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Abstract. This paper presents a characterization of the Markovian state

space of a Stochastic Petri Nets with phase-type distribution transitions

as a union of Cartesian products of a set of �components� of the net.

The method uses an abstract view of the net based on the vectors of

enabling degrees of phase-type transitions, as well as on the sets of �in-

terrupted clients�. Following the decomposition used for the state space

characterization, a tensor algebra expression for the in�nitesimal gener-

ator (actually for its rate matrix) is given, that allows the steady state

probability to be computed directly from a set of matrices of the size

of the components, without the need of storing the whole in�nitesimal

generator.

1 Introduction

Since the introduction of Stochastic Petri Nets (SPN) [17]), the need for more

general distributions of �ring time have been recognized as necessary to ad-

equately model many real life phenomena. Two general directions have been

taken in this area: the �rst one [1, 10, 2] introduces general distributions of �ring

time with speci�c conditions which allows one to extract �subordinated� Markov

chains and compute steady state and transient probabilities of the states. The

second approach [17, 11, 9] introduces phase-type (PH) distribution �ring time

without further restrictions, and computes the resulting embedded Continuous

Time Markov Chain (CTMC). Two problems then arise: to precisely de�ne the

stochastic semantics of phase-type (PH-)transitions and to cope with the state

space problem since we are faced with a �bi-dimensional" complexity: exponen-

tial with respect to the size of the net, and that can be exponential under speci�c

hypotheses with respect to the number of stages of the PH distributions.

Previous works on SPN with PH-transitions (PH-SPN for short) have taken

into account the stochastic semantics problem either at the net level [9], or at

the underlying CTMC level directly [11].

For what concerns the net level approach, the works reported in [17, 9] alter

the initial SPN with PH-transitions: each phase type (including special cases like
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Erlang, Coxian) transition is replaced in the net with a sub-net which translates

its stochastic semantics. This expansion may be automated and integrated in

a tool. However only the single server policy is studied and, moreover, each

PH-transition must have only one input and one output place in [9].

The second approach [11] expands the embedded Markov chain, and the

net is not modi�ed. The PH distributions are taken into account during the

reachability graph (RG) computation. This method allows the management of

any combination of the three elements of the execution policy (that we shall

de�ne later), and may be also integrated in a tool.

It is now well-known [19, 4, 12, 14] that tensor expressions applied to queuing

networks and SPN solution can provide substantial memory savings which enable

management of Markov chains with large state space. In fact, it was recognized

(for example in [16]) that the main memory bottleneck with tensor methods

is the size of the steady state probabilities vector, and not of the in�nitesimal

generator.

In a �rst attempt to reduce the complexity of the resolution of the Markov

chain derived from an SPN with PH-distributions, the work in [15] presents

a method based on structural decomposition of the net, leading to a tensor

expression of the generator of the chain. Such a decomposition builds a superset

of the state space of the chain as a Cartesian product of smaller state spaces and

classify state transitions as local, that is to say changing only one component of

the state, or global, changing simultaneously several components of the state.

A serious drawback of the work in [15] is in the number of elements of the

Cartesian product that are not legal states of the system. This may lower the

e�cacy of the method since a lot of space and time can be lost in those states

that are part of the Cartesian product. This problem is common also to other

approaches using tensor algebra.

In this paper we show instead how tensor algebra can be used to exactly

characterize the state space of a PH-SPN, in a way that does not depend on the

structure of the net, by following the approach based on high level state inform-

ation, introduced in the context of marked graphs [6], and used for hierarchical

GSPN [3], and, recently, to the asynchronous composition of components[8, 7].

Using this characterization, we derive a tensor expression of the rate matrix

of the Markov chain of the net which allows the computation of the steady state

probabilities coping with the growth of the Markovian state space induced by

the PH-transitions.

The method is presented in the context of exponentially distributed, trans-

ition timed, Petri nets, without immediate transitions and inhibitor arcs and

assumes that the net is small enough for the tangible reachability set TRS, and

for the tangible reachability graph TRG, to be built and stored in memory.

The paper is organized as follows: Section 2 introduces the de�nition of PH

distributions, the semantics of PH-transitions, the de�nition of PH-SPN, and

discusses the de�nition of Markovian state of an SPN which is at the root of the

construction of the Markovian state space presented in Section 3 for single server

transitions. Section 4 introduces the tensor expressions for the corresponding



rate matrix. Section 5 outlines the results in the more complicated case of PH-

transitions with multiple servers semantics. The method presented is summarized

and evaluated in Section 6 that concludes the paper. The reader will �nd in [13]

an extended version of the paper with detailed examples and proofs.

