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Abstract

Coloured Petri nets are well suited to the modelling of symmetric systems. Model symmetries

can be usefully exploited for the sake of analysis e�ciency as well as for modelling convenience.

We present a reduced reachability graph called symbolic reachability graph that enjoys the fol-

lowing properties: 1) it can be constructed directly by an e�cient algorithm without considering

the actual state space of the model 2) it can be substantially smaller than the ordinary reacha-

bility graph 3) its analysis provides equivalent results as the analysis of the ordinary reachability

graph. The construction procedure for the symbolic reachability graph is completely e�ective

in the case of a syntactically restricted class of coloured nets called \well-formed nets", while

for the unrestricted case of coloured nets some procedures may not be easily implementable in

algorithmic form.

1 Introduction

Ordinary Petri nets [1, 2] are a good modelling tool for a precise representation of concurrent asyn-

chronous systems of moderate size. Their terse graphic representation and their sound mathemati-

cal semantics allow a clear understanding of complex behavioural phenomena such as concurrency,

conict, synchronization, etc. A natural extension of the Petri net formalism to allow the repre-

sentation of larger systems is the introduction of \Colour" structures to identify tokens. Coloured

(or in general High-level) Petri nets (CPNs) [3, 4] allow a concise graphical representation of large

symmetric systems made up of the repetition of several instances of some basic net structures.

The use of High-level Petri nets becomes particularly e�ective in practical application when

the complexity of the analysis of coloured models depends on the basic structure of the model but

not on the cardinalities of the colour sets. If this is the case, the veri�cation of interesting model

properties can be parametric in the actual colour de�nitions, thus yielding results that are valid

for classes of models instead of a single model. For example, in some cases, invariant analysis may

be parametric [5]. Unfortunately, few behavioural properties of a coloured Petri net model can

be veri�ed using parametric analysis techniques. In [6] an example of proof of correctness for a

CPN model of a concurrent algorithm is shown that is parametric on the number of processes that

execute the algorithm. Most of the interesting behavioural properties of a CPN model in general

can be easily studied only by computing the reachability graph of the net, whose size depends on

the cardinalities of the colour sets.

Even though an actual parametrization of the reachability graph analysis appears to be very

di�cult to obtain, one can nevertheless try and optimize the construction and analysis of the

reachability graph of a CPN model by exploiting the symmetries that are inherent to a good

exploitation of the CPN modelling formalism.

Aiming at reducing the size of the graph to analyze, Huber et al. [7] proposed to group some

markings into equivalence classes. The construction of such classes is based on the (non-automatic)
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de�nition of behavioural symmetries, from which an equivalence relation is deduced that is used

as a grouping criterion. For \Regular Nets" (a subclass of CPNs) Haddad [8] proposed another

reduced graph, the Symbolic Reachability Graph (SRG). Besides classes of markings, classes of

�rings are created during the construction of the SRG. Another method is proposed for safe Predi-

cate/Transition nets in [9]. This method is based on the binding of a variable (instead of a constant)

colour when �ring a transition. The variables then appear in parametrized markings. However, as

symmetries are not taken into account, these variables may denote colours with potentially di�erent

behaviours. Hence, the graph obtained is more compact than the previous ones but even for the

proof of basic properties such as deadlocks, a partial implicit unfolding of the parametrized graph

is necessary.

From each of the two �rst methods, we can extract a key idea. By studying the reachability

tree algorithm proposed by Huber et al., we notice that it is possible to de�ne a reduced graph

for any coloured net, even if all the procedures that we use in the construction of this graph are

not algorithmic. Compared with this method, the main improvements of the symbolic reachability

graph are twofold: �rst, the construction of equivalence classes of �ring; second, the de�nition of a

unique (or canonical) representative for each class of markings and each class of �rings. The SRG

is thus usually smaller than the reachability tree proposed in [7].

In this paper we extend the notion of SRG to the general case of CPNs. In the particular case of

Well-formed coloured nets [10] (a CPN model in which the syntax for the de�nition of colour classes

and functions is formally restricted to linear composition of a few basic functions) we have already

shown an e�ective algorithm for the generation of the SRG. In this paper we formalize the notion

of SRG even for the cases in which no e�ective algorithms may be found to construct them, and

show how the SRG can be used instead of the actual RG to compute interesting model behavioural

properties. All formal results are applied to the classic CPN model of the �ve philosophers problem

in order to exemplify them.

The balance of the paper is as follows. Section 2 contains a de�nition of CPNs and of their basic

symmetry properties. Section 3 provides an informal explanation of the SRG analysis technique.

Section 4 presents the formal de�nition of SRG for general CPNs and outlines a (non-e�ective)

construction algorithm. Section 5 de�nes the properties of the SRG of a CPN and proves their

relation with the behavioural properties of the CPN model. Section 6 contains concluding remarks

and perspectives of the work.

2 Coloured nets and Symmetries

A coloured Petri net is a net in which tokens are identi�ed by colours. Colour domains are asso-

ciated with places and transitions and determine which colours can mark the place (resp. �re the

transition). When �ring a transition, a number of tokens is taken from each input place, according

to the incidence function labelling the arc between the place and the transition. In this paper, we

will not consider the case of inhibitor arcs, neither transitions with priorities. Anyway the results

obtained, being based on an interleaving semantics of bounded nets, can be directly extended to

similar nets with priorities and inhibitor arcs.

De�nition 2.1 A (�nite) multiset a on a �nite non-empty set A is a function a 2 [A ! IN ]. A

multiset a on a �nite set A is called �nite multiset.

We will use Bag(A) to denote the set of �nite multisets on A. Intuitively, a multiset is a set

that can contain several occurrences of the same element. It can be represented as a formal sum :

a =

X

x2A

a(x):x



in which the non-negative integer a(x) gives the number of occurrences of the element x in the

multiset a. Thus, for two multisets a and b on A, we have :

a � b () 8x 2 A; a(x) � b(x)

We can also de�ne the sum of two multisets a and b:

a+ b =

X

x2A

[a(x) + b(x)]:x

or the di�erence, for a � b :

a� b =

X

x2A

[a(x)� b(x)]:x

A linear application on Bag(A) will be de�ned by :

8 a; b 2 Bag(A); f(a+ b) = f(a) + f(b)

2.1 Coloured net

We recall here the formal de�nition of a coloured Petri net. As shown in [12], this de�nition,

although syntactically di�erent, is equivalent to the one in [3].

De�nition 2.2 A coloured Petri net is a 6-tuple N = hP; T;C;W

�

;W

+

;M

0

i where

P is a set of places

T is a set of transitions, verifying P \ T = ;, P [ T 6= ;

C is the colour function, de�ned from P [ T into a set of �nite non-empty sets called colour

domains,

W

�

;W

+

are the input and output functions, de�ned on P � T , such that W

�

(p; t) and W

+

(p; t)

belong to the set of linear applications mapping Bag(C(t)) onto Bag(C(p)), for all (p; t) 2

P � T ,

M

0

the initial marking is a function de�ned on P , such that M

0

(p) 2 Bag(C(p)), for all p 2 P .

Although the input and output functions are de�ned on Bag(C(t)), we can limit the de�nition

of their values to elements of C(t) only. The values for the elements of Bag(C(t)) can be obtained

using the linearity of the applications.

