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Abstra
t. The model of re
ursive Petri nets (RPNs) has been intro-

du
ed in the �eld of multi-agent systems in order to model 
exible plans

for agents. In this paper we fo
us on some theoreti
al aspe
ts of RPNs.

More pre
isely, we show that this model is a stri
t extension of the model

of Petri nets in the following sense : the family of languages of RPNs

stri
tly in
ludes the union of Petri net and Context Free languages. Then

we prove the main result of this work, the de
idability of the rea
hability

problem for RPNs.

1 Introdu
tion

Sin
e the introdu
tion of Petri nets, even before the de
idability of the rea
ha-

bility problem has been solved, theoreti
al works have been developed in order

to study the impa
t of extensions of Petri nets on this problem. For instan
e, the

rea
hability problem is unde
idable for Petri nets with two inhibitor ar
s while

it be
omes de
idable with one inhibitor ar
 or a nested stru
ture of inhibitor

ar
s [Rei95℄. The self-modifying nets introdu
ed by R. Valk have (like Petri

nets with inhibitor ar
s) the power of Turing ma
hine and thus many properties

in
luding rea
hability are unde
idable [Val78a,Val78b℄. Introdu
ing restri
tions

on self-modifying nets enables to de
ide some properties [DFS98℄ (boundedness,


overability, termination,...) but the rea
hability remains unde
idable.

Re
ently Re
ursive Petri nets (RPNs) have been proposed for modeling plans

of agents in a multi-agent system [SH95,SH96℄. A RPN has the same stru
ture as

an ordinary one ex
ept that the transitions are partitioned into three 
ategories

: elementary transitions, abstra
t transitions and �nal transitions. Moreover a

starting marking is asso
iated to ea
h abstra
t transition. The semanti
s of su
h

a net may be informally explained as follows. In an ordinary net, a thread plays

the token game by �ring a transition and updating the 
urrent marking (its

internal state). In a RPN there is a dynami
al tree of threads (denoting the

fatherhood relation) where ea
h thread plays its own token game. The step of a

RPN is thus a step of one of its threads. If the thread �res an elementary tran-

sition, then it updates its 
urrent marking using the ordinary �ring rule. If the

thread �res an abstra
t transition, it 
onsumes the input tokens of the transition

and generates a new 
hild whi
h begins its token game with the starting marking

of the transition. If the thread �res a �nal transition, it aborts its whole des
ent



of threads, produ
es (in the token game of its father) the output tokens of the

abstra
t transition whi
h gave birth to it and dies. In 
ase of the root thread,

one obtains an empty tree.

The modeling 
apabilities of RPNs 
an be illustrated in di�erent ways. In a

subsequent se
tion, we present the modeling of faults within a system whereas an

equivalent modeling by an ordinary Petri net is not known to be possible. RPNs

enable also to easily model multi-level exe
utions (e.g. interruptions). In 
ase

of planning of agents, abstra
t transitions model di�ered plannings of 
omplex

a
tions.

As soon as a new model is proposed, a signi�
ant question (at least if a

semanti
s of the �ring sequen
e is possible) is to know whether the model is

really an extension or simply an abbreviation. For instan
e the model of 
olored

Petri nets with �nite 
olor domains is an abbreviation whereas allowing in�nite

domains extends the ordinary Petri nets. In 
ase of RPNs we show that this

model is a stri
t extension of ordinary Petri nets. Our proof is based on a result

in [Jan79℄ whi
h establishes that the palindrome language is not a Petri net lan-

guage (even in the largest de�nitions). Thus we exhibit a RPN whi
h re
ognizes

this language. Moreover, we prove that RPN languages stri
tly in
lude the union

of Context Free and Petri net languages.

Then we ta
kle with the main question about stri
t extensions of Petri nets:

does the rea
hability problem remain de
idable ? This question is theoreti
ally

important as it seems a limit result. Re
ently in [Rei95℄, it has been stated that

rea
hability is de
idable for Petri nets with one inhibitor ar
 (or more generally

with a nested stru
ture of inhibitor ar
s). We prove that the rea
hability problem

is also de
idable for RPNs. Our proof is divided into three steps. First we prove

that one 
an de
ide whether the thread initiated by an abstra
t transition 
an die

by some sequen
e in whi
h 
ase we 
all su
h a transition a "
losable transition".

Then we study the stru
ture of a hypotheti
al sequen
e for the rea
hability and

show that its existen
e is equivalent to the existen
e of sequen
es of rea
hability

for initial and �nal states of less 
omplexity (in terms of the size of their tree of

threads). Finally we show that when the initial and �nal states are asso
iated to

one (or zero) thread, then the problem is equivalent to the ordinary rea
hability

where the non 
losable abstra
t transitions are deleted and ea
h 
losable one is

repla
ed by an equivalent elementary one.

The balan
e of the paper is the following. In Se
t. 2, we de�ne the RPNs, we

give some examples in order to understand their behavior and their modeling


apability. Then, we show that the model is a stri
t extension of Petri nets and

that their languages stri
tly in
lude the union of Petri net and Context Free

languages. In Se
t. 3, we prove the de
idability of the rea
hability problem. In

the last se
tion, we 
on
lude giving some perspe
tives to this work.

2 Re
ursive Petri Nets

2.1 Stru
ture

A re
ursive Petri net is de�ned by a tuple N = hP; T;W

�

;W

+

; 
i where



{ P is a �nite set of pla
es.

{ T is a �nite set of transitions.

{ A transition of T 
an be either elementary, abstra
t or �nal. The sets of

elementary, abstra
t and �nal transitions are respe
tively denoted by T

el

,

T

ab

and T

fi

(with T = T

el

℄ T

ab

℄ T

fi

where ℄ denotes the disjoint union).

{ W

�

and W

+

are the pre and post 
ow fun
tions de�ned from P � T to IN.

{ 
 is a labeling fun
tion whi
h asso
iates to ea
h abstra
t transition an or-

dinary marking (i.e. an element of IN

P

).

