Theoretical Aspects of Recursive Petri Nets

Serge Haddad! and Denis Poitrenaud?

! LAMSADE - UPRESA 7024, Université Paris IX, Dauphine
Place du Maréchal Delattre de Tassigny, 75775 Paris cedex 16
2 LIP6 - UMR 7606, Université Paris VI, Jussieu
4, Place Jussieu, 75252 Paris cedex 05

Abstract. The model of recursive Petri nets (RPNs) has been intro-
duced in the field of multi-agent systems in order to model flexible plans
for agents. In this paper we focus on some theoretical aspects of RPNs.
More precisely, we show that this model is a strict extension of the model
of Petri nets in the following sense : the family of languages of RPNs
strictly includes the union of Petri net and Context Free languages. Then
we prove the main result of this work, the decidability of the reachability
problem for RPNs.

1 Introduction

Since the introduction of Petri nets, even before the decidability of the reacha-
bility problem has been solved, theoretical works have been developed in order
to study the impact of extensions of Petri nets on this problem. For instance, the
reachability problem is undecidable for Petri nets with two inhibitor arcs while
it becomes decidable with one inhibitor arc or a nested structure of inhibitor
arcs [Rei95]. The self-modifying nets introduced by R. Valk have (like Petri
nets with inhibitor arcs) the power of Turing machine and thus many properties
including reachability are undecidable [Val78a,Val78b]. Introducing restrictions
on self-modifying nets enables to decide some properties [DFS98] (boundedness,
coverability, termination,...) but the reachability remains undecidable.

Recently Recursive Petri nets (RPNs) have been proposed for modeling plans
of agents in a multi-agent system [SH95,SH96]. A RPN has the same structure as
an ordinary one except that the transitions are partitioned into three categories
: elementary transitions, abstract transitions and final transitions. Moreover a
starting marking is associated to each abstract transition. The semantics of such
a net may be informally explained as follows. In an ordinary net, a thread plays
the token game by firing a transition and updating the current marking (its
internal state). In a RPN there is a dynamical tree of threads (denoting the
fatherhood relation) where each thread plays its own token game. The step of a
RPN is thus a step of one of its threads. If the thread fires an elementary tran-
sition, then it updates its current marking using the ordinary firing rule. If the
thread fires an abstract transition, it consumes the input tokens of the transition
and generates a new child which begins its token game with the starting marking
of the transition. If the thread fires a final transition, it aborts its whole descent

of threads, produces (in the token game of its father) the output tokens of the
abstract transition which gave birth to it and dies. In case of the root thread,
one obtains an empty tree.

The modeling capabilities of RPNs can be illustrated in different ways. In a
subsequent section, we present the modeling of faults within a system whereas an
equivalent modeling by an ordinary Petri net is not known to be possible. RPNs
enable also to easily model multi-level executions (e.g. interruptions). In case
of planning of agents, abstract transitions model differed plannings of complex
actions.

As soon as a new model is proposed, a significant question (at least if a
semantics of the firing sequence is possible) is to know whether the model is
really an extension or simply an abbreviation. For instance the model of colored
Petri nets with finite color domains is an abbreviation whereas allowing infinite
domains extends the ordinary Petri nets. In case of RPNs we show that this
model is a strict extension of ordinary Petri nets. Our proof is based on a result
in [Jan79] which establishes that the palindrome language is not a Petri net lan-
guage (even in the largest definitions). Thus we exhibit a RPN which recognizes
this language. Moreover, we prove that RPN languages strictly include the union
of Context Free and Petri net languages.

Then we tackle with the main question about strict extensions of Petri nets:
does the reachability problem remain decidable ? This question is theoretically
important as it seems a limit result. Recently in [Rei95], it has been stated that
reachability is decidable for Petri nets with one inhibitor arc (or more generally
with a nested structure of inhibitor arcs). We prove that the reachability problem
is also decidable for RPNs. Our proof is divided into three steps. First we prove
that one can decide whether the thread initiated by an abstract transition can die
by some sequence in which case we call such a transition a ”closable transition”.
Then we study the structure of a hypothetical sequence for the reachability and
show that its existence is equivalent to the existence of sequences of reachability
for initial and final states of less complexity (in terms of the size of their tree of
threads). Finally we show that when the initial and final states are associated to
one (or zero) thread, then the problem is equivalent to the ordinary reachability
where the non closable abstract transitions are deleted and each closable one is
replaced by an equivalent elementary one.

The balance of the paper is the following. In Sect. 2, we define the RPNs, we
give some examples in order to understand their behavior and their modeling
capability. Then, we show that the model is a strict extension of Petri nets and
that their languages strictly include the union of Petri net and Context Free
languages. In Sect. 3, we prove the decidability of the reachability problem. In
the last section, we conclude giving some perspectives to this work.

2 Recursive Petri Nets

2.1 Structure
A recursive Petri net is defined by a tuple N = (P, T, W=, W (2) where

— P is a finite set of places.

— T is a finite set of transitions.