De�nition 2.3 Firing rule. A transition t is enabled for colour c in marking M (denoted by

M [t; ci) i�

8p 2 P; M(p) �W

�

(p; t)(c)

The marking M

0

obtained after the �ring of (t; c) is computed as :

8p 2 P; M

0

(p) =M(p) +W

+

(p; t)(c) �W

�

(p; t)(c)

We will use the notation M [t; ciM

0

to indicate this reachability relation

Using the �ring rule, it is possible to construct a reachability graph, whose nodes are the

markings obtained from the initial marking by �ring one or more transitions. An arc between

two markings is labeled by the name of the transition and the colour whose �ring determines the

marking change.



Example Throughout the paper, we will consider the well-known synchronization problem of

the dining philosophers. This situation is modeled by the coloured Petri net in Figure 1. A set of

philosophers spend their lives thinking and eating. They share a common circular table laid with

forks, one for each philosopher. From time to time a philosopher gets hungry and tries to pick up

both his fork and that of his left-hand neighbour (Take). Thus, if at least one of his neighbours is

eating he must wait until both neighbours have �nished. Once the philosopher has �nished eating

he puts down both forks (Put) and resumes thinking again. This process is repeated inde�nitely.

In the initial marking it is possible to �re transition Take for any philosopher. Let us choose

ph

4

arbitrarily; then we obtain :

M

0

(Thinking) = ph

0

+ ph

1

+ ph

2

+ ph

3

+ ph

4

M

0

(Forks) = f

0

+ f

1

+ f

2

+ f

3

+ f

4

M

0

(Eating) = 0

The incidence functions around transition Take are null for ph

4

, except :

W

�

(Thinking; Take)(ph

4

) = ph

4

W

�

(Forks; Take)(ph

4

) = f

4

+ f

0

W

+

(Eating; Take)(ph

4

) = ph

4

Hence, the marking obtained after �ring (Take; ph

4

) is

M

0

(Thinking) = ph

0

+ ph

1

+ ph

2

+ ph

3

M

0

(Forks) = f

1

+ f

2

+ f

3

M

0

(Eating) = ph

4

2.2 Symmetries

Coloured nets are particularly well suited to represent systems that have some behavioural sym-

metry properties. If we consider our example, �ring transition Take for philosopher ph4 or for

philosopher ph2 will lead to very similar states. Actually, the two states obtained after �ring are

identical within a rotation. Moreover, they allow transition �rings that are also identical within a

rotation. Thus, we may consider these two states as symmetric. The notion of symmetry is not

quite simple, as it is related to transition �rings, hence to incidence functions. In the following we

shall start by assuming that the modeller is able to de�ne a group S of behavioural symmetries

on the model, and that these symmetries verify some properties. Later on we shall overcome this

assumption. These properties allow the modeller to verify that his set of symmetries is correct, i.e.,

that two states equal within a symmetry

1

have the same behaviour. However these properties are

not constructive, so that they do not help in the identi�cation of potential symmetries.

We start by recalling the notion of group operating on a set. Subsequently we introduce the

de�nition of symmetries and the notion of admissible symmetry. Finally, we prove that the appli-

cation of a permutation to a marking and to the colour instances of a transition preserves the �ring

relation.

2.2.1 Group operating on a set

In order to study the e�ect of a symmetry on a marking, we recall the de�nition of a group and the

notion of a group operating on a set, which is a classical algebra notion. We will use this de�nition

to study the operations of a group of symmetries not only on the markings, but also on the colours

and the incidence functions.

De�nition 2.4 (G; �) is a group i� the following properties are ful�lled :

� 8x; y 2 G; x � y 2 G

� 9e 2 G; 8x 2 G; x � e = e � x = x

� 8x 2 G; 9x

�1

2 G; x � x

�1

= x

�1

� x = e

1

that is, there exists a symmetry s such that M

1

= s:M
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� 8x; y; z 2 G; x � (y � z) = (x � y) � z

De�nition 2.5 The operation on the left (resp. on the right) of a group (G; �) on a set E is a

mapping G� E ! E (resp. E � G ! E) such that, if we denote by g:x the image of (g; x); g 2

G; x 2 E, we have :

� 8g; g

0

2 G; 8x 2 E; (g � g

0

):x = g:(g

0

:x) (resp: x:(g � g

0

) = (x:g):g

0

)

� 8x 2 E; e:x = x where e is the neutral element of the group.

De�nition 2.6 Let G be a group operating on E. The relation

9g 2 G; y = g:x

is an equivalence relation on E. The equivalence class of x in E is called orbit of x and denoted by

orb(x). The elements of G that let x invariant form the isotropy subgroup G

x

of x :

G

x

= fg 2 G j g:x = xg

2.2.2 Symmetry and Equivalence

The use of groups of symmetries for the determination of equivalent markings has been �rst intro-

duced in [12].

De�nition 2.7 A symmetry s

C

on a colour domain C is a permutation on C. A symmetry s on

a net is a family of symmetries s

C

indexed by the set C = fC(r)jr 2 P [ Tg of the colour domains

that appear in the net.

We denote by � the set of symmetries on a net. It directly comes from the properties of

permutations that (�; �) is a group. Actually, a set of permutations fs

C

g is associated with every

colour domain C of the net. The composition of two permutations on C is still a permutation on

C. The identity function on C is a permutation on C and also the neutral element for composition.

Every permutation s

C

has a symmetric element s

�1

C

, which is also a permutation on C. Finally, the

composition of permutations is associative. As a symmetry on a net is a family of permutations

indexed by the set of colour domains of the net, we can conclude that symmetries verify the same

properties as permutations, and hence (�; �) is a group.

As (�; �) is a group, we now examine the di�erent sets on which it can operate. We will

illustrate these operations by considering a symmetry s = (s

1

; s

2

) on the model of the philosophers.

We choose :

s

1

(ph

0

) = ph

2

s

1

(ph

1

) = ph

0

s

1

(ph

2

) = ph

3

s

1

(ph

3

) = ph

4

s

1

(ph

4

) = ph

1

s

2

(f

0

) = f

4

s

2

(f

1

) = f

2

s

2

(f

2

) = f

0

s

2

(f

3

) = f

1

s

2

(f

4

) = f

3

We can de�ne the operations of (�; �) on :

� colour domains :

s:c = s

C

(c); c 2 C

for instance, s:ph

2

= ph

3

or s:f

0

= f

4

.

� multisets of colours :

s:

 

X

c2C

�

c

:c

!

=

X

c2C

�

c

:s:c; c 2 C

In our example, s:(ph

1

+ 2:ph

3

) = ph

0

+ 2:ph

4

.

Notice that for two multisets a and b on Bag(C), we have : s:(a+ b) = s:a+ s:b, and if a � b,

then s:a � s:b and s:(b� a) = s:b� s:a.