An extended marking tr of a re
ursive Petri net N = hP; T;W

�

;W

+

; 
i is

a labeled tree tr = hV;M;E;Ai where V is the set of verti
es, M is a mapping

V ! IN

P

, E � V � V is the set of edges and A is a mapping E ! T

ab

. We

denote by v

0

(tr) the root node of the extended marking tr. The edges E build a

tree i.e. for ea
h v di�erent from v

0

(tr) there is one and only one (v

0

; v) 2 E and

there is no (v; v

0

(tr)) 2 E. Any ordinary marking 
an be seen as an extended

marking 
omposed by a unique node. The empty tree is denoted by ?.

Remark: An extended marking does not depend on V the set of verti
es.

Given two extended markings, if there is a one-to-one mapping between the two

sets of markings whi
h preserves the set of edges, the labeling of verti
es and of

the edges then the two markings are equal.

A marked re
ursive Petri net (N; tr

0

) is a re
ursive net N asso
iated to an

initial extended marking tr

0

. This initial extended marking is usually a tree

redu
ed to a unique vertex.

For a vertex v of an extended marking, we denote by pred(v) its (unique)

prede
essor in the tree (de�ned only if v is di�erent from the root) and by Su

(v)

the set of its dire
t and indire
t su

essors in
luding v (8v 2 V; Su

(v) = fv

0

2

V j (v; v

0

) 2 E

�

g where E

�

denotes the re
exive and transitive 
losure of E).

A bran
h br of an extended marking tr is one of the subtrees rooted at a son

of v

0

(tr). One 
an asso
iate to a bran
h a 
ouple (t; tr) where t is the abstra
t

transition whi
h labels the edge leading to the subtree and tr the subtree taken

in isolation. Let us note that the 
ouple (t; tr) 
hara
terizes a bran
h.

In other words, given an extended marking tr, a bran
h br with its 
ouple

(t; tr

0

) ful�lls : tr

0

is a sub-tree of tr verifying (v

0

(tr); v

0

(tr

0

)) 2 E (i.e. in tr, the

root of tr

0

is a dire
t su

essor of the root of tr) and A(v

0

(tr); v

0

(tr

0

)) = t (i.e.

in tr, the ar
 between the root of tr and tr

0

is labeled by t).

We denote by Bran
h(tr) the set of bran
hes of an extended marking tr and

by bran
h(tr; t) the subset of Bran
h(tr) where the edge leading to the subtree

is labeled by t.

We denote by (m;Br), where m is an ordinary marking and Br a set of

bran
hes, the extended marking tr verifyingM(v

0

(tr)) = m^Bran
h(tr) = Br.

The depth of an extended marking is re
ursively de�ned as follows : let m

be an ordinary marking and tr an extended marking.

{ depth(?) = 0

{ depth(m) = 1

{ depth(tr) = max(fdepth(tr

0

) j 9(t; tr

0

) 2 Bran
h(tr)g) + 1



2.2 Semanti
s

A transition t is enabled in a vertex v of an extended marking tr i� 8p 2

P;M(v)(p) �W

�

(p; t). In other words, the thread asso
iated to ea
h node uses

the same rule for the enabling of a transition as for ordinary Petri nets.

We denote by tr

t

�!

that there exists a node v of tr in whi
h the transition

t is �rable.

The �ring of an enabled transition t from a vertex v of an extended marking

tr = hV;M;E;Ai leads to the extended marking tr

0

= hV

0

;M

0

; E

0

; A

0

i depending

on the type of t:

t is an elementary transition (t 2 T

el

). The thread asso
iated to v �res su
h

a transition as for ordinary Petri nets. The stru
ture of the tree is un
hanged.

Only the 
urrent marking of v is updated.

{ V

0

= V

{ 8v

0

2 V n fvg;M

0

(v

0

) =M(v

0

)

8p 2 P;M

0

(v)(p) =M(v)(p)�W

�

(p; t) +W

+

(p; t)

{ E

0

= E

{ 8e 2 E;A

0

(e) = A(e)

t is an abstra
t transition (t 2 T

ab

). The thread asso
iated to v 
onsumes

the input tokens of t. It generates a new thread v

0

with initial marking the

starting marking of t. Let us note that the identi�er v

0

is a fresh identi�er absent

in V .

{ V

0

= V [ fv

0

g

{ 8v

00

2 V n fvg;M

0

(v

00

) =M(v

00

)

8p 2 P;M

0

(v)(p) =M(v)(p)�W

�

(p; t)

M

0

(v

0

) = 
(t)

{ E

0

= E [ f(v; v

0

)g

{ 8e 2 E;A

0

(e) = A(e)

A

0

((v; v

0

)) = t

t is a �nal transition (t 2 T

fi

). If the thread is asso
iated to the root of the

tree, the �ring leads to the empty tree. In the other 
ase, the thread asso
iated

to v produ
es the output tokens of the abstra
t transition whi
h gave birth to

it, in the marking of its father Then it (and its whole des
ent) dies.

{ V

0

= V n Su

(v)

{ 8v

0

2 V

0

n fpred(v)g;M

0

(v

0

) =M(v

0

)

8p 2 P;M

0

(pred(v))(p) =M(pred(v))(p) +W

+

(p;A(pred(v); v))

{ E

0

= E \ (V

0

� V

0

)

{ 8e 2 E

0

; A

0

(e) = A(e)



We denote by tr

t

�!

tr

0

that there exists a node v of tr su
h that the �ring of

t in v leads the net to the extended marking tr

0

.

A �ring sequen
e is usually de�ned : a transition sequen
e � = t

0

t

1

t

2

: : : t

n

is

enabled from an extended marking tr

0

(denoted by tr

0

�

�!

) i� there exists tr

1

,

tr

2

, . . . , tr

n

su
h that tr

i�1

t

i

�!

tr

i

for i 2 [1; n℄.