— A transition of 7' can be either elementary, abstract or final. The sets of
elementary, abstract and final transitions are respectively denoted by T,
Top and Tp; (with T = Toy W Ty W T'p; where & denotes the disjoint union).

— W~ and W are the pre and post flow functions defined from P x T to IN.

— {2 is a labeling function which associates to each abstract transition an or-
dinary marking (i.e. an element of IN¥’).

An extended marking tr of a recursive Petri net N = (P, T,W~,WT) is
a labeled tree tr = (V, M, E, A) where V is the set of vertices, M is a mapping
V - INY, E C V x V is the set of edges and A is a mapping E — Ty;. We
denote by vg(¢r) the root node of the extended marking ¢r. The edges E build a
tree i.e. for each v different from vo(¢r) there is one and only one (v',v) € E and
there is no (v,vo(tr)) € E. Any ordinary marking can be seen as an extended
marking composed by a unique node. The empty tree is denoted by L.

Remark: An extended marking does not depend on V' the set of vertices.
Given two extended markings, if there is a one-to-one mapping between the two
sets of markings which preserves the set of edges, the labeling of vertices and of
the edges then the two markings are equal.

A marked recursive Petri net (N,trg) is a recursive net N associated to an
initial extended marking tro. This initial extended marking is usually a tree
reduced to a unique vertex.

For a vertex v of an extended marking, we denote by pred(v) its (unique)
predecessor in the tree (defined only if v is different from the root) and by Succ(v)
the set of its direct and indirect successors including v (Vv € V, Succ(v) = {v' €
V| (v,v') € E*} where E* denotes the reflexive and transitive closure of E).

A branch br of an extended marking tr is one of the subtrees rooted at a son
of vo(tr). One can associate to a branch a couple (¢,¢r) where ¢ is the abstract
transition which labels the edge leading to the subtree and t¢r the subtree taken
in isolation. Let us note that the couple (t,tr) characterizes a branch.

In other words, given an extended marking ¢r, a branch br with its couple
(t,tr') fulfills : tr' is a sub-tree of tr verifying (vo(tr),vo(tr')) € E (i.e. in tr, the
root of ¢r' is a direct successor of the root of ¢r) and A(vg(tr),ve(tr')) =t (i.e.
in tr, the arc between the root of tr and tr' is labeled by t).

We denote by Branch(tr) the set of branches of an extended marking ¢r and
by branch(tr,t) the subset of Branch(tr) where the edge leading to the subtree
is labeled by t.

We denote by (m, Br), where m is an ordinary marking and Br a set of
branches, the extended marking tr verifying M (vo(tr)) = m A Branch(tr) = Br.

The depth of an extended marking is recursively defined as follows : let m
be an ordinary marking and ¢r an extended marking.

— depth(L) =0
— depth(m) =1
— depth(tr) = max({depth(tr') | (¢, tr') € Branch(tr)}) + 1

2.2 Semantics

A transition t is enabled in a vertex v of an extended marking tr iff Vp €
P, M(v)(p) > W~ (p,t). In other words, the thread associated to each node uses
the same rule for the enabling of a transition as for ordinary Petri nets.

We denote by tr_ty that there exists a node v of #r in which the transition
t is firable.

The firing of an enabled transition ¢ from a vertex v of an extended marking
tr =(V, M, E, A) leads to the extended marking tr' = (V', M', E'; A') depending
on the type of ¢:

t is an elementary transition (t € Te). The thread associated to v fires such
a transition as for ordinary Petri nets. The structure of the tree is unchanged.
Only the current marking of v is updated.

-V'=Vv
- W eV \{v}, M) = (v)
Vp € P,M'(v)(p) = M(v)(p) = W~ (p,t) + W*(p,t)
- FE =FE
—Vee E, A'(e) = A(e)

t is an abstract transition (t € Tap). The thread associated to v consumes
the input tokens of ¢. It generates a new thread v’ with initial marking the
starting marking of ¢. Let us note that the identifier v’ is a fresh identifier absent
in V.

- V'=vVu{v'}

- W eV \{v}, M'(v
Vp e P,M'(v)(p) =
M'(v') = 02(t)

— E'=EU{(v,v")}

—Vee E, A'(e) = A(e)
A'((v,0") =t

") = M (")
M(v)(p) =W~ (p,1t)

t is a final transition (¢t € Ty;). If the thread is associated to the root of the
tree, the firing leads to the empty tree. In the other case, the thread associated
to v produces the output tokens of the abstract transition which gave birth to
it, in the marking of its father Then it (and its whole descent) dies.

- V'=V\ Succ(v)

- Yo' e V'\ {pred(v)}
Vp € P, M'(pred(v))

- E=En(V'xV")

—Vee E' A'(e) = A(e)

M (v) = M (o)
(p) = M(pred(v))(p) + W (p, A(pred(v), v))

We denote by tr—tstr' that there exists a node v of tr such that the firing of
t in v leads the net to the extended marking ¢r'.

A firing sequence is usually defined : a transition sequence o = tgtits .. .t, is
enabled from an extended marking tro (denoted by tro—Zs) iff there exists trq,
tra, ..., try such that tr;_q tistr; fori € [1,n].