� markings :

s:M : (s:M)(p) = s:(M(p))

Applying this de�nition to the marking presented in Section 2.1 we have

M(Thinking) = ph

0

+ ph

1

+ ph

2

+ ph

3

M(Forks) = f

1

+ f

2

+ f

3

M(Eating) = ph

4

s:M(Thinking) = ph

0

+ ph

2

+ ph

3

+ ph

4

s:M(Forks) = f

0

+ f

1

+ f

2

s:M(Eating) = ph

1

As M(p) is an element of Bag(C(p)), this operation is a particular case of the operation

de�ned above, and thus we have : 8c 2 C(p); (s:M)(p)(s:c) =M(p)(c)

e.g., M(Eating)(ph

4

) = 1 and s:M(Eating)(ph

1

) = 1

� incidence functions :

- on the left :

s:W

�

(p; t) : s:W

�

(p; t)(c) = s

C(p)

:(W

�

(p; t)(c))

where W

�

(p; t) is a macro-notation that can be bound to W

�

(p; t) or W

+

(p; t). As above,

s:W

�

(p; t)(c) is de�ned on Bag(C(p)), and thus we have :

8d 2 C(p); [s:W

�

(p; t)](c)(s:d) =W

�

(p; t)(c)(d)

- on the right :

W

�

(p; t):s : (W

�

(p; t):s)(c) =W

�

(p; t)(s

C(t)

(c))

i.e.,

8d 2 C(p); [W

�

(p; t):s](c)(d) =W

�

(p; t)(s:c)(d)

For instance, we have W

�

(Forks; Take)(ph

4

) = f

0

+ f

4

. The operation of s on the left and

on the right respectively gives

s:W

�

(Forks; Take)(ph

4

) = f

3

+ f

4

and W

�

(Forks; Take):s(ph

4

) = f

1

+ f

2

The construction of the symbolic reachability graph relies on the de�nition of a set of admissi-

ble symmetries that are used for the construction of equivalence classes of places and �rings. Two

approaches are possible for the de�nition of the set of symmetries. They can be either explicitely

described by the modeller, and in that case the algorithm for the construction of the SRG must

check that they are correct, i.e., that they ful�l the suitable properties. Or they can be automat-

ically determined by the algorithm. We prefer the second solution because on the one hand the

determination of the symmetries may be complex for general coloured nets, and on the other hand,

it provides a completely automatic construction of the symbolic reachability graph. An algorithm

to compute the generators of the symmetry group can be found in [11].

De�nition 2.8 The set S of admissible symmetries is a subset of the set � of symmetries that

satis�es the following conditions :

1. (S; �) is a subgroup of (�; �)

2. 8s 2 S; 8p 2 P; 8t 2 T , s:W

�

(p; t) =W

�

(p; t):s, i.e.,

� s:W

+

(p; t) =W

+

(p; t):s

� s:W

�

(p; t) =W

�

(p; t):s

The aim of the second condition of the de�nition is to ensure that two markings equal within an

element s 2 S allow transition �rings that are also equal within the application of s to the colour

instances.



Example In the model of the dining philosophers, all the places and transitions have the same

colour domain C

1

, except place Fork that has colour domain C

2

. The set of symmetries of the net

is thus the set of functions (s

1

; s

2

), where s

1

is a permutation on C

1

and s

2

is a permutation on

C

2

. Among these symmetries, only those that verify the second condition of De�nition 2.8, i.e.,

that commute with the colour functions of the net, are admissible. Without entering the details,

because of the structure of function Need, only the functions (s

1

; s

2

) such that s

1

and s

2

modify

the indices in the same way, i.e., if s

1

(ph

i

) = ph

j

then s

2

(f

i

) = f

j

, and such that s

1

(and also s

2

)

is a rotation are admissible. The reason is that function Need is the sum of an identity function

and a rotation applied to a fork, and only rotations commute with rotations.

Property 2.1 The application of an admissible symmetry to a marking and to the colour instance

of a transition preserves the �ring :

8t 2 T; 8c 2 C(t); 8s 2 S; M [t; ciM

0

() s:M [t; s:cis:M

0

For instance, on the graph of Figure 2, by applying the admissible symmetry s = (s

1

; s

2

), with

s

1

(ph

i

) = ph

(i+1)mod 5

and s

2

(f

i

) = f

(i+1)mod 5

, to the �ringM

0

[Take; ph

0

iM

1

, we obtain the �ring

M

0

[Take; ph

1

iM

2

.

Proof Enabling : We �rst show that M [t; ci () s:M [t; s:ci.

M [t; ci () 8p 2 P; M(p) �W

�

(p; t)(c):

As M(p) and W

�

(p; t)(c) are both elements of Bag(C(p)), if we apply the former remark about

the operation of a symmetry on a multiset, we obtain : 8p 2 P; s:M(p) � s:W

�

(p; t)(c)

() 8p 2 P; s:M(p) �W

�

(p; t):s(c) (because s is admissible).

Using the de�nition of the operation of s on W

�

(p; t), we have W

�

(p; t):s(c) = W

�

(p; t)(s:c).

Hence, s:M [t; s:ci

Firing : M [t; ciM

0

() 8p 2 P; M

0

(p) =M(p) +W

+

(p; t)(c)�W

�

(p; t)(c)

() s:M

0

(p) = s:(M(p) +W

+

(p; t)(c) �W

�

(p; t)(c)):

Still using the remark about the operation of a symmetry on a multiset, we have :

s:M

0

(p) = s:M(p) + s:W

+

(p; t)(c) � s:W

�

(p; t)(c). As s is admissible,

s:M

0

(p) = s:M(p) +W

+

(p; t)(s:c) �W

�

(p; t)(s:c). Finally, s:M [t; s:cis:M

0

As a consequence, two markings that can be obtained one from the other by applying a sym-

metry s enable the same transitions, except for the binding of these transitions. Thus, we can use

the equivalence relation associated with the orbits of markings to de�ne classes of markings.

De�nition 2.9 Two markings are equivalent i�

9s 2 S; M

0

= s:M

3 Presentation and Discussion

Remark In the rest of the paper, we consider only coloured nets yielding a �nite number of

reachable markings, since we propose the complete enumeration of the RG as an analysis tool.

We briey recall the construction of Huber's et al. reachability tree in order to present and

discuss the improvements obtained by our algorithm. Actually, Huber's et al. algorithm is very

close to the construction of an ordinary reachability graph. We will denote by SRG the graph

obtained with this algorithm as well. In the algorithm that we present, the test for the equivalence

of markings is performed by an exhaustive search of the existence of a symmetry mapping one

marking onto the other. In many practical cases, the modeller may know more e�cient ways to



test for equivalence than the exhaustive search. Based on this knowledge, the e�ciency of the

algorithm may be improved ; however, the generality of the algorithm is lost in this case. The

problem may be solved retaining the generality by using a canonical representative as we shall see

in the following.

Huber's et al. algorithm

SRG := fM

0

g

Push M

0

While not Empty(stack) do

Pop M

/* Firing test of all instance of all transitions */

for all t 2 T do

for all c 2 C(t) do

if M [t; ciM

0

then

/* Equivalence test for M

0

*/

New := True;

for all s 2 S do

M

00

:= s:M

0

;

if M

00

2 SRG then

New := False;

Goto Cont;

endif

endfor /* End of equivalence test */

Cont : if New then

Push M

0

endif

SRG := SRG [fM [t; ciM

0

g

endif

endfor

endfor

Let us emphasize that the di�erence from the ordinary reachability graph construction is the

substitution of an equivalence test to the belonging test for M

0

. We can estimate the cost of

this equivalence test, in the worst case where no e�cient test method is provided together with

the model: jSj:O(application of a symmetry) + jSj:jSRGj:O(test of equality). For instance, in the

subgraph shown in Figure 2, one may need �ve applications of symmetries and ten tests of equality

to �nd that M

2

is equivalent to M

1

.