Important remark: In a �ring sequen
e, we impose (w.l.o.g.) that any fresh

identi�er is new not only in the 
urrent tree but also in all the previous trees of

the sequen
e. Su
h a restri
tion ensures that if the roots of two bran
hes of two

trees of the sequen
e are asso
iated to the same identi�er then they denote the

same bran
h - with possible 
hange of stru
ture and marking.

We denote by L(N; tr

0

; T r

f

) (where Tr

f

is a �nite marking set) the set of

�ring sequen
es ofN from tr

0

to a marking of Tr

f

. This set is 
alled the language

of N .

Let � be a �ring sequen
e and tr

1

, tr

2

, . . . , tr

n

the extended markings visited

by �, the depth of � (denoted by Depth(�)) is the maximal depth of tr

1

, tr

2

,

. . . , tr

n

.

2.3 Re
ursive Petri Nets Versus Petri Nets

In this se
tion, we show that the re
ursive Petri net model is a stri
t extension

of Petri nets.

For this demonstration, we 
onsider labeled re
ursive Petri nets. Su
h a net

asso
iates to a re
ursive net, a labeling fun
tion h de�ned from the transition

set T to an alphabet � plus � (the empty word). h is extended to sequen
es

and also to languages. The language of a labeled re
ursive Petri net is de�ned

by h(L(N; tr

0

; T r

f

)).

The Fig. 1 gives a marked labeled re
ursive Petri net. The marking asso
iated

to both abstra
t transitions is P .

a a

A

a

a b b b

B

b

P

elementary transition

final transition

abstract transition

Fig. 1. re
ursive Petri net whi
h generates palindromes on fa; bg

Figure 2 presents a pre�x of its rea
hability graph. Noti
e that the 
omplete

graph is in�nite. From the initial marking, all the transitions adja
ent to the

pla
e P are enabled. The �ring of the abstra
t transition labeled a 
onsumes the



token of the pla
e P and leads to the 
onstru
tion of a su

essor node asso
iated

to the marking P . The ar
 between the two nodes is labeled by an a. The �ring

of the �nal transition labeled a from the initial marking leads to the empty tree.

ba|

ba| ba|

P

0

a

P

0

P

0

0

a

a

P

0

0

a

P

0

a

0

a

0 0

0

0

P

0

0

P

A B b

b A B

b b

b b

B A b a

a b
a b

a b

a
ab

b b
a b

a

a b b a

ba b a

Fig. 2. a pre�x of its rea
hability graph

M. Jantzen has shown in [Jan79℄ (see also [Lam88℄) that PAL(�) (for j�j �

2) is not a Petri net language (allowing �-transitions).

We 
onsider the language of the re
ursive net of the Fig. 1 de�ned by the

set of ending markings f?; Pg (the two 
orresponding markings are represented

in bold in the Fig. 2). This language is exa
tly PAL(fa; bg) whi
h demonstrates

that re
ursive Petri net model is a stri
t extension of the Petri net one.

2.4 Expressive Power of Re
ursive Petri Nets

Indeed, we show that re
ursive Petri net languages stri
tly in
lude the union of

Context Free and Petri net languages.

Proposition 1 (Stri
t in
lusion). Re
ursive Petri net languages stri
tly in-


lude the union of Context Free and Petri net languages.

Proof (Sket
h). Like the 
omplete proof is not parti
ularly diÆ
ult, we only give

a sket
h of this proof based on simple example.

It is 
lear that re
ursive Petri net languages in
lude Petri net language. Then,

we begin by the in
lusion of Context Free languages. We 
onsider a Context

Free language de�ned by a set of symbols partionned in terminal symbols T

and non-terminal symbols N . To ea
h non-terminal symbol s 2 N is asso
iated

a non-empty set fs

1

; s

2

; : : : ; s

n

g of words on T [N . A parti
ular non-terminal

symbol s

0

is designated as the initial one. A word of the language is obtained



by 
hoosing word in the set asso
iated to s

0

and then by iteratively substituting

in it a non-terminal symbol by an element of the asso
iated set until the word

does not 
ontain any non-terminal symbol.

For a given Context Free language, we 
an 
onstru
t a RPN having exa
tly

the same language.

For any set asso
iated to a non-terminal symbol s, we build a parti
ular

subnet of the RPN. First, we add a pla
e P

s

. Ea
h element of the set asso
iated

to s leads to the produ
tion of a sequen
e of transitions. Let s

i

be su
h an

element. For ea
h non-terminal symbol r 
omposing s

i

, we add an abstra
t

transition labeled by � and asso
iated to the ordinary marking P

r

. For ea
h

terminal symbol a, we add an ordinary transition labeled by a. Moreover, to

ea
h of these transitions we add an output pla
e and give as input pla
e the

output pla
e of the transition asso
iated to the symbol pre
eding the 
onsidered

one in the word s

i

. Finally, the input pla
e of the �rst transition is designated

to be P

s

and a �nal transition labeled � is 
onstru
ted at the output of the last

pla
e in the sequen
e.

The initial extended marking is 
omposed by only one node for whi
h the

ordinary marking is P

s

0

and the language that we 
onsider is L(N; tr

0

; f?g). It


an be shown that this language is exa
tly the 
onsidered Context Free language.

t
1,1

t
1,2

t
1,3 1

f

t
2,1

t
2,2

t
2,3

t
2,4 2

f

a

c

b
Ps

Fig. 3. a RPN modeling a Context Free language

The Fig. 3 illustrates this 
onstru
tion. The part of the RPN 
orresponding to

a non-terminal symbol S asso
iated to the set faSb; 
DEFg is given. Symbols in

upper
ase are 
onsidered as non-terminal and the others as terminal. A transition

asso
iated to the j

th

symbol of the i

th

element of the set is designated by t

i;j

and the �nal transition is denoted f

i

. As an example, the abstra
t transition

asso
iated to E is denoted t

2;3

. The label � of the abstra
t and �nal transitions

has been omitted.