Important remark: In a firing sequence, we impose (w.l.0.g.) that any fresh
identifier is new not only in the current tree but also in all the previous trees of
the sequence. Such a restriction ensures that if the roots of two branches of two
trees of the sequence are associated to the same identifier then they denote the
same branch - with possible change of structure and marking.

We denote by L(N,tro,Try) (where Try is a finite marking set) the set of
firing sequences of N from try to a marking of T'r¢. This set is called the language
of N.

Let o be a firing sequence and try, trs, - .., tr, the extended markings visited
by o, the depth of o (denoted by Depth(c)) is the maximal depth of ¢ry, tra,
vy .

2.3 Recursive Petri Nets Versus Petri Nets

In this section, we show that the recursive Petri net model is a strict extension
of Petri nets.

For this demonstration, we consider labeled recursive Petri nets. Such a net
associates to a recursive net, a labeling function h defined from the transition
set T to an alphabet X plus A (the empty word). & is extended to sequences
and also to languages. The language of a labeled recursive Petri net is defined
by h(L(N,tro,Try)).

The Fig. 1 gives a marked labeled recursive Petri net. The marking associated
to both abstract transitions is P.

P
%\\ 1 elementary transition
a=—= b b b

== final transition

A B == abstract transition
a—— —b
Fig. 1. recursive Petri net which generates palindromes on {a, b}
Figure 2 presents a prefix of its reachability graph. Notice that the complete

graph is infinite. From the initial marking, all the transitions adjacent to the
place P are enabled. The firing of the abstract transition labeled a consumes the

token of the place P and leads to the construction of a successor node associated
to the marking P. The arc between the two nodes is labeled by an a. The firing
of the final transition labeled a from the initial marking leads to the empty tree.

Fig. 2. a prefix of its reachability graph

M. Jantzen has shown in [Jan79] (see also [Lam88]) that PAL(X) (for |X| >
2) is not a Petri net language (allowing A-transitions).

We consider the language of the recursive net of the Fig. 1 defined by the
set of ending markings {1, P} (the two corresponding markings are represented
in bold in the Fig. 2). This language is exactly PAL({a,b}) which demonstrates
that recursive Petri net model is a strict extension of the Petri net one.

2.4 Expressive Power of Recursive Petri Nets

Indeed, we show that recursive Petri net languages strictly include the union of
Context Free and Petri net languages.

Proposition 1 (Strict inclusion). Recursive Petri net languages strictly in-
clude the union of Context Free and Petri net languages.

Proof (Sketch). Like the complete proof is not particularly difficult, we only give
a sketch of this proof based on simple example.

It is clear that recursive Petri net languages include Petri net language. Then,
we begin by the inclusion of Context Free languages. We consider a Context
Free language defined by a set of symbols partionned in terminal symbols T
and non-terminal symbols N. To each non-terminal symbol s € N is associated
a non-empty set {s1,s2,...,8,} of words on T"U N. A particular non-terminal
symbol sg is designated as the initial one. A word of the language is obtained

by choosing word in the set associated to sg and then by iteratively substituting
in it a non-terminal symbol by an element of the associated set until the word
does not contain any non-terminal symbol.

For a given Context Free language, we can construct a RPN having exactly
the same language.

For any set associated to a non-terminal symbol s, we build a particular
subnet of the RPN. First, we add a place Ps. Each element of the set associated
to s leads to the production of a sequence of transitions. Let s; be such an
element. For each non-terminal symbol r composing s;, we add an abstract
transition labeled by A and associated to the ordinary marking P,. For each
terminal symbol a, we add an ordinary transition labeled by a. Moreover, to
each of these transitions we add an output place and give as input place the
output place of the transition associated to the symbol preceding the considered
one in the word s;. Finally, the input place of the first transition is designated
to be P; and a final transition labeled) is constructed at the output of the last
place in the sequence.

The initial extended marking is composed by only one node for which the
ordinary marking is Ps, and the language that we consider is L(N,tro,{L}). It
can be shown that this language is exactly the considered Context Free language.

1

/@»@»ﬁ{}ﬁ»@ﬂ

t t f

PSQ\IM t2,2 t2‘3 t2,4 fz
OO OO
Fig. 3. a RPN modeling a Context Free language

The Fig. 3 illustrates this construction. The part of the RPN corresponding to
a non-terminal symbol S associated to the set {aSb,cDEF'} is given. Symbols in
uppercase are considered as non-terminal and the others as terminal. A transition
associated to the j'* symbol of the i" element of the set is designated by t; ;
and the final transition is denoted f;. As an example, the abstract transition
associated to F is denoted t» 3. The label A of the abstract and final transitions
has been omitted.