2 Phase-type SPN

PH distributions have been de�ned [18] as the time until absorption of a CTMC

with s + 1 states and a single absorbing state. A PH distribution can also be

seen as a network of exponential servers, the initial distribution of the chain

being (c

O;j

)

1�j�s

and the absorbing state being the state 0. Leaving a stage i, a

client may enter stage j with probability C

i;j

or enter the absorbing state with

probability C

i;0

(

P

j=s

j=0

C

i;j

= 1).

We �rstly study stochastic semantics of PH-transitions and we give the de�n-

ition of PH-SPN; then we discuss how to de�ne a state of the system that is

consistent with the given speci�cations.

2.1 Stochastic semantics of PH-transitions

In order to provide a full de�nition of PH-SPN, a number of additional speci�c-

ations should be added to each non-exponential transitions.

� Memory policy: the memory policy speci�es what happens to the time associ-

ated to transition when a change of state occurs.

With the Enabling Memory policy, the elapsed time is lost only if t is not

enabled in the new marking. Transitions with enabling memory therefore do not

loose the past work, as long as they are enabled. Time-out transition usually

have this memory policy.

With Age Memory policy the elapsed time is always kept (of course unless

it is transition t itself that causes the change of state) whatever the evolution

of the system: the next time the transition will be enabled, the remaining �ring

time will be the residual time from the last disabling and not a new sampling.

Time-sharing service may be modelled by age memory policies.

In this paper we do not consider resampling policy which realizes a con�ict at

the temporal speci�cation level, that may not have a counterpart at the structure

level.

The memory policy of transition t is denoted by mp(t), and the possible

values are E, for enabling, or A, for age.

The enabling memory policy of PH-transitions needs a precise de�nition, giv-

ing how its internal state is modi�ed when another transition �res. Since a �ring

is considered as an "atomic" action, in this paper we use the following interpret-

ation of enabling memory: the memory of a transition t

h

, enabling memory, is

reset when either in the new state the transition is disabled, or in the new state

the transition has kept its enabling, but it is the transition t

h

itself that has

caused the change of state.



� Service semantics: the service semantics speci�es how many clients can be

served in parallel by a transition. The use of the term �client� is imported from

queuing networks, and we use it in the paper as a synonymous of active server.

The service semantics is de�ned around the concept of enabling �ring degree

edf(t;m) of t in m which gives the number of time the transition t may be �red

consecutively from m:

edf(t;m) = k i�

�

8p 2

�

t; m(p) � k �Pre(p; t)

9p 2

�

t; m(p) < (k + 1) �Pre(p; t)

The service policy of transition t is denoted by sp(t). We have the three

classical policies: single server (S), multiple (K) and in�nite (I) server.

We shall denote by ed(t;m) the enabling degree of transitions, according with

the service policy, that is to say: ed(t;m) = min(K; edf(t;m)), where K = 1 for

single server, K = K for K-multiple server, and K = +1 for in�nite server.

As usual, the �ring rate of an exponential transition t in m is ed(t;m)) �

w(t;m). For single server PH-transition, the �ring rate is �

s

� C(t)[s; 0] if a

client in stage s ends its service and no new client enters in service, and �

s

�

C(t)[s; 0] � C(t)[0; s

0

] if another client enters immediately in service in stage s

0

.

The multiple and in�nite server cases introduce several complex problems so

that we have chosen to present the method �rst for the single server case, then

to generalize the results to the multiple and in�nite server cases in Section 5.

� Clients and interrupt/resume policies: two other parameters have to be de�ned

for multiple and in�nite server policies: the Clients policy (cp) and the in-

terrupt/resume policy (ip). For the single server case, we suppose the inter-

rupt/resume semantics which resumes the interrupted client (if any), when a

transition �ring increases the enabling degree (from 0 to 1). The study of cp and

ip for multiple and in�nite server PH-transitions is outlined in Section 5.