To demonstrate that this in
lusion is stri
t, we present in Fig. 3 (added to

the net of the Fig. 1) a RPN for whi
h its language is neither a PN one nor a

Context Free one. The ordinary marking asso
iated to the abstra
t transition t

0

0

is the pla
e P of the RPN in the Fig. 1. Moreover, its initial extended marking

is 
omposed by a unique node asso
iated to the ordinary marking P

init

. We 
on-

sider the language L(N; tr

0

; ftr

f

g) where tr

f

is the extended marking 
omposed

by only one node asso
iated to the empty ordinary marking. This language is

exa
tly fw

1

; w

2

g where w

1

2 Pal(fa; bg) and w

2

2 f


n

:d

n

:e

n

g with n � 0. This



1
t’ t’

2
t’

30
p p’

1
p’

2

p
1

p
2

t
1

t
2

t
3

t’
0

p
init

c d e

t
0

Fig. 4. a parti
ular RPN

language is not a Petri net one (its proje
tion on fa; bg gives Pal(fa; bg)) and is

not a Context Free one (its proje
tion on f
; d; eg gives f


n

:d

n

:e

n

g with n � 0)

whi
h 
on
ludes the proof. ut

2.5 Re
ursive Petri Nets and the Modeling of Faults

In order to give insight to the improvements brought by RPNs, we present in the

Fig. 5 an easy way to add faulty behaviors to a Petri net model. The required

faulty behavior 
leans up the 
urrent marking and restarts with the initial mark-

ing. To the best of our knowledge, there is no general way to add su
h a feature

to a Petri net. Only ad-ho
 me
hanisms are proposed for parti
ular 
ases.

S

CF

Fault Net

Hardware Software

Ordinary Petri Net

Start/Repair

Fig. 5. re
ursive Petri net modeling faults

Let us look at our �gure. The net is divided into three parts. On the right

there is the Petri net of the 
orre
t behavior (in our formalism, all transitions are

elementary). On the 
enter there is the faulty behavior with some spontaneous

faults (transition Hardware) and some 
onditioned faults (transition Software).

For sakeness of the modeling, a 
ontrol pla
e F is added ; all the transitions of

this part are �nal. On the left there is a simple initially marked loop with an

abstra
t transition. The starting marking of this transition is the marking of the

Petri net model of the 
orre
t behavior plus one token in the 
ontrol pla
e F.

The behavior of the net may be des
ribed as follows. Initially and in all the


rash states, the extended marking is redu
ed to one node with the loop pla
e

S marked. When the abstra
t transition is �red the 
orre
t behavior is "played"

by the new thread. If this thread dies by the �ring of a faulty transition, we


ome ba
k to the initial state and so on.



3 De
idability of the Rea
hability Problem

The rea
hability problem 
onsists to determine if a given state is rea
hable from

another one.

This problem has been demonstrated to be de
idable for ordinary Petri nets

(see [May81,Kos82,Lam88℄). The main result of this paper is that the rea
hability

problem 
an be also de
ided for re
ursive Petri nets.

3.1 Bran
hes Stru
ture of a Firing Sequen
e

First, we 
hara
terize the di�erent kinds of behaviors of bran
hes inside a se-

quen
e.

De�nition 2 (Permanent bran
h). Let tr, tr

0

be two extended markings and

� be a �ring sequen
e from tr to tr

0

.

A 
ouple of bran
hes ((t

a

; tr

a

); (t

b

; tr

b

)) 2 Bran
h(tr) � Bran
h(tr

0

) denotes a

permanent bran
h in � if v

0

(tr

a

) = v

0

(tr

b

).

The previous de�nition expresses that the node v

0

(tr

a

) is never removed by

the �ring of a �nal transition in v

0

(tr

a

). Remark that in this 
ase, we have

ne
essary t

a

= t

b

.

If a bran
h is not permanent and o

urs in the �nal marking then it has been

\opened" by an abstra
t transition.

De�nition 3 (Opened bran
h). Let tr, tr

0

be two extended markings and �

be a �ring sequen
e from tr to tr

0

. A bran
h (t

b

; tr

b

) 2 Bran
h(tr

0

) denotes an

opened bran
h in � if 8(t

a

; tr

a

) 2 Bran
h(tr); v

0

(tr

a

) 6= v

0

(tr

b

).

In the same way, if a bran
h is not permanent and o

urs in the initial

marking then it has been "
losed" by a �nal transition.

De�nition 4 (Closed bran
h). Let tr, tr

0

be two extended markings and �

be a �ring sequen
e from tr to tr

0

. A bran
h (t

a

; tr

a

) 2 Bran
h(tr) denotes an


losed bran
h in � if 8(t

b

; tr

b

) 2 Bran
h(tr

0

); v

0

(tr

a

) 6= v

0

(tr

b

).

At last, some bran
hes may appear in an intermediate marking and disappear

before the �nal marking.

De�nition 5 (Transient bran
h). Let tr, tr

0

be two extended markings and

� be a �ring sequen
e from tr to tr

0

. A bran
h (t




; tr




) of an extended marking

tr

00

visited by � is a transient bran
h if

8(t

a

; tr

a

) 2 Bran
h(tr) [Bran
h(tr

0

); v

0

(tr

a

) 6= v

0

(tr




).

We want to split the (possibly empty) set of sequen
es whi
h leads from

the initial marking to the �nal marking depending on the behavior of bran
hes

of the initial and �nal marking. In the de
ision pro
edure, we will try to �nd

su

essively a sequen
e in ea
h of this subset. Let us note that the number of



these subsets is �nite. So an admissible 
ombination of bran
hes of the initial

marking and �nal marking binds the permanent bran
hes and the remainding

bran
hes are either 
losed (if they are in the initial marking) or opened (if they

are in the �nal marking).

