
Protocol Engineering for Multi-Agent Interaction

Amal El Fallah-Seghrouchni

1

, Serge Haddad

2

, and Hamza Mazouzi

2

1

LIPN - Universit�e Paris Nord,

elfallah@lipn.univ-paris13.fr

2

LAMSADE - Universit�e paris Dauphine,

fhaddad, mazouzig@lamsade.dauphine.fr

Abstract. This paper focuses on the study of the pragmatics of multi-

agent systems design, proposing an e�cient approach for the interaction

protocol engineering. This approach combines two complementary paradigms:

1) Distributed observation is used to capture the concurrent events inher-

ent to the interactions between agents, through causal dependency, in order

to explain the relationships within conversations or group utterances; 2)

Colored Petri Nets are used as a suitable formalism to identify interaction-

oriented designs while providing the means to model, analyze, and validate

large scale applications.

1 Interaction protocols issue: languages and models

This paper focuses on the study of the pragmatics of multi-agent systems (MAS)

design, proposing an e�cient approach to build a robust and secure interaction

between agents, as an essential component of the dynamics of MAS. Communi-

cation is often used by agents to enable cooperation, common tasks and goals

achievement, and information exchanged, i.e. data, knowledge and plans. Message

passing is a common paradigm for agents' communication. Such a paradigm is the

necessary mean for cooperation which requires a shared background of the skills

of the agents, specially when such skills are as complex as perception, learning,

planning, and reasoning. Interaction modeling, as well as the development of stan-

dard languages for agents' communication (ACLs), remains a crucial problem in

MAS design.

We propose an approach that tackles the problem of protocol engineering through

the speci�cation, the analysis, and the veri�cation of such protocols when several

agents are involved. This approach combines two complementary paradigms: Dis-

tributed observation is used to capture the relevant events underlying the interact-

ing situations, while Colored Petri Nets (CPN) [10] provide an e�cient formalism

to specify, model, and study several kinds of communication protocols. We also

claim that our approach is generic, in the sense that it is independent of any ACL.

1.1 Interaction languages

In order to support organizational interaction, communication, and cooperation

in MAS, many frameworks [11] [8] have been proposed towards standardization

for formalizing the ow of interaction between agents . These frameworks intend

2 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

to develop a generic interaction languages by specifying messages and protocols

for inter-agent communication and cooperation. Such languages focus especially

on how to describe exhaustive speech acts [1] [20], both from the syntactical and

semantical points of view that support a language of knowledge representation.

Nevertheless, the ontological aspect and the resort to conventions may help to en-

sure a coherent collective behavior of the overall system, even if the conversational

aspect is not easy to be guaranteed.

Research in interaction languages includes the Knowledge Sharing E�ort (KSE)

that outputs speci�cation for the Knowledge Querying and Manipulation Language

(KQML) [11], and the Knowledge Interchange Format (KIF). KQML proposes an

extensible set of performatives, which de�ne the permissible operations that agents

may attempt on each other's knowledge and goal stores. Nevertheless, some ob-

servations about KQML has been recently pointed out, e.g., some performatives

are ambiguous while others are not really performatives at all, and there are no

performatives that commit an agent to do something. Another criticism to KQML

is its de�ciency regarding to a clear semantics independent of the structure of the

agents [4].

More recently, the international collaboration of member organizations within

FIPA (Foundation for Intelligent Physical Agents), proposed and speci�ed some

standards for the agent technology and especially, an agent communication lan-

guage called ACL [8]. ACL recovers the syntactical idea of KQML which allows to

build interactions enriched by a formalized semantics of performatives, and conse-

quently, it enables the expression of a set of high level protocols and primitives to

control the information exchange between agents.

However, few work related with the analysis and the validation of these protocols

have been done. In [5] [6] a formal study of the FIPA Protocols is proposed and

it shows that some of them may lead to some incorrect behaviour (e.g. deadlock

situations between agents).