To demonstrate that this inclusion is strict, we present in Fig. 3 (added to
the net of the Fig. 1) a RPN for which its language is neither a PN one nor a
Context Free one. The ordinary marking associated to the abstract transition t,
is the place P of the RPN in the Fig. 1. Moreover, its initial extended marking
is composed by a unique node associated to the ordinary marking P;,;;. We con-
sider the language L(N, tro, {try}) where try is the extended marking composed
by only one node associated to the empty ordinary marking. This language is
exactly {wy,ws} where wy € Pal({a,b}) and wy € {c".d".e™} with n > 0. This

t P

p, t, t,
ORoR

P D\

S

P,

1
6

1 p1
Fig. 4. a particular RPN

language is not a Petri net one (its projection on {a, b} gives Pal({a,b})) and is
not a Context Free one (its projection on {c,d, e} gives {c¢".d".€e"} with n > 0)
which concludes the proof. O

2.5 Recursive Petri Nets and the Modeling of Faults

In order to give insight to the improvements brought by RPNs, we present in the
Fig. 5 an easy way to add faulty behaviors to a Petri net model. The required
faulty behavior cleans up the current marking and restarts with the initial mark-
ing. To the best of our knowledge, there is no general way to add such a feature
to a Petri net. Only ad-hoc mechanisms are proposed for particular cases.

Fault Net Ordinary Petri Net

S N

)|

Start/Repair |\ Hardware Software

Fig. 5. recursive Petri net modeling faults

Let us look at our figure. The net is divided into three parts. On the right
there is the Petri net of the correct behavior (in our formalism, all transitions are
elementary). On the center there is the faulty behavior with some spontaneous
faults (transition Hardware) and some conditioned faults (transition Software).
For sakeness of the modeling, a control place F is added ; all the transitions of
this part are final. On the left there is a simple initially marked loop with an
abstract transition. The starting marking of this transition is the marking of the
Petri net model of the correct behavior plus one token in the control place F.

The behavior of the net may be described as follows. Initially and in all the
crash states, the extended marking is reduced to one node with the loop place
S marked. When the abstract transition is fired the correct behavior is ”played”
by the new thread. If this thread dies by the firing of a faulty transition, we
come back to the initial state and so on.

3 Decidability of the Reachability Problem

The reachability problem consists to determine if a given state is reachable from
another one.

This problem has been demonstrated to be decidable for ordinary Petri nets
(see [May81,Kos82,Lama88]). The main result of this paper is that the reachability
problem can be also decided for recursive Petri nets.

3.1 Branches Structure of a Firing Sequence

First, we characterize the different kinds of behaviors of branches inside a se-
quence.

Definition 2 (Permanent branch). Let tr, ¢’ be two extended markings and
o be a firing sequence from tr to tr'.

A couple of branches ((tq,trq), (tp,trp)) € Branch(tr) x Branch(tr') denotes a
permanent branch in o if vo(tr,) = vo(try).

The previous definition expresses that the node vy (tr,) is never removed by
the firing of a final transition in wvg(tr,). Remark that in this case, we have
necessary t, = tp.

If a branch is not permanent and occurs in the final marking then it has been
“opened” by an abstract transition.

Definition 3 (Opened branch). Let tr, tr' be two extended markings and o
be a firing sequence from tr to tr'. A branch (t,try) € Branch(tr') denotes an
opened branch in o if V(tq,tra) € Branch(tr),vo(trq) # vo(trs).

In the same way, if a branch is not permanent and occurs in the initial
marking then it has been ”closed” by a final transition.

Definition 4 (Closed branch). Let ¢r, tr' be two extended markings and o
be a firing sequence from ¢r to tr'. A branch (t,,tr,) € Branch(tr) denotes an
closed branch in o if Y(ty,try) € Branch(tr'),vo(tre) # vo(trs).

At last, some branches may appear in an intermediate marking and disappear
before the final marking.

Definition 5 (Transient branch). Let ¢r, tr' be two extended markings and
o be a firing sequence from ¢r to tr'. A branch (t.,tr.) of an extended marking
tr' visited by o is a transient branch if

Y(ta,try) € Branch(tr) U Branch(tr'),vo(try) # vo(tre).

We want to split the (possibly empty) set of sequences which leads from
the initial marking to the final marking depending on the behavior of branches
of the initial and final marking. In the decision procedure, we will try to find
successively a sequence in each of this subset. Let us note that the number of

these subsets is finite. So an admissible combination of branches of the initial
marking and final marking binds the permanent branches and the remainding
branches are either closed (if they are in the initial marking) or opened (if they
are in the final marking).

Definition 6 (Admissible combination of branches). Let ¢tr and ¢r' be two
extended markings, an admissible combination of branches Cb(tr, tr') is defined
by Cb(tr,tr') = {Ri}ter,, such that

— Vt € Typ, Ry C (branch(tr,t)U L) x (branch(tr',t)U L) A
— Vt € Typ,Vb; € branch(tr,t),|Re(bi,®)| =1 A

— Vt € T,3,Vb; € branch(tr',t),|R:(e,b;)] =1 A

— VWt € Tap, |Re(L, L) =0

The meaning of an admissible combination Cb(tr,tr') is the following.