The speci�cation of the stochastic semantics of a PH-transition is then � =

(s; �; C;mp; sp; cp; ip), with s(t) the number of stages of t and 81 � i � s(t):

� �

i

(t) the rate of the ith stage of t;

� C(t)[i; j] the probabilities of routing a client from the ith stage to the jth

(0 � j � s(t)) stage after the end of service of the ith stage. C[i; 0] =

1�

P

j=s(t)

j=1

C(t)[i; j] is the probability to leave the service of the transition.

C[0; j], the probabilities for an incoming client to enter the system in stage

j, with

P

j=s(t)

j=1

C(t)[0; j] = 1 (it is not possible to leave the transition in

zero time);

� mp(t) the memory policy of t (E or A), sp(t) the service policy of t (S;K or

I), cp(t) the clients policy of t, if needed (O or U ), and ip(t) the interrupt

policy of t, if needed.

Let us now introduce the de�nition of PH-SPN.

De�nition 1. A PH-SPN is a tuple N = (P; TX; TH, Pre; Post; w; �):

� P is the set of places;

� TX is the set of exponential transitions;



� TH is the set of phase-type (PH-)transitions; TX\TH = ; and TX[TH = T

is generically called the set of transitions.

� Pre and Post : P � T ! IN are the incidence functions: Pre is the input

function, and Post the output function

� w : T � Bag(P ) ! IR

+

: w(t;m) is the �ring rate of the exponential distri-

bution associated to transition t in marking

1

m, if t is exponential, and it is

instead equal to 1 for PH-transitions.

� � is a function that associates to each transition t

h

2 TH its speci�cation

�

h

.

The choice of an initial markingm

0

, de�nes a marked PH-SPN also called a

PH-SPN system S = (N ;m

0

). We denote with TRS and TRG the reachability

set and graph.

The de�nition of a Markovian state of a PH-SPN is therefore an (H+1)-tuple,

(m; d(t

1

;m); : : : ; d(t

H

;m))

where m is the marking, and d(t

h

;m) is the �descriptor� of phase-type transition

t

h

in marking m. In the next section we shall de�ne the descriptors in such a

way for the state to be Markovian, and we shall see that, for the age memory

case, the descriptors depend on information that can be computed only from the

reachability graph, so that it may be more precise to write (m; d(t

1

;m;TRG);

: : : ; d(t

H

;m;TRG)). We call MS the set of Markovian states of a PH-SPN.

2.2 Descriptors for single server PH-transitions

When there are PH-transitions the marking process of the net is not Markovian

any longer, but it is still possible to build a Markovian state by considering more

detailed information [18, 11].We shall consider the enabling memory and the age

memory case separately.

� Descriptors for enabling memory: for an enabling memory transition the only

relevant information is the stage of the current client. Let d(t;m) (d for short, if

t and m are implicit from the context) denote the descriptor of a PH- transition

t. We have

d = i 2 f0; 1; : : :; s(t)g

where i is the index of the stage in which the client is receiving service. i = 0

means no client is currently in service.

� Descriptors for age memory: for the case of age memory we need the addi-

tional information on the interrupted client giving in which stage it has been

interrupted. This information can be stored explicitly or implicitly. We can add

to the descriptor a number indicating the stage at which the client has been

interrupted (explicit info), or we can encode this information into the descriptor

already de�ned (implicit info): since a single server transition has either a client

interrupted, or a client in service, but never the two together, then d(t;m) = i

1

Bag(P ) is the set of multi-sets on P .



means: client in service in stage i if ed(t;m) > 0 and client interrupted in stage

i if ed(t;m) = 0.

In this paper we choose the implicit encoding. Note however, that we need

to explicitly encode the descriptor for no client at all (either in service or inter-

rupted) with the value d(t;m) = 0.

3 Characterization of the Markovian state space of a

PH-SPN in the single server case

In this section we show the �rst main result of the paper which gives an exact

structured description of the MS of a PH-SPN. The method, presented and

used in [6] for marked graphs, in [8] for DSSP systems, and, more recently, in [7]

exploits two ideas: the �rst one is a description of the MS as Cartesian product of

K subspaces following the classical tensor based approach [3, 12, 15]. The second

one is the introduction of a high level (abstract) description of the MS, used in

the asynchronous context in [4, 6�8], "compatible" with the previous subspaces

product. This leads to an expression of MS as a disjoint union of Cartesian

products with the same high level description. In a formal way, if A is the set of

abstract views av(s) of the Markovian states s, we have:

MS =

]

a2A

S

1

(a) � : : :� S

K

(a)

where S

k

(a) denotes the subset of states of the kth component such that

(8 1 � k � K; s

k

2 S

k

(a)),

�

s = (s

1

; : : : ; s

K

) 2MS

av(s) = a

The existence of an high level description of the system allows to appro-

priately pre-select the subsets of the states that should enter in the Cartesian

product: only states of the di�erent components that share the same high level

view of the system are multiplied in the Cartesian product. Without such a high

level description, Cartesian products provide only Potential Markovian state

Spaces (PMS) with MS � PMS and, in the general case, jPMSj � jMSj.