1.2 Interaction Models

The formal speci�cation of interactions have been less successful. In fact, the mod-

eling of interactions con�nes itself with the use of mis�t formalisms, such as the

graph of prede�ned states, to describe the progress of the agent according to the

kind of received messages. Other models like automata or more speci�c graphs

(e.g. the Dooly-graph [18]) have also been used to describe conversations between

agents. These models of representation are practical to specify the structure of

the conversations when they appear as isolated communications, but they exhibit

poor capacity for computing complex protocols basically because: 1) any graph

state includes all the local states of the agent leading to the combinatory explo-

sion in the case of real and complex protocols; 2) most of the formalisms used take

in charge only sequential processes. Moreover, when these formalisms take into

account temporal aspects (in our case, speci�ed through the causality concept),

they assume the existence of a global clock what constitutes a strong constraint,

i.e., agents must run on the same site. In addition, these models are very limited

when it is useful to take into account the concurrency, which is the key stone of

MAS since agents are often involved simultaneously in several interactions.

Protocol Engineering for Multi-Agent Interaction 3

Our point of view is that it should be more judicious to resort to well-known and

well-tested formalisms for concurrent systems, such as CPN [10] for at least three

reasons: 1) they naturally take in charge concurrency; 2) they make easier the fac-

torization process of treatments; and 3) they o�er several methods for the analysis

and the validation of the modeled protocols.

This paper is organized as follows: section 2 outlines both our framework hypothe-

ses and our aims, namely the modeling and the analysis of interactions. Section 3

briey introduces the paradigm of distributed observation through the causality

concept and illustrates its usefulness to build the causal graph of interactions. Sec-

tion 4 presents the CPN formalism through some modeling aspects. The pattern

matching algorithm presented in Section 5 is our main focus in this paper. The

algorithm leads to recognize the nature of interaction involved between agents.

Section 6 concludes and lights up our future work.

2 Conceptual framework

Our approach is structured on �ve phases (see �gure 1):

1) In [5] we have proposed an e�cient study of interaction. Based on an on-line

distributed observation of the MAS running, it allows to capture traces of the

relevant events underlying the agents' interactions (see phase 1).

2) While exploiting the obtained traces, the second phase builds the causal graph

of events [6] underlying the interactions that have been occurred during the dis-

tributed execution, i.e., agents may be situated and run on distinct sites (see phase

2). Let us remark that the reconstitution mechanism is ensured o�-line and based

on logical clocks proposed by J. Fidge [9] and F. Mattern [14] which take into

account the local concurrency, i.e., on the same site, for multi-threading process

for instance.

3) The third phase represents our main interest in this paper. It corresponds to

the recognition of interactions based on a pattern matching algorithm. The algo-

rithm is jointly based on the causal graph of events and the CPN models as �lters

(CPN patterns). Knowing that several computations may be associated with the

same CPN model and consequently with the same protocol, it becomes necessary

to identify the right instance of the right protocol. We overcome this di�culty

thanks to the true-concurrency semantics by means of the unfolding Petri Net

techniques. In fact, at the opposite of the interleaving concurrency semantics, the

unfolding Petri nets method enables to associate a set of unfolding nets with a

given protocol modeled as CPN.

4-5) Work in progress addresses the phases four and �ve that will not be de-

tailed in this paper. Briey, the fourth one aims to explain the behaviour of the

MAS according to the adopted protocols while the �fth one corresponds to the

learning process. Supported by the central agent, the learning process tries to de-

duce both qualitative and quantitative criteria to be communicated to the other

agents. These criteria should be taken into account by the agents as guidelines to

improve their behavior and especially their future interactions. The hypotheses of

our framework are:

{ the MAS is composed of a set of cognitive agents distributed on di�erent sites and

may run concurrently.

{ the agents communicate exclusively by asynchronous messages.

{ each agent has a local strategy for problem solving, reasoning mechanisms, etc.