Definition 7 (Combination respect). Lets o be a sequence from tr to tr',
then o respects Cb(tr, tr') iff :
Vt € Top, Vb; € branch(tr,t),Vb; € branch(tr’,t) :

— Ry(b;, L) implies o closes the branch b;,

— Ry(L,b;) implies o opens the branch b; and b; stays opened,

— Ry(bi,b;) implies b; stays opened during the firing of o and corresponds to
bj in tT’.

The set of possible branch combinations of two extended markings ¢r and ¢r’
is denoted C'B(tr,tr'). It is clear that for any sequence there is one and only one
admissible combination respected by the sequence.

3.2 Closability of Abstract Transitions

The first step for tackling the reachability problem is to determine whether the
tree generated by the firing of an abstract transition may ”close” itself.

Definition 8 (Closable abstract transition). An abstract transition ¢ is clos-
able if there exists a firing sequence from 2(¢) to L. Such a sequence is called a
closing sequence of the abstract transition ¢.

From this definition, it is clear that the branches opened in a firing sequence
which can be closed in the same sequence, are those which are composed from a
closable abstract transition. Moreover, using the sequence depth, we can char-
acterize some minimal closing sequences.

Definition 9 (Minimal closing sequence). A closing sequence o of an ab-
stract transition ¢ is said minimal if for all closing sequence o’ of t, we have
Depth(o) < Depth(o').

For a given closable abstract transition ¢, we denote by Order(t) the depth
of its minimal closing sequences. The next lemma exhibits a structural property
of some minimal closing sequences.

Lemma 10 (Existence of particular minimal closing sequences). Lett be
an abstract closable transition, there exists a minimal closing sequence o such
that: If o' denotes the prefiz of o where the last transition (a final one) has been
deleted then o' has no opened branches.

Proof. Let us take a closing sequence. If there is an opened branch before the
last firing, then we can delete the firing which opens this branch and all the
subsequent firings in this branch. Indeed, the only node modified by the removing
is the root node where all its marking after the opening of the branch are now
increased with the input tokens of the abstract transition. Thus the new sequence
is also firable. The new sequence has at most the same depth as the previous
one. Iterating this removing on all the opened branches, we obtain the required
minimal closing sequence. a

Lemma 11 (Branches order). If there exists an abstract transition t € T
such that Order(t) = n (with n > 1) then there exists an abstract transition t'
such that Order(t') =n —1

Proof. Let o be a minimal closing sequence of ¢ fulfilling the condition of lemma 10
and {tr1,...,trp,} the extended markings of depth n reached by o. Let {t; ;} be
the transitions labeling the branches of tr;.

By the definition of o, we are ensured that Vi, j, Order(t; ;) < n—1. Moreover
the condition of the lemma 10 ensures that all the branches are closed before
the firing of the last transition (the final one) in the root.

Suppose that Vi, j, Order(t; j) < n — 1, then we can replace the sequence o
by a sequence o’ where the firings in the branch which follow its creation are
replaced by some minimal closing sequence of order < n — 1. This sequence ¢’
has an order < n which contradicts the hypothesis of minimality of o. O

The Algorithm 3.1 computing the set of closable abstract transitions is based
on the Lemma 11. From a given recursive Petri net, it returns the corresponding
set of closable abstract transitions.

Proposition 12 (Closable abstract transitions). The Algorithm 3.1 com-
putes exactly the set of closable abstract transitions of the net N.

Proof. By definition, an abstract transition of order equal to 1 has an associated
minimal closing sequence during which no branch is opened and then no abstract
transition is fired. Hence, we have to decide if, for a given abstract transition t,
a marking from which a final transition is firable can be reached from (2(¢). The
set Sy; represents the semi-linear set of markings from which a final transition
is firable. The ordinary net Net is obtained removing all abstract and final
transitions. A closable abstract transition of order equal to 1 is determined by

Algorithm 3.1 Closable

TransitionSet Closable(RPN N)
begin
Net = N\ {Tab UTfi};
Computed = 0;
Spi={me N |3t €Ty,m>W (e,t)};
1 =0;
do
1 =1+ 1;
New = 0;
forall t € T,; \ Computed do
if ElemDecide(Net, (2(t),Sy;) then
New = New U {t};
Order(t) = 1;
fi
od
forall t € New do

teq = an elementary transition such that W~ (e,teq) = W (0,8) AW (e, teq)

Net = Net U {teq};
od Computed = Computed U New;
while (New # 0);
return Computed;
end

deciding if there exists a marking of Sy; reachable in Net from (2(t). In ordinary
Petri nets, the reachability of a semi-linear set reduces straightforwardly to the
reachability of a finite set of markings. The call ElemDecide((Net, §2(t), Ss;)
return true if the ordinary net Net can reach a least a marking of S¢; from 2(¢)
and false otherwise.

As seen in the demonstration of the Lemma 11, we know that the closable ab-
stract transitions of order equal to n have an associated minimal closing sequence
containing branches of order strictly less than n. Moreover, these branches are
transient in the subsequence which precedes the firing of the last transition.
Moreover, only the marking of the root is relevant to reach Sy;. Then we can
mimic the consequence at the root level of behavior of these branches by adding
to the net, elementary transitions equivalent to the closable abstract transitions
of order strictly less than n. A similar construction is used in Proposition 16 and
explained there in more details.