De�nition 6 (Admissible 
ombination of bran
hes). Let tr and tr

0

be two

extended markings, an admissible 
ombination of bran
hes Cb(tr; tr

0

) is de�ned

by Cb(tr; tr

0

) = fR

t

g

t2T

ab

su
h that

{ 8t 2 T

ab

; R

t

� (bran
h(tr; t)[ ?)� (bran
h(tr

0

; t)[ ?) ^

{ 8t 2 T

ab

;8b

i

2 bran
h(tr; t); jR

t

(b

i

; �)j = 1 ^

{ 8t 2 T

ab

;8b

j

2 bran
h(tr

0

; t); jR

t

(�; b

j

)j = 1 ^

{ 8t 2 T

ab

; jR

t

(?;?)j = 0

The meaning of an admissible 
ombination Cb(tr; tr

0

) is the following.

De�nition 7 (Combination respe
t). Lets � be a sequen
e from tr to tr

0

,

then � respe
ts Cb(tr; tr

0

) i� :

8t 2 T

ab

;8b

i

2 bran
h(tr; t);8b

j

2 bran
h(tr

0

; t) :

{ R

t

(b

i

;?) implies � 
loses the bran
h b

i

,

{ R

t

(?; b

j

) implies � opens the bran
h b

j

and b

j

stays opened,

{ R

t

(b

i

; b

j

) implies b

i

stays opened during the �ring of � and 
orresponds to

b

j

in tr

0

.

The set of possible bran
h 
ombinations of two extended markings tr and tr

0

is denoted CB(tr; tr

0

). It is 
lear that for any sequen
e there is one and only one

admissible 
ombination respe
ted by the sequen
e.

3.2 Closability of Abstra
t Transitions

The �rst step for ta
kling the rea
hability problem is to determine whether the

tree generated by the �ring of an abstra
t transition may "
lose" itself.

De�nition 8 (Closable abstra
t transition). An abstra
t transition t is 
los-

able if there exists a �ring sequen
e from 
(t) to ?. Su
h a sequen
e is 
alled a


losing sequen
e of the abstra
t transition t.

From this de�nition, it is 
lear that the bran
hes opened in a �ring sequen
e

whi
h 
an be 
losed in the same sequen
e, are those whi
h are 
omposed from a


losable abstra
t transition. Moreover, using the sequen
e depth, we 
an 
har-

a
terize some minimal 
losing sequen
es.

De�nition 9 (Minimal 
losing sequen
e). A 
losing sequen
e � of an ab-

stra
t transition t is said minimal if for all 
losing sequen
e �

0

of t, we have

Depth(�) � Depth(�

0

).



For a given 
losable abstra
t transition t, we denote by Order(t) the depth

of its minimal 
losing sequen
es. The next lemma exhibits a stru
tural property

of some minimal 
losing sequen
es.

Lemma 10 (Existen
e of parti
ular minimal 
losing sequen
es). Let t be

an abstra
t 
losable transition, there exists a minimal 
losing sequen
e � su
h

that: If �

0

denotes the pre�x of � where the last transition (a �nal one) has been

deleted then �

0

has no opened bran
hes.

Proof. Let us take a 
losing sequen
e. If there is an opened bran
h before the

last �ring, then we 
an delete the �ring whi
h opens this bran
h and all the

subsequent �rings in this bran
h. Indeed, the only node modi�ed by the removing

is the root node where all its marking after the opening of the bran
h are now

in
reased with the input tokens of the abstra
t transition. Thus the new sequen
e

is also �rable. The new sequen
e has at most the same depth as the previous

one. Iterating this removing on all the opened bran
hes, we obtain the required

minimal 
losing sequen
e. ut

Lemma 11 (Bran
hes order). If there exists an abstra
t transition t 2 T

ab

su
h that Order(t) = n (with n > 1) then there exists an abstra
t transition t

0

su
h that Order(t

0

) = n� 1

Proof. Let � be a minimal 
losing sequen
e of t ful�lling the 
ondition of lemma 10

and ftr

1

; : : : ; tr

m

g the extended markings of depth n rea
hed by �. Let ft

i;j

g be

the transitions labeling the bran
hes of tr

i

.

By the de�nition of �, we are ensured that 8i; j; Order(t

i;j

) � n�1. Moreover

the 
ondition of the lemma 10 ensures that all the bran
hes are 
losed before

the �ring of the last transition (the �nal one) in the root.

Suppose that 8i; j; Order(t

i;j

) < n � 1, then we 
an repla
e the sequen
e �

by a sequen
e �

0

where the �rings in the bran
h whi
h follow its 
reation are

repla
ed by some minimal 
losing sequen
e of order < n � 1. This sequen
e �

0

has an order < n whi
h 
ontradi
ts the hypothesis of minimality of �. ut

The Algorithm 3.1 
omputing the set of 
losable abstra
t transitions is based

on the Lemma 11. From a given re
ursive Petri net, it returns the 
orresponding

set of 
losable abstra
t transitions.

Proposition 12 (Closable abstra
t transitions). The Algorithm 3.1 
om-

putes exa
tly the set of 
losable abstra
t transitions of the net N .

Proof. By de�nition, an abstra
t transition of order equal to 1 has an asso
iated

minimal 
losing sequen
e during whi
h no bran
h is opened and then no abstra
t

transition is �red. Hen
e, we have to de
ide if, for a given abstra
t transition t,

a marking from whi
h a �nal transition is �rable 
an be rea
hed from 
(t). The

set S

fi

represents the semi-linear set of markings from whi
h a �nal transition

is �rable. The ordinary net Net is obtained removing all abstra
t and �nal

transitions. A 
losable abstra
t transition of order equal to 1 is determined by



Algorithm 3.1 Closable

TransitionSet Closable(RPN N)

begin

Net = N n fT

ab

[ T

fi

g;

Computed = ;;

S

fi

= fm 2 IN

P

j 9t 2 T

fi

; m �W

�

(�; t)g;

i = 0;

do

i = i+ 1;

New = ;;

forall t 2 T

ab

n Computed do

if ElemDe
ide(Net;
(t); S

fi

) then

New = New [ ftg;

Order(t) = i;

�

od

forall t 2 New do

t

eq

= an elementary transition su
h that W

�

(�; t

eq

) =W

�

(�; t) ^W

+

(�; t

eq

) =W

+

(�; t);

Net = Net [ ft

eq

g;

od Computed = Computed [New;

while (New 6= ;);

return Computed;

end



de
iding if there exists a marking of S

fi

rea
hable in Net from 
(t). In ordinary

Petri nets, the rea
hability of a semi-linear set redu
es straightforwardly to the

rea
hability of a �nite set of markings. The 
all ElemDe
ide((Net;
(t); S

fi

)

return true if the ordinary net Net 
an rea
h a least a marking of S

fi

from 
(t)

and false otherwise.