Since a Markovian state of a PH-SPN is aH+1 tuple (m; d(t

1

;m); : : :d(t

H

;m)),

we consider MS as a set ofH+1 components, one component de�nes the marking

of the net and the other H the state of the H phase-type-transitions.

For what concerns the high level view, although we might use the markingm

of a state (any other �high level� information computable from the TRS in linear

time and space, may also be a choice), it is not the most e�cient choice. Indeed,

as we have seen in the previous section, the descriptor of a PH-transition only

depends on its enabling degree for enabling memory, and on the enabling degree

and on the number of interrupted clients for age memory. It is then suitable to

de�ne a coarser high level view exploiting these weaker dependencies. We shall

consider the two cases enabling and age separately.



� Enabling memory case: from the de�nition of the descriptors, the set D

h

(m) of

legal descriptors of a transition t

h

for a markingm only depends on the enabling

degree ed(t

h

;m) = e

h

of t

h

in m: D

h

(m) = D

h

(e

h

) = fi : 1 � i � s(t

h

)g if

e

h

= 1 and D

h

(e

h

) = f0g if e

h

= 0. This key observation leads us to de�ne the

equivalence relation � over the set of markings in TRS:

m � m

0

i� 8t

h

2 TH ed(t

h

;m) = ed(t

h

;m

0

)

and to take the vector ed = (e

1

; : : : ; e

H

) of enabling degrees of transitions in

TH as the high level description of Markovian states. We use as representative

of a class the vector ed and indicate the set of markings of equivalence class ed

with [ed] and the set of distinct vectors of enabling degrees of a given TRS with

ED. The following proposition gives the structure of MS.

Proposition 1. If all phase-type transitions of a PH-SPN S are enabling memory

then

MS(S) =

]

ed2ED

[ed]� D

1

(e

1

) � � � � �D

H

(e

H

) (1)

Proof. The proof is based on the property of the sets D

h

(m). By de�nition,

MS(S) =

]

ed2ED

f(m; d(t

1

;m); : : :d(t

H

;m)) 2MS(S);m 2 [ed]; 8h; d(t

h

;m) = e

h

g

Since, 8m 2 [ed] : d(t

h

;m) = e

h

for all h, and 8m;m

0

2 TRS(S) such that m �m

0

:

(m; d

1

; : : :d

H

) 2MS(S) i� (m

0

; d

1

: : :d

H

) 2 MS(S)

we can decompose the (H + 1) tuple to obtain the result.

� The age memory case: in this case, the set of legal descriptors of a transition

t

h

in the markingm is fs

1

; : : : ; s

t

h

g if the enabling degree of t

h

in m is 1 and is

fully determined by the number of interrupted clients, which may be 0 or 1, if

the enabling degree of t

h

in m is 0.

In fact, for a given marking, the number of interrupted clients in t

h

may

depend on the di�erent possible ways to get to that marking, and for makings

with the same enabling degree for t

h

, the number of interrupted clients of t

h

may di�er (see [13] for an example). We now partition the MS accordingly to

the enabling degree and to the set of the possible numbers of interrupted clients

in each phase-type transition.

Let IC(t

h

;m) indicate the set of possible numbers of interrupted client in

transition t

h

for marking m (IC(t

h

;m) = f0g or f1g or f0; 1g). We have de-

veloped an algorithm which may be applied for both single and multiple server

cases, providing the IC(t

h

;m) sets in polynomial time with respect to the size

of the reachability graph (see [13] for details).

