to find a syntactic translation.

— given the same set of semantic conditions, we shall be able to find other sets
of syntactic conditions, for special classes of nets, reducing the new proof to
the fact that syntactic conditions imply semantic conditions.

— the correctness of the expression of)’ depends on syntactic, not semantic,
conditions.

A.1 Semantic conditions of aggregation

We now exhibit the marking level conditions under which we can define a com-
bined aggregation and decomposition. From the above aggregation function def-
inition, two markings M and M' will be in the same aggregate if there is a
K-tuple of admissible permutations s; such that Vk € K, s, (M) = Mj,. How-
ever, for any marking, the (s;) must be equal on the markings of the common
abstract places of the (N},) so we introduce the definition:

Definition 7. Two admissible permutations s and r are compatible w.r.t. My
(or My) iff s(am(My)) = r(am(My)).

A compatible family of permutations s = (sg)rex w.r.t M is a family of admis-
sible permutations sy, s.t. for any k, k', k”, s, and sy are compatible w.r.t. My;
for such a family we denote s(M) = (s (Mg))kek-

Definition 8. We say that N fulfills the semantic conditions of aggregation iff
for every k and every reachable marking M}, we can find a subset C; ;, of every
C; € C with the following properties:

1. for every admissible permutation s:
s(am(Mk)) = am(Mk) = (VZ el S(Ci,k) = Ci7k)-

2. Vt€TOy : if Mg[t(c)) then ¢ is composed of colours of (Cjx)ier-
3. for every compatible permutations 7 and s w.r.t My s.t. Vi € I rio\¢,, =

8)Ci\Cy.» WE have:
VE', VM,,: M, (PAy) = am(My) = r(M},) = s(M,,).

Intuitively, condition 2 means that the C;j are the set of basic colours en-
abling the firings of ¢t € T'Oy. Condition 1 ensures that the abstract view of M,
is consistent with respect to firings of ¢ € T'Oy. Condition 3 expresses the fact
that only colours not in the C;j are relevant outside M.

Lemma9. Let N fulfill the semantic conditions above and M s.t. Vk € K M,
is reachable in Ny. Let s = (si)rex be a compatible family of permutations w.r.t
M.

If M[t(c))M' then there is a permutation r and a compatible family q =
(g)kerx w.rt M' s.t. s(M)[t(r(c)))g(M'), with r depending only upon t and s.

Proof. We have to find r and ¢ such that Vk € K, s (My)[t(r(c)))qr (M},). From
the definition of the (My)rex and the compatibility of the (si)rex, it is equiv-
alent to show: Vk € K, s (My)[t(r(c)))qr (H;)
e First case: t € Ty, \T Oy, is a local transition.

We have then Vk # ko M, = My; and ¢ ¢ Ty = sp(Mp)[t(sk, (c)))sk (M)
= Sk (M;c) . _

As sy, is admissible sg, (M o)[E(Sko (€)Y Sko (Mg)-
The result follows with r = s, and Vk € K ¢ = s i.e. ¢ = s.

e Second case: t € T Oy, is an output transition.
We apply the semantic conditions with s, (M},) and show that we can choose
T = Sgg-

Since sg, is admissible, sk, (M g,)[t(sko (€)))Sko (M'k)

We now prove that for each k # ko we have sg(My)[t(sk, (¢)))qe (M) with
adapted qy.

Let us denote M" = sg, (M) and (Cjk,)icr the subsets from the semantic
conditions w.r.t. M .

For each k # ko, let us denote uy = s o s,zol. As s is a compatible family
and by definition of Mzo and uy, we have*: uk(am(MZO)) = am(uk(MZO)) =
am(sk(Mp,)) = am(sg, (Mg,)) = am(MZO). So we have, from semantic condi-
tion 1, ug(Ci k) = Cix, for every i.

Let us now define the permutation vy:

Vi € I, Vk|Cpy = Idc; ,, and vejon\c = Uk|C;\Ci g - It is clear that vy is

iko v
admissible, hence so is vy, o sy, and vg 0 sk, (My)[t(vg © Sk, (€))) VE © Sk (M'y)
From semantic condition 2, sy, is composed of colours from the Cj j,, hence,
by definition of vy, vy, 0 sk, (c) = sk, (c).
We have for every ¢ € I, VR|CA\Cing = Uk|C:\Cig - Applying the semantic
condition 3, we get vy (MZ) = uk(MZ), that is to say vy (MZ) = si(My), and
J— — .
finally s (Mp)[t(sk,(c)))ar(My,) with g = v 0 sk, (K # ko) and qr, = Sk,
v
(¢ = (q)kek is clearly a compatible family w.r.t M).

From this lemma we deduce the following theorem:

Theorem 10. Let N fulfill the semantic conditions above. Then the aggregation
function A fulfills the strong lumpability condition (1) on D(XSRS).

Proof is omitted (see [9]).

A.2 From syntactic conditions to semantic conditions
Theorem 11. Let N fulfill the syntactic conditions of aggregation. Then N ful-
fills the semantic conditions of aggregation.

* from the definition of the flows f € Fy, s(am(My,)) = am(s(My,)) for any admissible
permutation s.

Sketch of proof (see [9] for a detailed proof): Let k and My, be given. We define
the partition of the semantic conditions as: C;, = {colours of C; in am(My)}
(let us remark that C; ; = 0 for any non global colour of Ng).

We then prove successively the semantic condition 1 from the definition
above, the second semantic condition from syntactic conditions 1 and 2 and
the third semantic condition from syntactic condition 3.