As seen in the demonstration of the Lemma 11, we know that the 
losable ab-

stra
t transitions of order equal to n have an asso
iated minimal 
losing sequen
e


ontaining bran
hes of order stri
tly less than n. Moreover, these bran
hes are

transient in the subsequen
e whi
h pre
edes the �ring of the last transition.

Moreover, only the marking of the root is relevant to rea
h S

fi

. Then we 
an

mimi
 the 
onsequen
e at the root level of behavior of these bran
hes by adding

to the net, elementary transitions equivalent to the 
losable abstra
t transitions

of order stri
tly less than n. A similar 
onstru
tion is used in Proposition 16 and

explained there in more details.

Finally, as the number of abstra
t transitions is �nite and ea
h su
essfull

round of the external loop pi
ks at least a new one, the algorithm stops. ut

For a given re
ursive Petri net N , we denote by N

ord

the ordinary net Net

obtained at the termination of the Algorithm 3.1.

3.3 Analysis of Sequen
es Stru
ture

We enumerate four propositions (one per 
ategory of bran
hes) whi
h are useful

to redu
e the problem of existen
e of a sequen
e to the existen
e of other (and

simpler in some sense) sequen
es.

Proposition 13 (Permanent bran
h 
ondition). Let tr and tr

0

be two ex-

tended markings. Let Cb(tr; tr

0

) be an admissible 
ombination of bran
hes and

t an abstra
t transition. There exists a sequen
e � from tr to tr

0

whi
h respe
ts

Cb(tr; tr

0

) with a permanent bran
h R

t

(b

i

; b

j

) i� 9�

0

; �

00

su
h that

(M(v

0

(tr)); Bran
h(tr) n b

i

)

�

0

�!

(M(v

0

(tr

0

)); Bran
h(tr

0

) n b

j

) ^

b

i

�

00

�!

b

j

Proof. The demonstration is essentially based on the semanti
s of re
ursive Petri

nets. If the bran
h b

i

is permanent then the sequen
e � does not 
ontain a �ring

of an abstra
t transition opening the bran
h and any �ring of �nal transition

in the root of the bran
h. Then, all the �rings in the bran
h b

i

are independent

from the ones outside of the bran
h.

We 
onstru
t a sequen
e �

0

by proje
ting � on the �rings whi
h do not


on
ern b

i

and a sequen
e �

00

by proje
ting � on the �rings 
on
erning the bran
h

b

i

. Due to the fa
t that the �rings inside b

i

are independent to the ones outside

(from the semanti
s of re
ursive Petri nets), if � is �rable then the sequen
e

�

0

:�

00

is also �rable and leads from tr to tr

0

.

Moreover, the sequen
e �

00

:�

0

has the same properties.



Finally, it is 
lear that the existen
e of �ring sequen
es �

0

and �

00

is a suÆ
ient


ondition for rea
hing tr

0

from tr via �

0

:�

00

. ut

This proposition is illustrated in the Fig. 6.

bi bj

σ’’

tr\bi tr’\bj

σ’

and

t

bi tr\bi

t

bj tr’\bj

σ

Fig. 6. permanent bran
h

Proposition 14 (Opened bran
h 
ondition). Let tr and tr

0

be two extended

markings. Let Cb(tr; tr

0

) be an admissible 
ombination of bran
hes and t an

abstra
t transition. There exists a sequen
e � from tr to tr

0

whi
h respe
ts

Cb(tr; tr

0

) with an opened bran
h R

t

(?; b

j

) i� 9�

0

; �

00

su
h that

tr

�

0

�!

(M(v

0

(tr

0

)) +W

�

(�; t); Bran
h(tr

0

) n fb

j

g) ^


(t)

�

00

�!

b

j

Proof. t is the abstra
t transition whi
h opens the bran
h b

j

. Let �

a

be the part

of � pre
eding the b

j

-opening o

urren
e of t in � and �

b

the part of � following

this o

urren
e. We have � = �

a

:t:�

b

.

The bran
h b

j

is a permanent bran
h of �

b

. Applying the Proposition 13, we


onstru
t a sequen
e �

b1

by proje
ting �

b

on the �rings whi
h do not 
on
ern

the bran
h b

j

and a sequen
e �

b2

by proje
ting �

b

on the �rings 
on
erning b

j

.

The sequen
e �

a

:t:�

b1

:�

b2

is �rable.

Due to the fa
t that the �ring of t only 
onsumes tokens in the root of the

extended markings, the sequen
e �

a

:�

b1

:t:�

b2

is also �rable and leads from tr to

tr

0

.

Moreover, like the �ring of t leads to the opening of the bran
h (t; 
(t)) and

the �rings in �

b2

only 
on
ern b

j

, we have 
(t)

�

b2

�!

b

j

.

Sin
e all the �rings in � whi
h do not 
on
ern b

j

are in �

a

:�

b1

, we have

tr

�

a

:�

b1

�!

(M(v

0

(tr

0

)) +W

�

(�; t); Bran
h(tr

0

) n fb

j

g).

Finally, it is 
lear that the existen
e of �ring sequen
es �

0

and �

00

is a suÆ
ient


ondition for the rea
hability via �

0

.t.�

00

. ut



This proposition is illustrated in the Fig. 7.