Finally, as the number of abstract transitions is finite and each sucessfull
round of the external loop picks at least a new one, the algorithm stops. O

For a given recursive Petri net IV, we denote by N,.q the ordinary net Net
obtained at the termination of the Algorithm 3.1.

3.3 Analysis of Sequences Structure

We enumerate four propositions (one per category of branches) which are useful
to reduce the problem of existence of a sequence to the existence of other (and
simpler in some sense) sequences.

Proposition 13 (Permanent branch condition). Let tr and tr' be two ez-
tended markings. Let Cb(tr,tr') be an admissible combination of branches and
t an abstract transition. There exists a sequence o from tr to tr' which respects
Co(tr, tr') with a permanent branch Ry(b;,b;) iff o', 0" such that

(M (vo(tr)), Branch(tr) \ b;) 25 (M (vo(tr')), Branch(tr') \ bj) A
bi 25 by

Proof. The demonstration is essentially based on the semantics of recursive Petri
nets. If the branch b; is permanent then the sequence o does not contain a firing
of an abstract transition opening the branch and any firing of final transition
in the root of the branch. Then, all the firings in the branch b; are independent
from the ones outside of the branch.

We construct a sequence o' by projecting o on the firings which do not
concern b; and a sequence o by projecting o on the firings concerning the branch
b;. Due to the fact that the firings inside b; are independent to the ones outside
(from the semantics of recursive Petri nets), if o is firable then the sequence
o'.0" is also firable and leads from tr to tr'.

Moreover, the sequence ¢ .0’ has the same properties.

Finally, it is clear that the existence of firing sequences ¢’ and ¢" is a sufficient
condition for reaching ¢r' from tr via ¢’.0". a

This proposition is illustrated in the Fig. 6.

bi tr\bi bj ' \bj

VO

Fig. 6. permanent branch

Proposition 14 (Opened branch condition). Lettr and tr' be two extended
markings. Let Cb(tr,tr') be an admissible combination of branches and t an
abstract transition. There exists a sequence o from tr to tr' which respects
Co(tr, tr') with an opened branch Ri(L,b;) iff Io’,0" such that

tr o (M (vo(tr")) + W~ (e,t), Branch(tr') \ {b;}) A
2(t) 2 b;

Proof. t is the abstract transition which opens the branch b;. Let o, be the part
of o preceding the bj-opening occurrence of ¢ in o and o3 the part of o following
this occurrence. We have o = g,.t.03.

The branch b; is a permanent branch of o3,. Applying the Proposition 13, we
construct a sequence oy by projecting o, on the firings which do not concern
the branch b; and a sequence o3> by projecting o, on the firings concerning b;.

The sequence o,.t.0p1.0p2 is firable.

Due to the fact that the firing of ¢ only consumes tokens in the root of the
extended markings, the sequence o,.0p;.t.042 is also firable and leads from tr to
tr'.

Moreover, like the firing of ¢ leads to the opening of the branch (¢, £2(¢)) and
the firings in 042 only concern b;, we have £2(t) Z23b;.

Since all the firings in ¢ which do not concern b; are in o,.0341, we have
tr7= 2 (M (vo(tr')) + W (e, t), Branch(tr') \ {b;}).

Finally, it is clear that the existence of firing sequences ¢’ and ¢" is a sufficient
condition for the reachability via o’.t.c” . O

This proposition is illustrated in the Fig. 7.

tr bj tr'\bj

o m+W-(.,t) ton m

tr'\bj bj tr'\bj

m+ W-(.,t)

Y0} o
L]

"

Fig. 7. opened branch

Proposition 15 (Closed branch condition). Let tr and tr' be two extended
markings. Let Cb(tr,tr') be an admissible combination of branches and t an

abstract transition. There exists a sequence o from tr to tr' which respects
Cb(tr,tr") with a closed branch Ry(b;, L) iff o', 0" such that

b 2 LA
(M (vo(tr)) + W (s, t), Branch(tr) \ {b;}) s tr'

Proof. Lets t. be the final transition closing the branch b;. Let o, be the part
of o preceding the b;-closing occurrence of t.; in o and o, the part of o following
this occurrence. We have o = g,.t..0p.

The branch b; is a permanent branch of o,. Applying the Proposition 13,
we construct a sequence o, by projecting o, on the firings which concern the
branch b; and a sequence o,2 by projecting o on the firings not concerning b;.

The sequence 0,1.042.t¢.0p is firable.

Due to the fact that the firing of ¢, only produces tokens in the root of the
extended markings, the sequence g .t..042.0 is also firable and leads from ¢r
to tr'.

Because all the firings in ¢ which do not concern b; are in ¢,5.03, we have
troe e (M (v (tr)) + W (e, t), Branch(tr) \ {b;}).