4 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

A

B

C

Causal Ordering

Pattern matching

e1 e2

e3

e5e4

Causally graph of

relevant events

(interactions events :

communicative acts or

performatives)

Distributed observation

of MAS computation

(Time-space diagram)

I1(A,B)

I2 (B,C)I3(A,B,C)

Causally graph of

recognized interactions

Learning

Analyzing and
explanation of multi-

agent interactions and
agents’ behavior

Modifying qualitative

criteria to improve agents’

future interactions

Interaction

Patterns library

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1

Input

Fig. 1. A structured approach for interaction design in MAS

{ all the protocols are modeled through CPN formalism and are available in the pro-

tocol library (CPN Patterns) shared by agents.

{ each agent communicates with each other w.r.t. the prede�ned protocols.

{ the observation is distributed in the sense that each agent has a local module, which

observes and traces the signi�cant events corresponding to the emissions/receptions

of the agent messages and some local events.

{ the analysis and learning processes are ensured o�-line by the central agent.

3 Distributed observation applied to interaction in MAS

Distributed problem solving involves complex interaction strategies of cooperation,

in the sense that they are non-deterministic, hard to be interpreted and sometimes

neither completely reproducible, nor predictable.

A possible solution is to observe the computation at run time in order to record

the most signi�cant events and their causality relation. Generally, at a given level

of an application, only few events are relevant to the observation process. For

example, in interaction protocol, only events according to the protocol running

are signi�cant. An observer of MAS may be any entity that attempts to watch

the system while the computation is in progress or examine a post-mortem log or

trace of events. In our framework, we consider a distributed execution as composed

of a set of agents that communicate asynchronously by message passing over a

communication network [19]. At the most abstract level, a computation of MAS

can be de�ned as a set of events. Each agent generates an execution trace, which

is a �nite set of local atomic events in some speci�c order. There are two kinds of

event: interaction events, i.e., sending and receiving messages, and internal events

Protocol Engineering for Multi-Agent Interaction 5

(e.g. updating internal state of the agent).

We are particularly interested about the concept of time in distributed systems

which may be usefully used in many ways, especially for ordering events using

logical clocks. Another aspect is that many applications require identifying \cause

and e�ect" relationships in event occurrences (e.g. debugging programs). In any

case, the model (called happened-before) [13] is necessary to give information about

the causally precedes relation among the events. This relation can be de�ned as

follows:

{ Locally precedes relation between events on a single site which generally pro-

vides a total order,

{ Immediately precedes relation between a couple of events e and f of exchange

messages ; if e is the sending of the message and f is the reception of the same

message.

Now, the causally precedes relation denoted by \!" can be de�ned as the tran-

sitive closure of the union of the two relations above. Let us remark that one of

the major di�culties in distributed agents is that the ordering relation between

events is a partial order.

Our model goes on to partially order the events on a single site which would

allow events within an agent to be independent or concurrent (e.g. independent

threads). This model [21] extends the happened-before model in order to: 1) ad-

dress the problem of false causality when local events are independent; and 2)

capture the semantics of multiple local threads of control.

This relation can be represented with a minimal oriented graph denoted causal

dependency graph (see [5], [6] and [15] for the graph construction).

Finally, the mechanisms that capture causality are widely developed depending

on the level of information required. In our approach, the vector clocks mech-

anism [9] [14] is adopted since it enables to exactly know the causally precedes

relation between events.

4 Modeling interactions by means of CPN

The protocol engineering typically comprises various stages including speci�cation,

veri�cation, performance analysis, implementation, and testing.A computational

speci�cation of complex interactions is the description of a combinatory of ex-

changing performatives between agents [12].We consider interaction protocols as

the basic ones from which complex and high-level interactions can be built [2]. As

argued in section 1.2, we adopt the CPN formalism to handle interactions. Next, we

present the syntactical and semantical features of CPN [10] illustrated through a

signi�cant example, FIPA-Query-Protocol [8] (see �gure 2). FIPA-Query-Protocol

simply allows one agent to request another to perform some kind of inform action

(query-act) and the receiver to answer with a normal inform act or, in some way,

that it cannot answer (i.e. refuse, failure or not-understood). The presented exam-

ple extends the FIPA-Query-Protocol since it involves one sender and any set of

receiving agents (e.g. broadcast of a query).