σ

t

bj tr’\bjtr

m

(t)Ω

and

tr tr’\bj

σ’

bj

σ’’

tr tr’\bj

σ’ σ

t

bj tr’\bj

mt. ’’m + W-(.,t)

m + W-(.,t)

Fig. 7. opened bran
h

Proposition 15 (Closed bran
h 
ondition). Let tr and tr

0

be two extended

markings. Let Cb(tr; tr

0

) be an admissible 
ombination of bran
hes and t an

abstra
t transition. There exists a sequen
e � from tr to tr

0

whi
h respe
ts

Cb(tr; tr

0

) with a 
losed bran
h R

t

(b

i

;?) i� 9�

0

; �

00

su
h that

b

i

�

0

�!

? ^

(M(v

0

(tr)) +W

+

(�; t); Bran
h(tr) n fb

i

g)

�

00

�!

tr

0

Proof. Lets t


l

be the �nal transition 
losing the bran
h b

i

. Let �

a

be the part

of � pre
eding the b

i

-
losing o

urren
e of t


l

in � and �

b

the part of � following

this o

urren
e. We have � = �

a

:t


l

:�

b

.

The bran
h b

i

is a permanent bran
h of �

a

. Applying the Proposition 13,

we 
onstru
t a sequen
e �

a1

by proje
ting �

a

on the �rings whi
h 
on
ern the

bran
h b

i

and a sequen
e �

a2

by proje
ting �

b

on the �rings not 
on
erning b

i

.

The sequen
e �

a1

:�

a2

:t


l

:�

b

is �rable.

Due to the fa
t that the �ring of t


l

only produ
es tokens in the root of the

extended markings, the sequen
e �

a1

:t


l

:�

a2

:�

b

is also �rable and leads from tr

to tr

0

.



Be
ause all the �rings in � whi
h do not 
on
ern b

i

are in �

a2

:�

b

, we have

tr

�

a1

:t


l

�!

(M(v

0

(tr)) +W

+

(�; t); Bran
h(tr) n fb

i

g).

Finally, it is 
lear that the existen
e of �ring sequen
es �

0

and �

00

is a suÆ
ient


ondition for rea
hability via �

0

:�

00

. ut

This proposition is illustrated in the Fig. 8.

tr’

t

σ

bi tr\bi

tr’

σ’’

σ’

bi

tr’

σ’’

’

t

σ

bi tr\bi tr\bi

m m + W+(.,t)

and

tr\bi

m + W+(.,t)

Fig. 8. 
losed bran
h

Proposition 16 (Transient bran
h elimination). Let tr and tr

0

be two ext-

ended markings 
omposed by only one node. There exists � a sequen
e from tr to

tr

0

i� there is a sequen
e in the ordinary Petri net N

ord

leading from M(v

0

(tr))

to M(v

0

(tr

0

)).

Proof. Lets t


l

be the �nal transition 
losing some transient bran
h b

i

of � opened

by an abstra
t transition t. Let �

a

be the part of � pre
eding the �ring of t, �

b

the

part of � en
losed by the opening-�ring of t of the bran
h and the 
losing-�ring of

t


l

and �




be the part of � following the �ring of t


l

. We have � = �

a

:t:�

b

:t


l

:�




.

The bran
h b

i

is a permanent bran
h of �

b

. Applying the Proposition 13, we


onstru
t a sequen
e �

b1

by proje
ting �

b

on the �rings whi
h do not 
on
ern

the bran
h b

i

and a sequen
e �

b2

by proje
ting �

b

on the �rings 
on
erning b

i

.

The sequen
e �

a

:t:�

b1

:�

b2

:t


l

:�




is �rable.

Due to the fa
t the �ring of t only 
onsumes tokens in the root of the extended

markings, the sequen
e �

a

:�

b1

:t:�

b2

:t


l

:�




is also �rable and leads from tr to tr

0

.



Be
ause the sequen
e �

b2

only 
on
erns the bran
h b

i

opening by t, its �rings

do not have any e�e
t on the nodes of extended marking rea
hed by �

a

:�

b1

. The

modi�
ations on these nodes done by the sequen
e t:�

b2

:t


l


on
ern only the

root node and are the 
onsuming of W

�

(�; t) tokens by t and the produ
ing

of W

+

(�; t) tokens by t


l

. So at the root level, the sequen
e t:�

b2

:t


l


an be

simulated by t

eq

whi
h belongs to N

ord

as t has a 
losing sequen
e. Iterating the

substitution for all transient bran
hes gives a sequen
e in N

ord

.

Finally, it is 
lear that a sequen
e in N

ord


an be transformed in a sequen
e

for N by substituting the �ring of any t

eq

by the �ring of t followed by a 
losing

sequen
e of t. ut

3.4 The De
ision Pro
edure

The Algorithm 3.2 is developed from the previous propositions.

Theorem 17 (Rea
hability problem). Let tr and tr

0

two extended markings

of a re
ursive Petri net N = hP; T;W

�

;W

+

; 
; tr

0

i. tr

0

is rea
hable from tr i�

De
ide(N; tr; tr

0

) returns true.

Proof. The demonstration is done re
ursively on depth(tr) + depth(tr

0

).

If depth(tr) = 0 then the algorithm returns true only if depth(tr

0

) = 0 and

false otherwise. This statement is insured by the �rst test of the algorithm.

We make the hypothesis that the algorithm for depth(tr) + depth(tr

0

) � n is


orre
t and demonstrate its 
orre
tness for depth(tr) + depth(tr

0

) = n+ 1.

If depth(tr) 6= 0 ^ depth(tr

0

) = 0, we have to de
ide if the system is able to

�re a �nal transition at the root level. Or equivalently, if the root of tr is able

to rea
h a state from whi
h a �nal transition is �rable. The set S

fi

represents

this set of markings.

If su
h a sequen
e exists, we 
an adapt the Lemma 10 to it and then, there

exists a minimal sequen
e having no opened bran
h.