Here our �rst improvement comes into play. Let us assume that a representative is given

for each equivalence class and that the computation of the representative of any marking can be

obtained in a time of the same order of magnitude as for the application of a symmetry. We can

transform the equivalence test by �rst computing the representative of the marking and then test the

equality with each marking of the SRG. The cost is expressed by : O(application of a symmetry)+

jSRGj:O(test of equality). In several practical cases, the same improvement can be easily obtained

using Huber's et al. algorithm by adding a model speci�c test function. However, our proposed

method relieves the modeller from this burden. If we compare with the �rst formula, we have

divided the cost by jSj. We illustrate this improvement in the subgraph shown in Figure 3.

Let us look now at the initial marking of the net given in the example of section 2. Since

all philosophers are in the same state, i.e., they are all thinking, if a transition is enabled for one

philosopher it is enabled for any philosopher. Thus we could test each transition for one philosopher



only and apply the symmetries to �nd the other possible �rings. This technique is illustrated in

Figure 4.

In a more general case we can still use this technique with an appropriate subset of symmetries

deduced from each marking. If this determination is computationally cheap, then we can decrease

the cost of testing by substituting some �ring tests with the application of a symmetry. Indeed the

�ring test involves many computation steps while applying a symmetry is a single-step computation.

A deeper study (see the next section) shows that no information is lost if one generates only the

representatives of markings and �ring instances. For our example this gives the simpli�ed subgraph

shown in Figure 5. The next section will develop all these points in a more formal way.

4 Construction of the Symbolic Reachability Graph

4.1 Classes of Markings

The factorisation of markings in the symbolic reachability graph consists in grouping states into

classes, and including in the graph only one representative for each class. While using the same

basic principle as Huber's et al. that equivalent markings must allow equivalent �rings, our al-

gorithm produces a more compact graph. We can then develop a reachability subgraph from the

representatives of classes only, without loss of information.

As markings are grouped into equivalence classes, instead of representing all of them in the

graph, we de�ne a representative for each class. Only the representative marking of each class

is included in the graph. The choice of the representatives is completely arbitrary, and for the

moment we do not suggest any particular solution to perform this choice.

De�nition 4.1 Let M be the representative of M . s

M

is a symmetry such that s

M

:M =M (there

may be several symmetries that satisfy this relation).

Notation We denote by M;M

0

two di�erent marking representatives, whereas M;M

0

2 M will

denote two equivalent markings represented by M .

The construction of equivalence classes of markings is an idea that already appears in [7]. On

the contrary, the factorisation of �rings that we present now is an original idea of the symbolic

reachability graph [8], that has been independently studied also in [13] where it was called self-

symmetry. Our aim is to be able to test all the possible �rings from any marking in a class by

studying only some of the possible �rings from the representative of the class.

4.2 Firing Factorisation

Now that we have de�ned classes of markings, we want to de�ne classes of �rings in a similar way.

Considering Property 2.1, we can notice that for any permutation s that leaves M invariant, if (t; c)

is enabled then (t; s:c) is also enabled. This is the key point for the de�nition of classes of �rings.

Actually, the isotropy subgroup of M de�nes equivalence classes of colours. Instead of testing the

enabling of t for all colours of C(t) we can test for only one colour in each equivalence class. The

colour chosen for the test is again called representative. However, the marking obtained when �ring

the representative of a colour in the representative of a marking may not be a representative. As

we want to construct a reachability graph including the representatives of markings, this fact must

be taken into account in the de�nition of our symbolic �ring rule.

De�nition 4.2 Let S

M

= fs 2 Sjs:M = Mg be the isotropy subgroup of M . Let C

M

= C=S

M

be

the set of colour classes obtained when quotienting the colour domain C 2 C by the group S

M

. C

M

is a set of equivalence classes, and for each class in C

M

, we arbitrarily choose an element of the



class as a representative. We de�ne function �

M

as the function which associates with any colour

c 2 C the representative of the class of c in C

M

.

The next property immediately follows :

Property 4.1 Let c be the representative of a class in C

M

. Then for any colour c belonging to the

class of c, i.e., such that �

M

(c) = c, there exists a symmetry s 2 S

M

such that s:c = c.

Notice that the representative associated with a colour is local to a marking. As we want to

de�ne a SRG that includes only one representative for each class of markings, we de�ne a symbolic

�ring rule based on the possibility of �ring a transition for the representative of a colour in the

representative of a marking. This symbolic �ring rule allows us to build a SRG, and we will show

in Section 5 that it is sound, i.e., that the main properties of the RG can be studied on our SRG.

In the following when no confusion may arise we will identify C

M

with a reduced set containing

only the representative of each class.

De�nition 4.3 The transition t can be symbolically �red in the marking M for the colour instance

�

M

(c) representing c in C

M

, denoted by M [[t; �

M

(c)ii, if and only if t can be �red in M for �

M

(c).

The symbolic marking M

0

obtained after the symbolic �ring is such that 9M

00

2M

0

verifying

M [t; �

M

(c)iM

00

. Thus we have :

M [[t; �

M

(c)iiM

0

() 9M

00

such that M

00

=M

0

^ M [t; �

M

(c)iM

00

:

4.3 General Algorithm for the Construction of the SRG

The advantage of the symbolic �ring is that it allows us to construct a reduced reachability graph

automatically, containing a minimal number of arcs and nodes. We outline here an algorithm for

the construction of the SRG.

Recall the main points on which the construction of the SRG is based:

� a symbolic representative M is associated with each marking M

� the isotropy subgroup of M denoted S

M

is associated with M

� for each transition t, for all c 2 C(t), we choose a representative in C(t)

M

that we denote c.

M := representative (M

0

)

SRG := fMg

Push M

While not Empty(stack) do

Pop M

for all t 2 T do

for all c 2 C(t)

M

do

if M [t; ciM

0

then

M

0

:= representative (M

0

)

if M

0

62 SRG then

Push M

0

endif

SRG := SRG [M [[t; ciiM

0

endif

end

end

end



We apply this algorithm to the model of the philosophers. We choose as representative of a class of

�rings the element of the class with the minimum lexicographic value. We do the same for classes of

markings, and we choose the following order of places to de�ne the lexicographic value of a marking

: M = (M(Thinking); M(Forks); M(Eating)).

In the model of the philosophers, the initial marking is symmetric, i.e., 8s 2 S; s:M

0

= M

0

and thus equal to its representative. Due to this symmetry, S

M

0

= S and the �ring need to be

tested for only one color for each transition. Transition Take is enabled, and its �ring leads to a

marking M

1

. This marking is replaced by its representative M

1

, which is added to the SRG and

represents the �ve markings that can be obtained from it by applying a rotation. When examining

M

1

, it is clear that the only admissible symmetry that leaves it invariant is the identity. Actually,

such a symmetry must be such that s

1

is a rotation that leaves ph

4

invariant, and we have seen

also that the admissible symmetries in the model of the philosophers must be such that s

1

and

s

2

modify the indices in the same way. As a consequence, the enabling test must be performed

independently for every colour of each transition. We �nd that transition Take is enabled for ph

1

and ph

2

. The marking obtained after these �rings have the same representative M

2

, and thus only

one new marking is added to the SRG. In M

1

, transition Put is also enabled for ph

4

and returns

to the initial marking. For M

2

too, only the identity function leaves the marking invariant. Once

again, the enabling test must be performed for every colour. The complete SRG for the model of

the philosophers is given in Fig. 6.

Note that in the general case some of the procedures used by the algorithm cannot be imple-

mented. This is the case for

� determining the symmetries of the model

� choosing the representative of a class of markings e�ciently

� building classes of �rings.