6 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

��6�;��T�! ��<��T�!

��<��T�!

��<��T�!

��<�!

��;�!

$��4XHU\
%��5HFHSWLRQ�RI�WKH

TXHU\

%��3URFHVVLQJ�RI�WKH
TXHU\$��5HFHSWB)LUVWB,QI

��<�!

��;�!

5GNH�5WEEGUU5GNH�(CKNWTG

��<�!

¾ ;��<��UHSUHVHQWV�WKH�LGHQWLW\�IXQFWLRQ�
¾ 5��UHVSRQVH�∈�^,QIRUP��5HIXVH��)DLOXUH��1RW�XQGHUVWRRG`
¾ 1��QHJDWLYH�UHVSRQVH��5HIXVH���)DLOXUH��1RW�XQGHUVWRRG��
¾ >�FRQGLWLRQ�@� �;���SUHGLFDWH�WR�EH�HYDOXDWHG�E\�DJHQW�;
¾

%��6HQGLQJ��,QIRUP

��<�!
��<�!

¾ 6��UHSUHVHQWV�DOO�DJHQWV�LQYROYHG�LQ�WKH�SURWRFRO�
¾ T��TXHU\�PHVVDJH
¾ ���WHUPLQDO�WUDQVLWLRQ�RI�WKH�SURWRFRO�

%��6HQGLQJ��1

$��5HFHSWB)LUVWB,V1

��6���;�!
��6���;�!

��<�!

��<�!

��<�!

��<�!

��<�!

��<�!

��<�!

:DLWB)LUVWB5

,QLWBSURWRFRO
U 6HQWBTXHU\

U

5HFHLYHGBTXHU\
U

5HFHLYHGBLQIRUP
U

6HQWBLQIRUP

6HQWB1HJ
U

��;�!

$���5HFHSWB1H[WB,QI

$���5HFHSWB1HJB5:DLWB�Q���
5HVSRQVHV

5HFHLYHG
LQIRUP

��;�!��;�!
��;�!

��;�!

��;�!

Fig. 2. The CPN model of FIPA-Query Protocol

4.1 Syntactical aspect of CPN

Petri Nets are state and action oriented models at the same time. In our frame-

work, the modeling is concentrated on actions that represent the events to be

observed. A Petri net is de�ned as usual: it consists of places (circles) and transi-

tions (rectangles) which are connected by arcs.

{ Places: each place contains tokens called marking which describe the state of

the system. In ordinary Petri nets, tokens do not support information while

in colored nets, the tokens are labeled by a type of data - possibly structured

- called a color. Each token carries a data value which belongs to the type

of the corresponding place. For instance the associated data type of the place

Init Protocol is the set AG which represents all the agents in our system and

its initial marking is the involved agents' identi�ers. Let us remark, that in

the general case, a place may contain more than one token with the same data

value, i.e. we have a multi-set of tokens. Hence a marking is a function which

maps each place into multi-set of tokens of the associated type.

{ Transitions: they model the change of states. In our model, each transition is

associated with an action of an agent. The activation of a transition is called

a �ring, for instance as the result of the query communication act represented

by the transition Query. When the condition of activation of a transition is

ful�lled we say that the transition is �reable.

{ Arcs: an incoming arc (from place to transition) indicates that the transi-

tion may consume tokens from the corresponding place while an outgoing arc

(from transition to place) indicates that the transition may add tokens in the

corresponding place. The exact number of tokens and their data values are

Protocol Engineering for Multi-Agent Interaction 7

determined by the arc expressions w.r.t. the semantics of the CPN (i.e. the

�ring rules of transitions).