However, a bran
h opened in tr whi
h 
an be 
losed from tr, 
an in
rease

the number of token in the marking asso
iated to v

0

(tr) by produ
ing W

+

(�; t)

tokens (where t is the abstra
t transition asso
iated to the bran
h). Due to the

re
urren
e hypothesis, we 
an determine these parti
ular bran
hes by re
ursive


alls to the pro
edure.

Be
ause, adding some tokens to a marking 
an only in
rease the number of

sequen
es �red from it, we 
an arbitrary 
lose these parti
ular bran
hes. The

marking m 
orresponds to this statement. It is 
lear that the bran
hes opened

in tr whi
h 
an not be 
losed have no e�e
t on the marking asso
iated to v

0

(tr)

and then 
an be ignored.

Finally, be
ause the sear
hed sequen
e 
an perform some transient bran
hes

and applying the Proposition 16, de
ide if the system 
an rea
h a marking of

S

fi

from m is equivalent to de
ide if the ordinary net N

ord

is able to rea
h

a marking of S

fi

from m. The demonstration of this point is related to the

Proposition 16 and the rea
hability problem for ordinary nets is known to be

de
idable ([May81,Kos82,Lam88℄).



Algorithm 3.2 De
ide

Bool De
ide(N; tr; tr

0

)

begin

if (tr ==?) then

return tr

0

==?;

if (tr

0

==?) then

m =M(v

0

(tr));

forall (t; tr

i

) 2 Bran
h(tr) do

if De
ide(N; tr

i

;?) then

m = m+W

+

(�; t);

�

od

S

fi

= fm 2 IN

P

j 9t 2 T

fi

;m �W

�

(�; t)g;

return ElemDe
ide(N

ord

;m; S

fi

);

�

forall Cb(tr; tr

0

) 2 CB(tr; tr

0

) do

// with Cb(tr; tr

0

) = fR

t

g

t2T

ab

forall R

t

((t; tr

i

); (t; tr

j

)) do // permanent bran
h

if :De
ide(N; tr

i

; tr

j

) then

goto NextCombination;

�

od

forall R

t

(?; (t; tr

j

)) do // opened bran
h

if :De
ide(N;
(t); tr

j

) then

goto NextCombination;

�

od

forall R

t

((t; tr

i

);?) do // 
losed bran
h

if :De
ide(N; tr

i

;?) then

goto NextCombination;

�

od

m

1

=M(v

0

(tr)) +

P

R

t

(�;?)

W

+

(�; t);

m

2

= m

0

(tr

0

) +

P

R

t

(?;�)

W

�

(�; t);

if ElemDe
ide(N

ord

;m

1

;m

2

) then

return true;

�

NextCombination:

od

return false;

end



If depth(tr) 6= 0 ^ depth(tr

0

) 6= 0 and be
ause the number of 
ombinations

is �nite, de
ide if there exists a �ring sequen
e in N leading from tr to tr

0

is

equivalent to de
ide if there exist a �ring sequen
e � in N leading from tr to

tr

0

and there exists an admissible 
ombination Cb(tr; tr

0

) su
h that � respe
ts

Cb(tr; tr

0

).

The main loop of the algorithm 
orresponds to this statement.

Then, to de
ide if there exists a sequen
e in N is equivalent to de
ide if there

exists one showing some permanent, opened, 
losed and transient bran
hes. The


onsidered admissible 
ombination Cb determines the permanent, opened and


losed bran
hes.

The three internal loops 
orrespond to the treatment of these kinds of bran
h.

The demonstration of there 
orre
tness is dire
tly related to the Proposi-

tions 13, 14 and 15 and to the indu
tion hypothesis.

When all the permanent, opened and 
losed bran
hes have been treated, the

de
ision of the rea
hability 
an be restri
ted to a de
ision in an ordinary net. If

we 
onsider that all the 
losed bran
hes are e�e
tivly 
losed, we have to rea
h

the state from whi
h all the opened bran
hes 
an be opened. The markings m

1

and m

2


orrespond to these two parti
ular points of the sequen
e. Be
ause, the

sequen
e 
an perform some transient bran
hes, the de
ision must be done for

the ordinary net N

ord

(Proposition 16). ut

4 Con
lusion

In this work, we have studied theoreti
al features of re
ursive Petri nets. We have

�rst shown that they are a stri
t extension of the model of Petri nets as they are

able to re
ognize the palindrom language and that the languages of RPNs stri
tly

in
lude the union of Petri net and Context Free languages. Moroveover, we have

illustrated their modelling 
apability by giving a simple method to model faults

in a system whereas a similar modelling is not known to be possible for ordinary

Petri nets.

Then, we have proven that the rea
hability is de
idable for RPNs and we

have given an algorithm whi
h redu
es the problem to some (quite numerous !)

appli
ations of the de
ision pro
edure for the ordinary Petri nets.

We plan to extend our studies in two di�erent ways. On the one hand we

want to add new features for re
ursive Petri nets and examine whether the rea
h-

ability problem remains de
idable. We are mainly interested to introdu
e some


ontext when a thread is initiated (e.g. the starting marking 
ould depend from

the depth in the tree). On the other hand, we would study some more 
om-

plex properties (like home state or properties spe
i�ed by a temporal formula).

Sin
e the reda
tion of this paper, new results on RPNs have been stated. In

parti
ular, we have proven that RPN languages are re
ursive [HP99b℄ and that

any Turing ma
hine 
an be simulated by syn
hronizing a RPN with a �nite

automaton [HP99a℄. This last result has multiple 
onsequen
es. One of them

being that the emptiness of the interse
tion of a regular language and a RPN

language is unde
idable. Hen
e, it leaves little hope to general model 
he
king



as done in [Esp97℄ for Petri nets. However, this negative result does not pre
lude


he
king of parti
ular properties (su
h as spe
ial kinds of fairness [Yen92℄) and

we are working in su
h a dire
tion.

At last, it would be interesting to 
ombine this model with usual 
hara
ter-

isti
s (su
h like the 
olours) in order to in
rease its appli
ation area.
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