In order to overcome these problems we de�ne a new class of coloured nets, the \Well-formed

Coloured Nets." Because of the structure and the restricted syntax of this class, the procedures

presented above can be implemented automatically. The complete process of the SRG construction

for this class of nets was presented in [10]. We outline the way it is performed. In a Well-Formed

Net, a colour domain is a Cartesian product of object classes. These classes group entities of the

same kind, such as the class of forks or the class of philosophers. All objects within a class must

have potentially the same behaviour, i.e., they must be able to perform the same actions at possibly

di�erent times. If not, the class must be divided in static subclasses, each of them including objects

with homogeneous behaviour. A class C may be ordered. This is the case in our example, where

the philosophers are ordered around the table in order to identify the right and left neighbours. As

colour domains are de�ned by Cartesian products of object classes, the symmetries in Well-Formed

Nets are obtained by composition of functions that apply to an object class. If the class is not

ordered, the function may be any permutation, whereas for an ordered class the function must be

a rotation. If the class is divided in static subclasses we have an additional restriction, namely: the

image by the function of any object must belong to the same static subclass as the object. The

symmetries of the model are de�ned implicitly and a-priori.

The representative of a marking is de�ned in terms of \dynamic subclasses." A dynamic subclass

is a representation for a set of objects that have the same token distribution in the considered

marking. This representation is not binded. All possible bindings of objects of the colour class

in which a dynamic subclass is included yield the di�erent ordinary markings that the symbolic

marking represents.

The advantages of this representation are twofold. First, the equality of two symbolic repre-

sentations is more e�cient to test than the equivalence of two ordinary markings. Second (and

perhaps more crucial), this representation can be used directly to implement a symbolic �ring rule:



instead of binding transitions with objects we can bind them with dynamic subclasses. Hence after

the �ring we still obtain a class of markings that, after some automatic operation, is transformed

into a representative.

Notice that the availability of a reduced graph is useful only if it can be used to prove directly

the most important properties of coloured nets. We now present some properties that can be

studied directly on the SRG.

5 SRG Properties

The properties we give in this section aim at establishing a correspondence between the SRG and

the (ordinary) reachability graph of a CPN. We will illustrate the properties on the example of

the philosophers, whose SRG is given in Figure 6 and whose reachability graph is given in Figure

7. The �rst properties that we present show how an ordinary �ring is represented by a symbolic

�ring. We study in Sections 5.2 and 5.3 the correspondence between properties of the RG and

properties of the SRG. The properties in the last section give the number of markings represented

by a symbolic marking, and the number of outgoing arcs from one marking that are represented

by a symbolic �ring.

For the sake of simplicity, and without loss of generality, we consider here only the case where

the initial marking of the net is symmetric, i.e., the application to the initial marking of any element

in S leave this marking invariant. In this case, M

0

is the only element in its class and is equal

to M

0

. If the initial state of the system is not symmetric, it is possible to add to the model an

extra initialisation transition that will create a non-symmetric marking from a symmetric initial

marking. Anyway, the extension of the properties and the proofs presented in this section to the

case of a non-symmetric initial marking can be found in [14].

5.1 Basic Properties

Property 5.1 Each ordinary �ring is represented by a unique symbolic �ring:

M [t; ciM

0

=) M [[t; ciiM

0

with c = �

M

(s

M

:c)

Proof According to Property 2.1, M [t; ciM

0

=) M [t; s

M

:cis

M

:M

0

Let c = �

M

(s

M

:c) be the representative of s

M

:c in M . By Property 4.1, 9s 2 S

M

such that

s:(s

M

:c) = �

M

(s

M

:c). Hence applying s to our relation we obtain M [t; ci(s � s

M

):M

0

As (s � s

M

):M

0

=M

0

, we �nally obtain M [[t; ciiM

0

.

In our example, �ring M

1

[Take; ph

3

iM

13

can be mapped onto �ring M

4

[Take; ph

1

iM

41

by

applying a rotation to the colors. As M

4

= M

1

and M

41

can be mapped onto M

2

, this �ring is

represented by the symbolic �ring M

1

[[Take; ph

1

iiM

2

.

Property 5.2 A set of ordinary �rings can be extracted from every symbolic �ring such that the

source markings belong to the class of the source symbolic marking :

M [[t; ciiM

0

=) 8M 2M; 8c

0

with �

M

(s

M

:c

0

) = c; 9M

00

2M

0

such that M [t; c

0

iM

00

Proof M [[t; ciiM

0

=) 9M

1

such that (M [t; ciM

1

^ M

1

=M

0

):

Let c

0

be such that �

M

(s

M

:c

0

) = c. Let c

00

= s

M

:c

0

.

As c is the representative of c

00

, 9s 2 S

M

such that s:c

00

= c.



S

M

is a group, hence 9s

�1

2 S

M

, and applying Property 2.1 we obtain s

�1

:M [t; s

�1

:cis

�1

:M

1

:

This can also be written as M [t; c

00

is

�1

:M

1

: For all M 2 M we can apply s

�1

M

to this �ring and

obtain M [t; s

�1

M

:c

00

i(s

�1

M

� s

�1

):M

1

:

As (s

�1

M

� s

�1

):M

1

=M

0

, we �nally obtain M [t; c

0

iM

00

where M

00

= (s

�1

M

� s

�1

):M

1

.

Property 5.3 An ordinary �ring can be extracted from every symbolic �ring such that the desti-

nation marking belongs to the class of the destination symbolic marking:

M [[t; ciiM

0

=) 8M

2

2M

0

; 9M

1

2M; 9c

0

such that M

1

[t; c

0

iM

2

:

Proof M [[t; ciiM

0

=) 9M

00

such that (M [t; ciM

00

^ M

00

=M

0

):

Applying s

M

00

(the permutation that mapsM

00

onM

00

=M

0

) to this �ring we obtain another �ring,

namely s

M

00

:M [t; s

M

00

:ciM

0

.

However 8M

2

2M

0

; 9s

M

2

2 S such that s

M

2

:M

2

=M

0

. Hence applying s

�1

M

2

to the former relation,

we obtain

(s

�1

M

2

� s

M

00

):M [t; (s

�1

M

2

� s

M

00

):ciM

2

.

This is the relation given in Property 5.3, with M

1

= (s

�1

M

2

� s

M

00

):M and c

0

= (s

�1

M

2

� s

M

00

):c.

In our example, by applying an admissible permutation on M

1

, we obtain the set of markings

M

i

; i = 1; : : : ; 5. As there is no admissible permutation that leaves M

1

unchanged, any �ring from

M

1

is alone in its class, and thus, 8c; �

M

(c) = c. We can check on the SRG and RG that to

the symbolic �ring M

1

[[Take; ph

1

iiM

2

corresponds an ordinary �ring M

i

[Take; ph

j

iM

ij

, for every

i = 1; : : : ; 5 and with j = (i+ 2)mod 5. Thus, Property 5.2 is veri�ed for this �ring. For the same

symbolic �ring, as M

ij

; i = 1; : : : ; 5 and j = (i+2)mod 5 is the set of markings represented by M

2

,

Property 5.3 holds true too.

Property 5.3 can be considered to be weaker than Property 5.2, as it exhibits only one colour.

However this is due to the de�nition we chose for the symbolic �ring. Indeed a symbolic �ring is

a set of arcs departing from the same marking, but we could have chosen to group arcs that reach

the same marking as well. In this case, Property 5.2 would have been weakened. We chose the

solution that seemed the most intuitive to us, and the implication given in Property 5.3 is powerful

enough to prove interesting results on the SRG.