4.2 Semantical aspect of CPN

The dynamic of the modeled system (i.e. the behaviour of the net) is given through

the �ring of transitions.The �ring of a transition T

i

is a two-steps operation: it

consumes tokens from input places (Pre(T

i

)) and produces tokens into output

places (Post(T

i

)). In colored Petri nets a set of variables is associated with each

transition. The expressions that label the arcs around the transition are built with

these variables. The �ring of a transition involves an instantiation of the variables

and an evaluation of the expressions which give the multi-set of tokens to be

consumed or produced. For example, the arc labeled < S-X , q >, where q is a

constant (query message), means that the �ring of the transition Query needs to

bind < S-X > to a value from the set of all agents except the sender, i.e. AGnfA

i

g.

Remarks:

1) In the CPN model there is no connection between particular input tokens and

particular output tokens, i.e. both their numbers and their values may di�er.

2)The protocol execution is ensured by a thread or a process of each involved agent

what allows then the concurrency within an agent.

The CPN-Protocol works as follows: The sender sends a Query act for a proposal

to all the other agents and enters a waiting state (Wait First R). On receiving the

message (Reception Query), each receiver processes the query, sends a response

which can be positive (Sending Inform) or negative (Sending N), and then enters in

waiting state (Sent Inform or Sent Neg). The sender accepts only the �rst positive

answer while others are rejected. Once all the responses of the agents are received,

the agents come out of the protocol either in successful (Self Success) or failure

way (Self Failure). Let us note that one can distinguish four cases when receiving

the responses according to the following transitions:

{ Recept First Inf: reception of the �rst inform,

{ Recept Next Inf: reception of the next answers whose type is \Inform" and

necessarily after the �rst Inform is received,

{ Recept First IsN: the �rst response received is a negative response,

{ Recept Neg R: reception of a negative responses that occurs after the �rst

Inform is received.

The reader can easily verify that the protocol successes if the sender receives at

least one positive answer, otherwise it fails.

5 Recognition Algorithm based on unfolding Petri Nets

Our algorithm is based on the partial-order semantics of Petri Nets and well-known

as unfoldings of Petri Nets [17]. The main interest of this method is that, at the

opposite of the interleaving concurrency semantics, it enables to associate a set of

unfoldings with a given CPN, in our case, an interaction protocol. An unfolding,

also called a \process net", formalizes a concurrent run of a protocol which can be

interpreted in terms of causality between the associated events [3].

8 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

5.1 Partial-order semantics of Petri Nets

An unfolding is an acyclic Petri net where the places represent tokens of the

markings and the transitions represent �rings of the original net (see �gure 4). To

build an unfolding, the following steps have to be executed iteratively:

{ start with the places corresponding to the initial marking,

{ develop the transitions associated to the �rings (w.r.t. to the semantics of CPN) of

every initially enabling transition,

{ link input places to the new transitions,

{ produce output places,

{ link the output places to the new transitions.

Let it be remarked that the unfolding may be in�nite if the original net includes an

in�nite sequence. Several methods [16] [7] have been proposed in order to avoid the

in�nite state problem in the veri�cation of systems and provide �nite unfoldings. In

our case, the in�nite state is not faced since the unfolding we look for corresponds

to a speci�c protocol computation and necessarily �nite.

5.2 The recognition algorithm through an example

To begin, a partially ordered set of events is extracted from the global trace since

our approach supports that an agent may be involved, simultaneously, in sev-

eral interactions [6]. The algorithm inputs are the causal graph (CG) and the

CPN Patterns while the expected outputs are the process nets that match with

the CG.

Hypothesis

1. In the general case, the same event may be associated with more than one transition

labeled with the same event (cf. transitions Recept First Inf and Recept Next Inf in �gure

2). In order to gain simplicity, a choice function is introduced which returns the transition

to be considered for a given event during the pattern matching process. Obviously, if the

choice is wrong, we have to backtrack and consider an other alternative.