Since the set D

h

(m) of legal descriptors of a transition t

h

for a marking m

only depends on the enabling degree ed(t

h

;m) = e

h

of t

h

in m and the number

of interrupted clients in m, we can write D

h

(m) = D

h

(e

h

; i

h

) with i

h

the set



of possible numbers of interrupted clients in m. Consequently, the equivalence

relation � over the set of markings in TRS is now de�ned by:

m � m

0

i� 8t

h

2 TH ed(t

h

;m) = ed(t

h

;m

0

) and IC(t

h

;m) = IC(t

h

;m

0

)

and the high level description of Markovian states is the pair of vectors (ed; ic)

where ic = (i

1

; : : : ; i

H

) is the vector of possible numbers of interrupted clients

in phase-type transitions (remember that each element i

h

is a set), and ed is

the vector of their enabling degrees, as before. We shall use as representative of

a class the pair of vectors (ed; ic), and we shall indicate the set of markings of

equivalence class (ed; ic) with [ed; ic].

Let EI be the set of pairs (ed; ic); if all phase-type transitions of a PH-SPN

S are age memory then

MS(S) =

]

(ed;ic)2EI

[ed; ic]� D

1

(e

1

; i

1

)� � � � � D

H

(e

H

; i

H

) (2)

where D

h

(e

h

; i

h

) is the set of descriptors of transition t

h

compatible with (e

h

; i

h

).

� General expression for the Markovian state space of PH-SPN: obviously there

is no problem in mixing age memory transitions with enabling memory ones in

the same PH-SPN S. Indeed we can rewrite MS in more general form in the

following theorem that summarize the two previous results:

Theorem 1. Given a PH-SPN S, we have

MS(S) =

]

ei2EI

[ei]� D

1

(ei

1

)� � � � � D

H

(ei

H

) (3)

where ei = (ei

1

; : : : ; ei

H

), and ei

h

= e

h

if t

h

is enabling memory, and ei

h

=

(e

h

; i

h

) if t

h

is age memory.

4 Expression of the in�nitesimal generator and rate

matrix

This section shows the second main result of the paper, namely how the rate

matrix of a PH-SPN with H phase-type transitions can be characterized through

a tensor algebra expression of matrices of the size of the (H + 1) components

that have been used to characterize the state space in the previous section. The

rate matrix R is de�ned as:

Q = R�� (4)

where Q is the in�nitesimal generator, � is a diagonal matrix and �[i; i] =

P

k 6=i

Q[i; k];R can therefore be obtained fromQ by putting to null all diagonal

elements. The use of the rate matrix R instead of the in�nitesimal generator

Q, allows for a simpler tensorial expression, as pointed out in numerous papers

[16, 3], at the cost of either computing the diagonal elements on the �y, or of

explicitly storing the diagonal.



Following the approach presented in [3, 8, 6], a characterization of the set of

reachable states as the disjoint union of Cartesian products naturally leads to an

organization of R in block form (disjoint union) and to a tensor expression for

each block (Cartesian product). Since we have considered the vector of enabling

degrees and, for the age memory case, the vector of sets of numbers of interrupted

clients, as high level states, the blocks are determined by the equivalence classes

built on these vectors denoted by ei in a generic form. The structure of R is

given by the next theorem.

Theorem 2. The block matrices of R are:

R(ei; ei

0

) = K

0

(TX)(ei; ei

0

)

N

H

h=1

Dc

h

(ei

h

; ei

0

h

)

+

P

t

h

2T (ei;ei

0

)\TH

K

0

(t

h

)(ei; ei

0

)

N

h�1

l=1

Dc

l

(ei

l

; ei

0

l

)

N

Dr

h

(ei

h

; ei

0

h

)

N

H

l=h+1

Dc

l

(ei

l

; ei

0

l

)

(5)

R(ei; ei) =

L

H

h=1

R

h

(ei

h

; ei

h

)

+

P

t

h

2T (ei;ei)\TH

K

0

(t

h

)(ei; ei)

N

h�1

l=1

I

ei

l

N

Dr

h

(ei

h

; ei

h

)

N

H

l=h+1

I

ei

l

(6)

Due to lack of space, we omit in the present paper, technical details and proofs

(which may be found in [13]) about the expression of R and we give only an

intuitive explanation of the theorem.

We have two types of blocks in the matrix, the (ei; ei) diagonal blocks and

the o�-diagonal (ei; ei

0

).