The following three properties extend the previous properties to �ring sequences.

Property 5.4 Let � = ((t

u

1

; c

u

1

); (t

u

2

; c

u

2

); : : : ; (t

u

k

; c

u

k

)); c

u

i

2 C(t

u

i

); be a �ring sequence

such that

M

1

[t

u

1

; c

u

1

i M

2

[t

u

2

; c

u

2

i M

3

: : : M

k�1

[t

u

k�1

; c

u

k�1

i M

k

(which will be also denoted by M

1

[�iM

k

).

Then there exists a symbolic �ring sequence �

M

1

[[t

u

1

; c

u

1

ii M

2

[[t

u

2

; c

u

2

ii M

3

: : : M

k�1

[[t

u

k�1

; c

u

k�1

ii M

k

such that M

i

2M

i

and c

u

i

= �

M

i

(s

M

i

:c

u

i

). (We shall use the notation M

1

[[�iiM

k

)

Proof By induction on the length of the sequence: in case the sequence is empty, the property

holds true trivially; the induction step follows immediately by Property 5.1.

Property 5.5 Let � = ((t

u

1

; c

u

1

); (t

u

2

; c

u

2

); : : : ; (t

u

k

; c

u

k

)); c

u

i

2 C(t

u

i

); be a symbolic �ring

sequence such that

M

1

[[t

u

1

; c

u

1

ii M

2

[[t

u

2

; c

u

2

ii M

3

: : : M

k�1

[[t

u

k�1

; c

u

k�1

ii M

k



Then 8M

0

1

2M

1

; 9M

0

2

2M

2

; : : : ; M

0

k

2M

k

; 9c

0

u

i

with �

M

i

(s

M

i

:c

0

u

i

) = c

u

i

such that

M

0

1

[t

u

1

; c

0

u

1

i M

0

2

[t

u

2

; c

0

u

2

i M

0

3

: : : M

0

k�1

[t

u

k�1

; c

0

u

k�1

i M

0

k

Proof By induction on the length of the sequence: in case the sequence is empty, the property

holds true trivially; the induction step follows immediately by Property 5.2.

Property 5.6 Let � = ((t

u

1

; c

u

1

); (t

u

2

; c

u

2

); : : : ; (t

u

k

; c

u

k

)); c

u

i

2 C(t

u

i

); be a symbolic �ring

sequence such that

M

1

[[t

u

1

; c

u

1

ii M

2

[[t

u

2

; c

u

2

ii M

3

: : : M

k�1

[[t

u

k�1

; c

u

k�1

ii M

k

Then 8M

0

k

2M

k

; 9M

0

1

2M

1

; : : : ; M

0

k�1

2M

k�1

; 9c

0

u

1

; : : : ; c

0

u

k

such that

M

0

1

[t

u

1

; c

0

u

1

i M

0

2

[t

u

2

; c

0

u

2

i M

0

3

: : : M

0

k�1

[t

u

k�1

; c

0

u

k�1

i M

0

k

Proof By induction on the length of the sequence: in case the sequence is empty, the property

holds true trivially; the induction step follows immediately by Property 5.3.

5.2 Structural Properties

The two following properties compare the reachability in the SRG to the ordinary reachability. The

�rst one compares the symbolic and ordinary reachability sets whereas the second one concerns the

�niteness of the graph.

Property 5.7 Reachability equivalence. Let [[M

0

ii be the symbolic reachability graph obtained from

the initial symbolic markingM

0

. Let [M

0

i be the reachability graph obtained from the initial marking

M

0

. Then we have the following property :

fM j M 2 [M

0

ig = fM j M 2 [[M

0

iig

Proof We prove this property by showing the double inclusion.

� : M 2 [M

0

i () 9� a �ring sequence such that M

0

[�iM . Thus according to Property 5.4, 9�

a symbolic �ring sequence such that M

0

[[�iiM . As a consequence M 2 [[M

0

ii.

� : M 2 [[M

0

ii () 9� a symbolic �ring sequence such that M

0

[[�iiM . Thus from Property

5.6 8M

0

2M; 9�

0

such that M

0

[�

0

iM

0

. Hence, M

0

2 [M

0

i.

In the example of the philosophers, every marking obtained by applying an admissible permu-

tation on a marking of the SRG belongs to the RG. Vice-versa, there is no marking in the RG that

cannot be mapped onto a marking of the SRG by applying an admissible permutation.

Property 5.8 The two following properties are equivalent (remember that only �nite colour sets

are considered).

i) [M

0

i is in�nite.

ii) [[M

0

ii is in�nite.



Proof

i) =) ii) : [M

0

i in�nite =) 9p 2 P; 9c 2 C(p); 8B 2 IN; 9M 2 [M

0

i such that M(p)(c) � B.

Using the symmetry s

M

that maps M on M , we have by de�nition M(p)(c) = M(p)(s

M

:c).

Thus, M(p)(s

M

:c) � B. Knowing from Property 5.7 that M 2 [M

0

i =) M 2 [[M

0

ii, we

see that [[M

0

ii is unbounded, hence in�nite.

ii) =) i) : we show that : i) =) : ii).

Assume that [M

0

i is �nite.

Thus 9B 2 IN such that 8p 2 P; 8c 2 C(p); 8M 2 [M

0

i; M(p)(c) < B.

Let M be any marking in [[M

0

ii: 9� a �ring sequence such that M

0

[[�iiM:

From Property 5.5, we know that 9M

0

2M; 9�

0

; M

0

[�

0

iM

0

:

As M

0

2 [M

0

i, we have 8p 2 P; 8c 2 C(p); M

0

(p)(c) < B. Also, M

0

2 M , hence 9s a

symmetry such that s:M

0

=M . As a consequence, M

0

(p)(c) < B =)M (p)(s:c) < B:

This is true for any c 2 C(p), and s de�nes a bijection among the colours of C(p). Hence the

SRG is bounded and �nite.

5.2.1 Strong connection

When studying a Petri net model it is important to be able to determine whether the correspond-

ing reachability graph is strongly connected. This is especially the case for stochastic Petri nets

where the strong connection of the reachability graph is directly related to the notion of model

ergodicity. The property given in this section links the strong connection of the SRG to that of the

corresponding ordinary reachability graph.

Property 5.9 The two following properties are equivalent. They relate the strong connection of

the SRG to that of the ordinary reachability graph it represents.

i) [M

0

i is strongly connected,

ii) [[M

0

ii is strongly connected.

Proof

i) =) ii) : Let M 2 [[M

0

ii: 9� a �ring sequence such that M

0

[[�iiM:

By Property 5.5, 9M

0

2M; 9�

0

such that M

0

[�

0

iM

0

:

[M

0

i strongly connected =) 9�

00

such that M

0

[�

00

iM

0

. Thus, by applying Property 5.4,

M [[�

00

iiM

0

. Hence, [[M

0

ii is strongly connected.

ii) =) i) : Let M

1

2 [M

0

i: 9� such that M

0

[�iM

1

.

From Property 5.4, 9� such that M

0

[[�iiM

1

:

[[M

0

ii strongly connected =) 9�

0

such that M

1

[[�

0

iiM

0

:

From Property 5.5, 8M

0

1

2 M

1

; 9�

00

; M

0

1

[�

00

iM

0

: Hence we have a �ring sequence leading

from M

0

to M

0

and passing through M

1

, and [M

0

i is strongly connected.