2. The CPN Patterns are one-safe (i.e. a place contains at most, one token per color).

This makes the detection easier by avoiding the combinatory explosion of the number of

states following multiple �rings of a transition by the same color tokens. Let us note that

since the CPN is one-safe and the events are associated with the transitions, given an

event e to be recognized, there is exactly one state in the unfolding net reachable with a

transition labeled by e.

Petri Net unfolding example

Let us consider two protocols (cf. �gure 3) which provide the same service (sending

query messages to agents and reception of their answers). In the �rst protocol

the execution is optimal, i.e., in parallel way; whereas in the second protocol the

sending of messages and the reception of the associated answers are in sequence.

One can easily verify in Protocol

2

that, except for the �rst �ring of T

2

initially

enabled from the initial marking, each following �ring of T

2

requires at least a token

in the input places P

1

and in P

5

. As for P

1

, (n-1) tokens have been produced by T

1

,

while a token in P

5

imposes the �ring of T

3

which corresponds to a (n-1) sequences

Protocol Engineering for Multi-Agent Interaction 9

< S - X > < Y >

< Y >

< X >

e3 : Reception of a

response from agent

<Y>< X >

e2 : Sending a request

to the agent <Y>

< Y >

< S - X > < Y >

T1

T2

T3

T4

P0

P4

P3

P2

P1

�e1

�e4

P5

< S - X > < Y >

< Y >

< X >

e3 : Reception of a

response from agent

<Y>< X >

e2 : Sending a request

to the agent <Y>

< Y >

< S - X > < Y >

T1

T2

T3

T4

P0

P4

P3

P2

P1

�e1

�e4

�D����3URWRFRO��
�E���3URWRFRO��

$*� �^$�%��&`
;� �^$`
<� �^%�&`

Fig. 3. Two CPN protocols to be recognized

of T

2

followed by T

3

.

Let us now observe a computation of one of the two protocols given through a CG

in (�gure 4.b). The algorithm presented below develops all the possible process

nets (see �gure 4.a) in order to recognize the right CPN and the right process.

The cycle of our algorithm (Step 1 to 5) is executed iteratively until all the events

of CG are not examined.

Step 0 : the algorithm begins at the places corresponding to the initial marking of

each CPN (P

0

in Protocol

1

and (P

0

, P

5

) in Protocol

2

). The set of events without

predecessors is extracted from the GC (i.e. initially the only event (e

1

(A)).

Step 1-2 : For each of the expected events (here e

1

(A)), the algorithm tries to

recognize while �ring the transitions labeled by these events concurrently in the

two CPNs. In our example, only the transition T

1

labeled by e

1

(A) is �red both

in Protocol

1

and Protocol

2

. Consequently, the event is recognized by the two

protocols and the output places are created and linked accordingly.

Step 3-4 : Step 3 checks that the causal dependency of the recognized events

through the process net is the same one as the CG. In the contrary case, the

corresponding process net is rejected. When the transition labeled by an event is

not �reable (Step 4) the associated process net is rejected. This is the case if the

Protocol

2

for the transitions T

2

(A) and T

2

(B).

Step 5 : The set of events without predecessors is updated by removing the events

already examined and adding new ones, i.e. their successors (of course, only those

without predecessors).

Step 6 : The algorithm fails because all the developed process nets are eliminated.

Step 7 : if the CG has been covered by the algorithm, it is necessary to check that

the obtained process net is maximal, i.e. no transition can be �red. Otherwise, the

protocol has not been executed completely.