Finally, it is clear that the existence of firing sequences ¢’ and ¢" is a sufficient
condition for reachability via o'.c". O

This proposition is illustrated in the Fig. 8.

bi tr\bi tr

m J m+ W+(.t) o

bi tr\bi tr\bi tr’

m+ W+(.,t) o

Fig. 8. closed branch

tr\bi tr

Proposition 16 (Transient branch elimination). Let tr and tr' be two ext-
ended markings composed by only one node. There exists o a sequence from tr to
tr' iff there is a sequence in the ordinary Petri net Nopq leading from M (vo(tr))
to M (vo(tr")).

Proof. Lets ty be the final transition closing some transient branch b; of ¢ opened
by an abstract transition t. Let o, be the part of o preceding the firing of ¢, o, the
part of o enclosed by the opening-firing of ¢ of the branch and the closing-firing of
t.; and o, be the part of o following the firing of t.;. We have 0 = 0,.t.0p.to.0.

The branch b; is a permanent branch of o;,. Applying the Proposition 13, we
construct a sequence oy; by projecting o, on the firings which do not concern
the branch b; and a sequence gy by projecting op, on the firings concerning b;.

The sequence o,.t.0p1.042.t¢.0¢ is firable.

Due to the fact the firing of ¢ only consumes tokens in the root of the extended
markings, the sequence o,.0p1.t.0p2.ts.0¢ is also firable and leads from #r to tr'.

Because the sequence o2 only concerns the branch b; opening by ¢, its firings
do not have any effect on the nodes of extended marking reached by o,.041. The
modifications on these nodes done by the sequence t.op3.t,; concern only the
root node and are the consuming of W~ (e,t) tokens by ¢ and the producing
of WT(e,t) tokens by t.. So at the root level, the sequence t.ops.te; can be
simulated by t., which belongs to N,-4 as t has a closing sequence. Iterating the
substitution for all transient branches gives a sequence in No.4.

Finally, it is clear that a sequence in N,,.4 can be transformed in a sequence
for N by substituting the firing of any ¢., by the firing of ¢ followed by a closing
sequence of t. O

3.4 The Decision Procedure

The Algorithm 3.2 is developed from the previous propositions.

Theorem 17 (Reachability problem). Let tr and tr' two extended markings
of a recursive Petri net N = (P, T, W=, W+ (2, tro). tr' is reachable from tr iff
Decide(N, tr,tr') returns true.

Proof. The demonstration is done recursively on depth(tr) + depth(tr').

If depth(tr) = 0 then the algorithm returns ¢rue only if depth(tr') = 0 and
false otherwise. This statement is insured by the first test of the algorithm.

We make the hypothesis that the algorithm for depth(tr) + depth(tr') < n is
correct and demonstrate its correctness for depth(tr) + depth(tr') = n + 1.

If depth(tr) # 0 A depth(tr') = 0, we have to decide if the system is able to
fire a final transition at the root level. Or equivalently, if the root of t¢r is able
to reach a state from which a final transition is firable. The set Sy; represents
this set of markings.

If such a sequence exists, we can adapt the Lemma 10 to it and then, there
exists a minimal sequence having no opened branch.

However, a branch opened in ¢r which can be closed from ¢r, can increase
the number of token in the marking associated to vo(tr) by producing W (e, t)
tokens (where t is the abstract transition associated to the branch). Due to the
recurrence hypothesis, we can determine these particular branches by recursive
calls to the procedure.

Because, adding some tokens to a marking can only increase the number of
sequences fired from it, we can arbitrary close these particular branches. The
marking m corresponds to this statement. It is clear that the branches opened
in ¢r which can not be closed have no effect on the marking associated to vg(tr)
and then can be ignored.

Finally, because the searched sequence can perform some transient branches
and applying the Proposition 16, decide if the system can reach a marking of
Sy; from m is equivalent to decide if the ordinary net N,.4 is able to reach
a marking of Sy; from m. The demonstration of this point is related to the
Proposition 16 and the reachability problem for ordinary nets is known to be
decidable ([May81,Ko0s82,Lam8&8]).

Algorithm 3.2 Decide

Bool Decide(N,tr,tr")
begin
if (tr ==1) then
return tr' ==1;
if (tr' ==1) then
m = M (vo(tr));
forall (t,tr;) € Branch(tr) do
if Decide(N,tr;, L) then
m=m+ WT(et);
fi
od
Sri={meIN” |3t € Ty;,m > W_(o,t)};
return ElemDecide(Nora,m, Sfi);
fi
forall Cb(tr,tr') € CB(tr,tr') do
// with Cb(tr,tr') = {Ri}er,,

forall R;((t,tr;), (t,tr;)) do // permanent branch

if —Decide(N,tr;,trj) then
goto NextCombination;
fi
od
forall R;(L,(¢,¢r;)) do // opened branch
if = Decide(N, £2(t),tr;) then
goto NextCombination;
fi
od
forall R;((¢,tr;), L) do // closed branch
if - Decide(N,tr;, L) then
goto NextCombination;
fi
od
my = M(Uo(tT)) + ZRt(O,L) W+(.)t);
me = mo(tr') + ZRt(L,.) W~ (e, t);
if ElemDecide(Norg, m1, m2) then
return true;
fi
NextCombination:
od
return false;
end

If depth(tr) # 0 A depth(tr') # 0 and because the number of combinations
is finite, decide if there exists a firing sequence in N leading from tr to #r' is
equivalent to decide if there exist a firing sequence ¢ in IV leading from ¢r to
tr' and there exists an admissible combination Cb(tr,tr') such that o respects
Cb(tr,tr').