The properties that we present in the next section are very closely related to the strong con-

nection of the reachability graph. They concern the notion of home states, i.e., markings that can

always be resumed by the net.



5.2.2 Home state

In a state graph, a home state is a state that can be reached from any other state by �ring an

appropriate sequence of transitions. This notion can be extended to the notion of home space. A

home space is a set of states such that from each state of the graph, at least one state of the set

can be reached.

Property 5.10 The two following properties are equivalent.

i) fM 2Mg is a home space for [M

0

i,

ii) M is a home state for [[M

0

ii.

Proof

i) =) ii) : Let M

1

2 [[M

0

ii: 9� a �ring sequence such that M

0

[[�iiM

1

:

By Property 5.5, 9M

0

1

2M

1

; 9�

0

such that M

0

[�

0

iM

0

1

.

As we assume that fM 2Mg is a home space, 9M

00

2M; 9�

00

such that M

0

1

[�

00

iM

00

.

From Property 5.4, 9�

(3)

such that M

1

[[�

(3)

iiM . Hence, M is a home state for [[M

0

ii.

ii) =) i) : 8M

1

2 [[M

0

ii; 9� such that M

1

[[�iiM .

From Property 5.5, 8M

0

1

2M

1

; 9M

0

2M; 9�

0

such that M

0

1

[�

0

iM

0

:

From Property 5.7, M

0

1

2M

1

and M

1

2 [[M

0

ii () M

0

1

2 [M

0

i:

Thus, we deduce 8M

0

1

2 [M

0

i; 9M

0

2M; 9�

0

such that M

0

1

[�

0

iM

0

.

Hence fM 2Mg is a home space for [M

0

i.

In the model of the philosophers, the SRG is strongly connected. Thus, every symbolic marking

is a home state as it can be reached from every other symbolic marking. The RG is also strongly

connected and thus every marking is a home state. Hence, the result in this particular case is

stronger than Property 5.10. However, in the general case where the SRG is not strongly connected,

if it contains a home state, we know that every marking of the RG can reach one of the markings

represented by the home state, but they will not necessarily reach the same marking.

A home state is a state in which the system can always return. A state in which the system will

necessarily return is called an unavoidable home state. In other words a net has an unavoidable

home state if and only if there exists no in�nite �ring sequence that does not encounter that state.

Property 5.11 The two following properties are equivalent.

i) fM 2Mg is an unavoidable home space for [M

0

i

ii) M is an unavoidable home state for [[M

0

ii

Proof

i) =) ii) : According to Property 5.10, M is a home state. We prove that it is unavoidable by

contradiction. Let M

1

2 [M

0

i, and consider an in�nite outgoing sequence from M

1

that

never encounters M :

M

1

[[t

u

1

; c

u

1

iiM

2

[[t

u

2

; c

u

2

iiM

3

: : : M

k

[[t

u

k

; c

u

k

ii : : :

By Property 5.5, 8M

0

1

2M

1

; 9 an in�nite sequence such that :

M

0

1

[t

u

1

; c

0

u

1

iM

2

[t

u

2

; c

0

u

2

iM

3

: : : M

k

[t

u

k

; c

0

u

k

i : : :



with M

i

2M

i

and M

i

6=M .

However M

1

2 [M

0

i. By Property 5.7 8M

0

1

2M

1

; M

0

1

2 [M

0

i. Hence, there exists an in�nite

outgoing sequence in [M

0

i that never encounters fM 2 Mg, which is in contradiction with

the assumption that fM 2Mg is an anavoidable home space for [M

0

i.

ii) =) i) : According to Property 5.10, fM 2Mg is a home space. We prove that it is unavoidable

by contradiction. Let M

1

2 [M

0

i. Assume that there exists an in�nite outgoing sequence

from M

1

that never encounters fM 2Mg :

M

1

[t

u

1

; c

u

1

iM

2

[t

u

2

; c

u

2

iM

3

: : : M

k

[t

u

k

; c

u

k

i : : :

with M

i

62M .

According to Property 5.4 there exists an in�nite sequence such that

M

1

[[t

u

1

; c

u

1

iiM

2

[[t

u

2

; c

u

2

iiM

3

: : : M

k

[[t

u

k

; c

u

k

ii : : :

with M

i

2M

i

, hence M

i

6=M .

By Property 5.7, M

1

2 [M

0

i =)M

1

2 [[M

0

ii. Hence there must exist an in�nite sequence in

[[M

0

ii that never encounters M so that M is not unavoidable.

Marking M

1

is an unavoidable home state of the SRG of the philosophers : every in�nite

sequence will encounter this marking. There is no unavoidable home state in the RG. However,

there is no in�nite sequence that does not encounter one of the markings M

i

; i = 1; : : : ; 5. Thus,

this set of markings, which is the set of markings represented byM

1

, is an unavoidable home space.

5.3 Liveness

There exist di�erent notions related to liveness in state graphs. A state graph is pseudo-live (or

deadlock-free) if there is at least one outgoing transition from every state of the graph. A transition

is quasi-live if there is at least one edge of the graph labelled by that transition. A transition is

live if for every state of the net there is a possible sequence of outgoing transitions from that state

such that the considered transition appears in the sequence.

We now study these properties on the SRG.

Property 5.12 The two following properties are equivalent.

i) [M

0

i is pseudo-live,

ii) [[M

0

ii is pseudo-live.

Proof

i) =) ii) : Let M be any marking in [[M

0

ii. Then 9� a �ring sequence such that M

0

[[�iiM:

From Property 5.5, 9M

0

2M; 9�

0

; M

0

[�

0

iM

0

:

But [M

0

i is pseudo-live. Then 9(t; c) such that M

0

[t; ci:

However M

0

[t; ci =) M [[t; cii by Property 5.1. Hence there is an outgoing transition from

M , and [[M

0

ii is pseudo-live.

iii) =) i) : [[M

0

ii is pseudo-live =) 8M 2 [[M

0

ii; 9(t; c) such that M [[t; cii

Thus, 8M 2 [[M

0

ii; 8M

0

2M; 8c

0

with �

M

(s

M

:c

0

) = c; M

0

[t; c

0

i by Property 5.2.

Applying Property 5.7, 8M

0

2 [M

0

i; 9c

0

such that M

0

[t; c

0

i:

Hence, [M

0

i is pseudo-live.



Property 5.13 Quasi-liveness.

Let orb(c) = fc

0

2 C j 9s 2 S; c

0

= s:cg. The two following propositions hold true.

i) (t; c) is quasi-live in [M

0

i =) 9c

0

2 orb(c) such that (t; c

0

) is quasi-live in [[M

0

ii

ii) (t; c) is quasi-live in [[M

0

ii =) 8c

0

2 orb(c), (t; c

0

) is quasi-live in [M

0

i:

Proof

i) (t; c) is quasi-live in [M

0

i =) 9M 2 [M

0

i such that M [t; ci. The associated symbolic marking

M belongs to [[M

0

ii according to Property 5.7.

From Property 5.4, we know that M [t; ci =) M [t; ci, with c 2 orb(c).

Hence, 9(t; c

0

) quasi-live in [[M

0

ii, with c

0

2 orb(c).

ii) (t; c) is quasi-live in [[M

0

ii =) 9M 2 [[M

0

ii; M [[t; cii:

Using the de�nition of symbolic �ring we know that 9M

00

such thatM [t; ciM

00

. Let c

0

2 orb(c)

and s 2 S be a symmetry such that s:c = c

0

. Then s:M [t; c

0

is:M

00

.