10 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

The algorithm

Inputs:

The causal graph CG = (E;U): Where E is the set of events and U denotes the

Causal dependency relation

CPN Patterns = f

P

i

=

P

i

= (CPN

i

;M0

i

)g: The set of CPN-Patterns available in

our library of protocols

Output:

The set of expected unfoldings (i.e. process nets)

Begin

Unfold Nets:=CPN Patterns

Ewp = fe 2 E=e is without predecessorg

MC

i

=M0

i

: the current marking of

P

i

initialized with the initial marking

1: while Ewp 6= ; do

for all e

j

such that e

j

2 Ewp do

2: for each

P

i

2 Unfold Nets do

if 8t

k;i

in

P

i

=e

j

is labeled by t

k;i

and is �reable from MC

i

then

MC

i

:= MC

i

� Post(t

k;i

)	 Pre(t

k;i

): update the marking after �ring t

k;i

3: if not (Causal-Dependency-Satis�ed (CG,Ewp)) then

Unfold Nets:= Unfold Nets nf

P

i

g: eliminate

P

i

unfolding: causal depen-

dency violation

end if

else

4: if (9t

k;i

=e

j

is labeled by t

k;i

and t

k;i

is not �reable with MC

i

) then

Unfold Nets:= Unfold Nets nf

P

i

g: abort unfolding : transition t

k;i

can-

not be �red

end if

end if

end for each

end for all

5: Ewp = Ewp n fe

j

g [fe

0

2 E such that: e

0

= succ(e

j

) and e

0

is without

predecessorg

end while

6: if Unfold Nets=; then return FAILURE : No unfolding net found

else

7: for each

P

i

2 Unfold Nets do

if there is no more transition t

k;i

�reable with the marking MC

i

then

return SUCCESS:

P

i

matches with CG

else

Unfold Nets:= Unfold Nets nf

P

i

g: The unfolding of

P

i

is not maximal

end if

end if

End

Protocol Engineering for Multi-Agent Interaction 11

&RQFXUUHQW
HYHQWV�WR�GH
UHFRJQL]HG

8QIROGLQJ�QHW�RI�SURWRFRO�� 8QIROGLQJ�QHW�RI�SURWRFRO��

,QLWLDO�VWDWH

H��$�

H��%����H��&�

H��%����H��&�

H��$�

∅ 6XFFHVV)DLOXUH

3��$�� 3��%�� 3��&��

3��%�� 3��&��

3��%�� 3��&��

H��$�

H��%� H��&�

H��$�

H��&�

3�

H��%�

3��$�� 3��%�� 3��&��

3��%�� 3��&��

H��$�

H��%� H��&�

3� 3�

H��%�

H��$�

H��&�

H��&�

H��$�

H��%�

The Causal graph of a

protocol computation

involving agents A,B,C

(a) (b)

Fig. 4. The unfolding process of the two protocols according to the CG

6 Conclusion and future work

This paper proposes an original approach for protocol engineering in the case of

complex interactions. The main advantages of our approach may be summarized

as follows:

{ It is generic, i.e. independent of any communication protocols and languages;

{ It enables a formal study of complex interactions (i.e. modeling, analysis and

veri�cation) through a suitable formalism namely the Colored Petri Nets;

{ Our algorithm is based on the partial-order semantics of Petri Nets unfolding

(i.e. true concurrency) and enables, at the opposite of the interleaving concur-

rency semantics, the partial order representation of concurrent behaviours;

{ Based on distributed observation, our approach develops the causal graph

of events (the most relevant ones) w.r.t. the local concurrency and hence it

addresses the problem of false causality;

{ Finally, it allows not only the detection of the success/failure situations but

also the explanation of such situations.

Our future work, intends to use the results of the analyzed situations analysis,

and consequently the evaluation that it provides regarding to a set of interactions,

in the following way: a learner agent recovers these results and generates a quali-

tative criteria to be communicated to other agents in order to enrich their social

knowledge and improving their future interactions.

12 A. El Fallah-Seghrouchni, S. Haddad and H. Mazouzi

References

1. J.L. Austin:How To Do Things With Words. Oxford University Press. (1962).

2. H. Bachat�ene, M. Coriat and A. El Fallah Seghrouchni: Using Software Engineering

Principles to Design Intelligent Cooperative Systems. In: Proc. of SEKE'93 (KSI

Press. San Fransisco, USA. (1993).