A.3 Generator of the aggregated CTMC

The sketch of the proof is the following (see [9] for a detailed proof):
_ Let (M, M’) be the rate from the reachable state M to the reachable state
M in the aggregated CTMC. We have §(M, M’) = >, >, 0(t,d)|Us 4| with

Uta = {M v | M' € M', d(c) = d} and 6(t,d) the rate of the transition ¢
for any colour with static partition d and M fixed in M.

For ¢t ¢ TO it is clear that @le @}, gives the correct rates.

For t € TOy, we rewrite Uy 4 with firing sets of the (Ny)rex which leads to
the expression of the algorithm.

B Flows, semiflows and implicit places in WNs

Flows are structural invariant of Petri nets: to each flow is associated a constant
sum of weighed markings of places which gives information about the behaviour
of the net. For coloured PN, the definition of flows uses place colour functions
instead of constants hence the name symbolic flows.

Definition 12. Let N be a WN with places P and incidence matrix W (of linear
functions from Bagg(C(t)) to Bagg(C(p))). Let A be a set. A (symbolic) flow
of N on Ais a vector f = (fy)pep # 0 of linear functions from Bagg(C(p)) to
Bagg(A) s.t.:
VteT, proW(p,t) =0
peP

For any reachable marking M, we have then:

Z fo(M(p)) = Z fo(Mo(p)) = Z a(a).a (a constant)

peEP peEP acA

A semiflow is a flow with positive functions f,: Va € A, Ve € Bag(C(p)),
fo(c)(a) 20

For WNs, following linear functions play an important role (for a place p with
colour domain [[;.; C;* and a colour c of p):

— Identity: Id(c) = ¢ (and also n.Id with n a constant number)

— Projections: for a colour class C; the jth projection is Proj!(c) = ¢

J
(3

An implicit place with respect to a set P’ of places, does not disable the
firing of any transition for which preconditions are satisfied in P’'.

Definition 13. A place p of a coloured Petri net N = (P, T, ...) is implicit w.r.t.
P'CP (p¢P)iff:

1.

2.

there is a symbolic flow f with domain C(p) s.t.: f, = Id and Vg € P,
fq <0
Vt € T, we have Ve € C(t):

Fo(Mo(0) + Y~ fo(Mo(a) > fo(W™(p,6)(0)) + Y fo(W™(a,1)(c))

qeP’ geP’

An implicit place is an implicit place w.r.t some P’.

References

1.

10.

11.

12.

P. Buchholz. Hierarchies in colored GSPNs. In Proc. of the 14th International
Conference on Application and Theory of Petri Nets, number 691 in LNCS, pages
106—-125, Chicago, Illinois, USA, June 1993. Springer—Verlag.

P. Buchholz. Aggregation and reduction techniques for hierarchical GCSPN. In
Proc. of the 5th International Workshop on Petri Nets and Performance Models,
pages 216-225, Toulouse, France, October 19-22 1993. IEEE Computer Society
Press.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Transactions on Com-
puters, 42(11):1343-1360, November 1993.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: GRaphical
Editor and Analyser for Timed and Stochastic Petri nets. Performance Evaluation,
24(1,2):47-68, 1995.

M. Davio. Kronecker products and shuffle algebra. IEEE Transactions on Com-
puters, 30(2):116-125, 1981.

S. Donatelli. Superposed generalized stochastic Petri nets: definition and efficient
solution. In Robert Valette, editor, Proc. of the 15th International Conference
on Application and Theory of Petri Nets, number 815 in LNCS, pages 258-277,
Zaragoza, Spain, June 20-24 1994. Springer—Verlag.

C. Dutheillet. Symétries dans les réseaus colorés. Définition, analyse et application
a ’évaluation de performance. Theése, Université Paris VI, Paris, France, 28 janvier
1991.

S. Haddad and P. Moreaux. Evaluation of high level Petri nets by means of ag-
gregation and decomposition. In Proc. of the 6th International Workshop on Petri
Nets and Performance Models, pages 11-20, Durham, NC, USA, October 3-6 1995.
IEEE Computer Society Press.

S. Haddad and P. Moreaux. Aggregation and decomposition for performance eval-
uation of asynchronous product of high level Petri nets. Document du Lamsade
102, LAMSADE, Université Paris Dauphine, Paris, France, May 1997.

J. G. Kemeny and J. L. Snell. Finite Markov Chains. V. Nostrand, Princeton, NJ,
1960.

B. Plateau and J.M. Fourneau. A methodology for solving Markov models of
parallel systems. Journal of parallel and distributed computing, 12:370-387, 1991.
Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymetric linear systems. SIAM J. Sci. Stat. Comput., 7:856-869,
1986.

Table of Contents

1 General framework and related works 3
1.1 Aggregation and decomposition 3
1.2 GSPNs asynchronous composition 4
2 Theoretical Context 5
2.1 The specification problem 6
2.2 The resolution problem 7
3 Asynchronous composition of SWNs 10
3.1 The abstraction process 11
3.2 Syntactic conditions of aggregation 13
3.3 Performance measures computation algorithm 14
A Proof of the algorithm 16
A.1 Semantic conditions of aggregation 17
A.2 From syntactic conditions to semantic conditions 18
A.3 Generator of the aggregated CTMC 19
B Flows, semiflows and implicit places in WNs. 19

List of Figures

1 GSPN and SWN of a logical token ring 6
2 Asynchronous composition of SWNs without combined aggrega-

tion and decomposition L. 7
SRG of themnet of Fig. 2, 8
Subnets Ny and N for the net of Fig. 2 9
SRGs of Ny, N3 (Fig. 4) and their "product" 9
Example of asynchronous composition of SWNs 10
Subnet N; for the example SWN 12

~N O Ot W