The main loop of the algorithm corresponds to this statement.

Then, to decide if there exists a sequence in N is equivalent to decide if there
exists one showing some permanent, opened, closed and transient branches. The
considered admissible combination Cb determines the permanent, opened and
closed branches.

The three internal loops correspond to the treatment of these kinds of branch.

The demonstration of there correctness is directly related to the Proposi-
tions 13, 14 and 15 and to the induction hypothesis.

When all the permanent, opened and closed branches have been treated, the
decision of the reachability can be restricted to a decision in an ordinary net. If
we consider that all the closed branches are effectivly closed, we have to reach
the state from which all the opened branches can be opened. The markings m,
and mo correspond to these two particular points of the sequence. Because, the
sequence can perform some transient branches, the decision must be done for
the ordinary net N,,.q (Proposition 16). O

4 Conclusion

In this work, we have studied theoretical features of recursive Petri nets. We have
first shown that they are a strict extension of the model of Petri nets as they are
able to recognize the palindrom language and that the languages of RPNs strictly
include the union of Petri net and Context Free languages. Moroveover, we have
illustrated their modelling capability by giving a simple method to model faults
in a system whereas a similar modelling is not known to be possible for ordinary
Petri nets.

Then, we have proven that the reachability is decidable for RPNs and we
have given an algorithm which reduces the problem to some (quite numerous !)
applications of the decision procedure for the ordinary Petri nets.

We plan to extend our studies in two different ways. On the one hand we
want to add new features for recursive Petri nets and examine whether the reach-
ability problem remains decidable. We are mainly interested to introduce some
context when a thread is initiated (e.g. the starting marking could depend from
the depth in the tree). On the other hand, we would study some more com-
plex properties (like home state or properties specified by a temporal formula).
Since the redaction of this paper, new results on RPNs have been stated. In
particular, we have proven that RPN languages are recursive [HP99b] and that
any Turing machine can be simulated by synchronizing a RPN with a finite
automaton [HP99al]. This last result has multiple consequences. One of them
being that the emptiness of the intersection of a regular language and a RPN
language is undecidable. Hence, it leaves little hope to general model checking

as done in [Esp97] for Petri nets. However, this negative result does not preclude
checking of particular properties (such as special kinds of fairness [Yen92]) and
we are working in such a direction.

At last, it would be interesting to combine this model with usual character-
istics (such like the colours) in order to increase its application area.

References

[DFS98] C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability
and undecidability. (ICALP’98) L.N.C.S, 1443:103-115, July 1998.

[Esp97] J. Esparza. Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica, 34:85-107, 1997.

[HP99a] S. Haddad and D. Poitrenaud. On the expressive power of recursive Petri
net. Submitted to the 12th International Symposium on Fundamentals of
Computation Theory, FCT’99, August 1999.

[HP99b] S. Haddad and D. Poitrenaud. Recursive Petri net languages are recur-
sive. Submitted to the 10th International Conference on Concurrency Theory,
CONCUR'99, August 1999.

[Jan79] M. Jantzen. On the hierarchy of Petri net languages. RAIRO, 13(1):19-30,
1979.

[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition systems. In
Proc. 14th Annual Symposium on Theory of Computing, pages 267-281, 1982.

[Lam88] J. L. Lambert. Some consequences of the decidability of the reachability
problem for Petri nets. In Advances in Petri Nets 1988, volume 340 of LNCS,
pages 266-282, Berlin, Germany, June 1988. Springer Verlag.

[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem. In
Proc. 13th Annual Symposium on Theory of Computing, pages 238-246, 1981.

[Rei95] K. Reinhardt. Reachability in Petri nets with inhibitor arcs. Unpublished
manuscript. See www-fs.informatik.uni-tuebingen.de/ reinhard, 1995.

[SH95] A. El Fallah Seghrouchni and S. Haddad. A formal model for coordinating
plans in multiagents systems. In Proceedings of Intelligent Agents Workshop,
Oxford United Kingdom, November 1995. Augusta Technology Ltd, Brooks
University.

[SH96] A. El Fallah Seghrouchni and S. Haddad. A recursive model for distributed
planning. In Second International Conference on Multi-Agent Systems, Kyoto,
Japon, December 1996.

[Val78a] R. Valk. On the computational power of extended Petri nets. (MFCS’78)
L.N.C.S, 64:526-535, September 1978.

[Val78b] R. Valk. Self-modifying nets, a natural extension of Petri nets. (ICALP’78)
L.N.C.S, 62:464-476, July 1978.

[Yen92] H-C. Yen. A unified approach for deciding the existence of certain Petri net
paths. Information and Computation, 96:119-137, 1992.