3. R. Boubour: Suivi de pannes par corr�elation causale d'alarmes dans les syst�emes

r�eparties: Application aux r�eseaux de T�el�ecommunications. Theses l'universit�e de

Rennes 1, Oct, 1997.

4. P.R. Cohen and H.J. Levesque: Communicative actions for arti�cial agent. In Pro-

ceedings of the First International Conference On Multi-agent Systems (ICMAS'95),

San Francisco, CA (1995).

5. A. El Fallah Seghrouchni, S. Haddad and H. Mazouzi: Etude des interactions bas�ee

sur l'observation r�epartie dans un syst�eme multi-agents. In Proceedings of JFI-

ADSMA'98, Eds Herm�es. Nancy, Novembre (1998).

6. A. El Fallah Seghrouchni, S. Haddad and H. Mazouzi: A Formal Study of Interactions

in Multi-Agent Systems. To appear in Proc. of CATA'99. April, Cancun, Mexico.

7. J. Esparza, S. Romer, and W. Volger: An improvement of McMillan's unfolding

algorithm. In Proc. of the second international workshop TACAS'96, volume 1055 of

LNCS, pp. 87-106, Passau, Germany, March 1996. Springer Verlag.

8. Foundation for Intelligent Physical Agents: FIPA 97 Spec-

i�cation. Part 2, Agent Communication Language, (1997).

http://www.cselt.stet.it/ufv/leonardo/�pa/index.htm.

9. J. Fidge: Timestamps in message passing systems that preserve the partial ordering.

In Proc. 11th Australian Computer Science Conference,(1988), 55-66.

10. K. Jensen and G. Rozenberg: High Level Petri Nets, Theory and Applications.

Springer-Verlag (1991).

11. DARPA Knowledge Sharing Initiative External Interfaces Working Group: Speci�-

cation of the KQML Agent-Communication Language - plus example agent policies

and architectures, http://www.cs.umbc.edu/agents/kse/kqml/ (1993).

12. J.L. Koning, G. Franois and Y. Demazeau : Formalization and pre-validation for

interaction protocols in multi agent systems, 13th European Conference on Arti�cial

Intelligence, Brighton, (1998).

13. L. Lamport: Time, Clocks, and the ordering of events, in distributed system. Com-

munication of the ACM. Vol. 21, Num. 7 (1978) pp. 558-565.

14. F. Mattern: Virtual time and global states of distibuted systems. In. Proc. of the

Workshop on Parallel and Distributed Algorithmes, Bonas, North Holland (1988).

15. H. Mazouzi: Formal Study of Interactions based on Distributed

Observation in Multi-Agent Systems. Technical report, (1999)

htpp://www.lamsade.dauphine.fr/�mazouzi

16. K.L. McMillan: On-the-y veri�cation with stubborn sets. In Proc. of Computer

Aided Veri�cation, vol. 663 of LNCS, 164-175, Montreal, June 1992. Springer Verlag.

17. M. Niellsen. G. Plotkin and G. Winskel: Petri Nets, Event Structures and Domains.

Theoretical Computer Science (13)1, pp. 85-108 (1980).

18. V. Parunak: Visualizing Agent Conversations: Using Enhanced Dooley Graphs for

Agent Design and Analysis. In. Proc. of the 2nd ICMAS (1996) 275-282.

19. Michel Raynal: Logical Time : A way to capture causality in distributed systems.

Technical Report INRIA-2472, (1995).

20. J.R. Searle: Speech Acts. Cambridge University Press (1969).

21. A. Tarafdar and V. K. Garg: Adressing False Causality while Detecting Predicates

in Distributed Programs. Proceedings of the IEEE 18th ICDCS, pages 94 - 101,

Amsterdam, Netherlands, May 1998.