From Property 5.7, any marking of the class of M , and in particular s:M belongs to [M

0

i.

Since s:M [t; c

0

i, then (t; c

0

) is quasi-live in [M

0

i:

Let us consider the �ring of (Take; ph

3

). This �ring is quasi-live in the RG as it can occur

from state M

5

for instance. Now, ph

2

belongs to orb(ph

3

) as it can be obtained by applying an

admissible permutation on ph

3

and (Take; ph

2

) is quasi-live in the SRG as it can be �red from M

1

.

Vice-versa, starting from the information that (Take; ph

2

) is quasi-live in the SRG, we can easily

verify that transition Take can be �red in the RG for any color obtained by applying an admissible

permutation on ph

2

, namely for any philosopher.

Property 5.14 Liveness.

(t; c) is quasi-live in [[M

0

ii and M

0

is a home state =) 8c

0

2 orb(c); (t; c

0

) is live in [M

0

i:

Proof (t; c) is quasi-live in [[M

0

ii =) 8c

0

2 orb(c); (t; c

0

) is quasi-live in [M

0

i, i.e., 9M 2 [M

0

i

such that M [t; c

0

i. By Property 5.10, M

0

is a home state =) M

0

is a home state. Hence,

8M

0

2 [M

0

i; 9�

1

such that M

0

[�

1

iM

0

. Also, 9�

2

such that M

0

[�

2

iM . Finally, M

0

[�

1

�

2

iM [t; c

0

i

and (t; c

0

) is live in [M

0

i.

5.4 Numerical Properties

The properties that we present in this section are useful only in case one is interested in numerical

results from the SRG. For instance, as the RG is isomorphic to a Markov chain for stochastic Petri

nets [15, 16], it can be used for performance evaluation purposes. Under some timing constraints,

we have shown [17, 18] that the SRG is isomorphic to a lumped Markov chain, i.e., a Markov

chain whose nodes are classes of states. As the coe�cients of the lumped Markov chain depend

on the number of outgoing arcs from a marking, we need to know how many ordinary arcs are

represented by a symbolic �ring. Moreover, the most important performance criteria depend on

the steady-state probabilities of the markings. From the SRG, it is easy to know the probability

of a representative, but we need the number of markings it represents to derive the probability of

each marking (markings are equally likely within an equivalence class).

Property 5.15 Number of arcs : Let M

1

and M

2

be two symbolic markings. Let M

0

1

2 M

1

. We

denote a set of ordinary arcs that lead from M

0

1

to any marking in M

2

by A

M

0

1

M

2

. We denote the

set of symbolic arcs that lead from M

1

to M

2

by A

M

1

M

2

.

Let � be the application from A

M

0

1

M

2

to A

M

1

M

2

which associates with an arc a = M

0

1

[t; ciM

0

2

the



symbolic arc �(a) =M

1

[[t; ciiM

2

, c being the representative of c in M

1

.

The application � is such that the cardinality of the reciprocal image of a symbolic arc a =

M

1

[[t; ciiM

2

, denoted by j�

�1

(a)j veri�es :

j�

�1

(a)j =

jS

M

1

j

jfs 2 S

M

1

j s:c = cgj

Proof M

1

[[t; ciiM

2

() 9M

0

2

such that M

1

[t; ciM

0

2

according to the de�nition of symbolic �ring

() 8s 2 S

M

1

; M

1

[t; s:cis:M

0

2

: Thus, the arcs represented by the symbolic �ring we are considering

are equal within a permutation in S

M

1

. However two permutations may lead to the same arc. What

we are interested in is the set of di�erent colours that can be reached from c using a permutation

s 2 S

M

1

. Let orbit(c) be such a set. Assume S(c) = fs 2 S

M

1

js:c = cg. We obtain

jS

M

1

j =

X

c

0

2orbit(c)

jS(c

0

)j

Since c

0

2 orbit(c), then 9s

1

2 S

M

1

such that c

0

= s

1

:c.

s 2 S(c) =) (s

1

� s � s

�1

1

) 2 S(c

0

) and s 2 S(c

0

) =) (s

�1

1

� s � s

1

) 2 S(c)

Hence 8c

0

2 orbit(c); jS(c

0

)j = jS(c)j, and jS

M

1

j = jorbit(c)j:jS(c)j.

Let us consider in the model of the philosophers the possible �rings from marking M

0

that lead

to a marking represented by M

1

. There are �ve such �rings, all of them represented by a single

symbolic �ring :

8i = 1; : : : ; 5; �(M

0

[Take; ph

i mod 5

iM

i

) = a =M

0

[[Take; ph

0

iiM

1

Hence, the cardinality of the reciprocal image of a is 5. Now, among the admissible symmetries

belonging to S

M

0

, i.e., that leave M

0

unchanged, only the identity leaves ph

0

unchanged, and the

denominator of the fraction is equal to 1. As every admissible symmetry leaves M

0

unchanged,

jS

M

0

j = 5 and the property is true.

Property 5.16 Cardinality of a marking : The number of markings represented by M is given by

:

jM j =

jSj

jS

M

j

Proof Let M

0

2M and (M

0

) be the set of symmetries that lead from M to M

0

.

(M

0

) = fs 2 S j s:M =M

0

g

Let M

00

2 M . There exists (at least) a permutation s

1

such that s

1

:M

0

= M

00

. Therefore s 2

(M

0

) =) (s

1

� s) 2 (M

00

), and vice versa, s 2 (M

00

) =) (s

�1

1

� s) 2 (M

0

). Hence 8M

0

;M

00

2

M; j(M

0

)j = j(M

00

)j = j(M )j = jS

M

j.

jSj =

X

M

0

2M

(M

0

) = jM j:jS

M

j

In our example, the admissible symmetries are the rotations on color classes, hence jSj = 5.

All of them leave marking M

0

unchanged, but only the identity leaves markings M

1

and M

2

unchanged. Hence, jS

M

0

j = 5, whereas jS

M

1

j = jS

M

2

j = 1. We can check on the graphs that M

0

represents a single marking and both M

1

and M

2

represent 5 markings.



6 Conclusions

We have presented the symbolic reachability graph for coloured Petri nets as a means to exploit

model symmetries to improve their behavioural analysis e�ciency. The SRG is de�ned for un-

restricted coloured nets, while its construction procedure becomes completely e�ective (and can

thus be implemented in a general algorithmic form) by introducing some syntactic restrictions. In

particular a general algorithm was proposed in [10] for Well-formed Nets. Here we proved that

most interesting behavioural as well as quantitative properties can be studied on the SRG rather

than the ordinary RG without any loss of information. Of course the actual bene�t of studying

properties on the SRG rather than on the ordinary RG is related to the degree of symmetry of the

model that determines the relative sizes of the two graphs. In case of models without any symmetry

the two graphs are identical. In some cases of highly symmetric systems instead the size of the

SRG may be virtually independent of the cardinality of the colour sets. In some other cases, the

size of the SRG may increase much slower than the size of the RG as a function of the cardinality

of the colour sets. On the average case in which the modeller chooses the coloured net formalism,

some symmetry is inherently present in the model and the SRG may contain a number of nodes

that is a few orders of magnitude lower than the ordinary RG, thus yielding substantial practical

advantages.
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