The o�-diagonal block matrices correspond to a change of marking either

due to the �ring of an exponential transition (gathered inK

0

(TX)(ei; ei

0

)) which

simultaneously (hence the

N

operator) produces modi�cations of the descriptors

of the PH-transitions (Dc

h

(ei

h

; ei

0

h

)); or due to the external �ring (�-�rings

in [15], the �ring of the stage is followed by the choice to leave the transition) of

a phase-type transition (K

0

(t

h

)(ei; ei

0

) and Dr

h

(ei

h

; ei

0

h

)) which also produces

simultaneous modi�cations of other descriptors (Dc

l

(ei

l

; ei

0

l

)).

The diagonal block matrices come either from internal (or "local", hence the

L

operator) state changes (�-�rings in [15], the �ring of the stage is followed by

the choice of moving to another stage of the same transition) of PH-transitions

(R

h

(ei

h

; ei

h

)) or from an external �ring of a PH-transition which must leave the

descriptors of other PH-transitions unchanged (K

0

(t

h

)(ei; ei), Dr

h

(ei

h

; ei

h

) and

I

ei

l

).

The reader will �nd examples of matrices involved in the theorem in [13].

5 Extension to the multiple server case

In this section, we only brie�y review the consequences of the introduction of

multiple server PH-transitions; a detailed presentation is given in [13].

The �rst problem is to precisely de�ne the stochastic semantics of these trans-

itions. In particular, the clients policy (cp) together with the interrupt/resume



policy (ip) must be re�ned so that the following property holds: starting from a

Markovian state, the decrease of k in the enabling degree of the corresponding

marking m of the net, leading to interrupt k clients, immediately followed by

the increase of k in the enabling degree, leading to activate k clients, restores

the initial Markovian state. We propose two types of clients ("ordered" and

"unordered" with respect to time) and three adapted interrupt/resume policies

("FIFO", "LIFO" and "Static") covering many encountered modelling needs.

From the de�nition of these policies we derive new descriptors for multiple

server PH-transitions in the enabling as well as in the age memory case.

With these new descriptors, we are able to extend the results of sections 3

and 4. The Markovian state space may still be exactly described as an union of

Cartesian products and we present an algorithm providing the sets IC(t

h

;m)

(these sets are more complex to compute than for the single server case). The

rate matrix R has the same structure as in Theorem 2 (obviously the R

h

;Dr

h

and Dc

h

matrices are modi�ed accordingly).

6 Evaluation of the method and conclusions

In this paper we have presented a characterization of the state space of SPN with

H PH-transitions as a disjoint union of Cartesian products of H + 1 terms, and

an associated tensor expression for the rate matrix of the underlying Markovian

process. The memory policies considered are enabling and age memory, with

single server as well as multiple/in�nite server semantics.

The approach followed is inspired to the tensor algebra method for hierarch-

ical Petri nets [3], and for DSSP [8], but we were able to �nd a de�nition of

abstract view of the system that leads to a precise characterization of the state

space (all and only the reachable states are generated), which was not possible

for the mentioned papers. The abstract view is the vector of enabling degree of

PH-transitions for enabling memory, enriched by the information on the set of

possible numbers of interrupted clients for each age memory transition. Both in-

formation can be computed from the reachability graph of the net, the enabling

degree computation is straightforward, and we have given an algorithm for the

computation of the set of possible interrupted clients.

Tensor algebra has already been applied to PH-SPN in [15], following an

SGSPN-like approach [12]: unfortunately the number of non reachable states

generated could be very high, a problem that we have completely solved with

the method here presented, at the price of a slightly more complicated tensorial

expression.

Following the characterization of the state space a tensor formula for the

rate matrix has been derived. This formula allows the computation of the state

space probability vector without the need to explicitly compute and store the

in�nitesimal generator of the CTMC underlying the PH-SPN, resulting in a

saving in storage, and thus in the possibility of solving more complex models.

The probability vector need still to be stored in full, and this is the real limitation

of the approach proposed. At present state of hardware, the tensor based approach



can solve systems with up to some millions states on a workstation, depending

on the memory available on the machine [16]; in [5] it is also shown that the

amount of memory required for storing the component matrices is negligible

with respect to that required for the probability vector.

The contribution of the method proposed is, we hope, twofold. Practical:

once implemented and integrated in an SPN tool, it shall enlarge the set of

solvable PH-SPN models, thus providing a greater applicability of the model.

Theoretical: the characterization of the state space given shows the dependencies

between markings, di�erent types of transitions and di�erent types of �ring of

the same transition, descriptors and memory policies, thus providing, we hope,

a step forwards a deeper understanding of PH-SPN.
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