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Abstrat. This paper presents a new method to ompute bounds of

performane parameters of Markov hains exhibiting a partition of the

state spae with some family of subsets visited in a sequential order. We

use this struture to ompute bounds of steady state reward rates on

these subsets without omputing the global steady state probabilities of

the whole hain. The method presented is based on a ombination of an

aggregation proedure on the subsets and a strong stohasti ordering

on the resulting aggregated spae.

1 Introdution

Performane models based on Continuous Time Markov Chains (CTMC) have

proven their usefulness for many years. In this ontext, performane measures

an be frequently expressed as (steady state) expeted reward rates (or instanta-

neous reward in steady state) R =

P

s2S

G

r(s)�[s℄ where r(s) is the reward rate

assoiated with the state s and � the (row) vetor of the steady state probabili-

ties of the CTMCM = (S

G

; Q; �

0

) with state spae S

G

, generator Q and initial

probabilities �

0

. Unfortunately, it is often impossible to ompute � with an an-

alytial method due to the omplexity of the interations among the entities of

the system (there is no "losed" form for �). In these situations, we are lead

to numerially solve the linear system �Q = 0. There are, however, well known

di�ulties for solving this equation, among these the size of the state spae, and

for many systems, the sti�ness of the linear system when there are rare events in

the modelled system. To ope with these problems, state spae redution meth-

ods have been proven very powerful. To ompute the exat solution, redution

methods usually involve the whole state spae. These methods are based on the

struture of the behaviour of the system, like tensor based methods, or on exat

Markovian aggregation (lumping methods). Another large lass of methods is

based on approximate solutions. The prie to pay for the e�ieny of the om-

putation is then the di�ulty to appreiate the quality of the result. Finally,

bounding methods, often based on partial redution of the hain, are a tradeo�
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between the two previous ways, providing both e�ient solution methods and

quanti�able estimation of the quality of the results.

Whatever the bounding method, it is always guided by the struture of the

model, dedued from the properties of the studied system. An important stru-

tural property ofM is the possibility to fatorize the state spae into a partition

of N subspaes S

G

k

, allowing the deomposition R =

P

N

k=1

R

k

. Depending on

the properties ofM with respet to the S

G

k

, several methods have been devised,

mainly based on the Courtois results [2, 3℄ and/or stohasti orderings [10℄.

In this paper, we are onerned with systems exhibiting sequenes of ele-

mentary ations suh that, in eah sequene, there is a non null probability to

reah the next ation. Examples of suh systems are those with sequenes of

lient/server like interations, repairable systems, data base systems. Many au-

thors, for instane [8, 6, 5, 1℄, have studied suh systems and it has been shown

that beside bounding the total probability of states orresponding to a given

sequene (i.e. �(S

G

k

)), one of the main problems is to obtain bounds of the prob-

ability distribution inside a S

G

k

. We present here a new method to bound the

onditional steady state reward rates on the subsets of states orresponding to

these sequenes of ations. Towards this goal, we extend the strong stohasti or-

dering between Markovian proesses to aggregated versions of the proesses from

strutural information about the Markov hain, without omputing the bounded

aggregated hain.

The organization of the paper is as follows: in Setion 2 we present the

ontext of the work and our approah. In Setion 3, we introdue a �rst method

to ompute lower bounds of rewards rates on subsets of states, together with

results about strong stohasti ordering and aggregation.We also de�ne a general

appliation framework and we study a detailed example with numerial results.

In Setion 4, a seond method is proposed whih extends results to other lasses

of systems and we explain in details omputations of the bounds through an

example. Setion 5 onludes the paper. An extended version of this paper, with

detailed numerial results is available [4℄.

2 Approah

We are interested in systems with lient and server entities and ativities whih

may be lassi�ed as autonomous lient's ativities and interation ativities be-

tween lients and servers. Whatever the (high level) modelling formalism of suh

systems (QN, SPN, : : :), this leads to CTMCs where it is possible to identify sets

S

G

k

orresponding to these interations. In the present study, we indeed work at

the Markov hain level. In many important ases, although the state spae of

interations is large due to their omplexity, the orresponding reward remains

"small" with regard to the ontribution of the autonomous ativities. This is also

the ase for dependability models, where "lient/server interations" states are

the partial or total failure states of the repairable system. It is then meaningful

to only ompute bounds of the reward of these states.



If the whole state spae of the hain is S

G

=

U

N

k=1

S

G

k

, then the reward is

R =

P

N

k=1

R

k

andR

k

= �(S

G

k

)

P

s2S

G

k

r(s)�(sjS

G

k

). We an regard the quantity

R

=k

=

P

s2S

G

k

r(s)�(sjS

G

k

) as the (steady state) onditional reward rate of the

measure on S

G

k

. To obtain bounds for R we may then ompute bounds for R

=k

and for �(S

G

k

). Note however that for some important models [8℄, only R

=k

are

needed. In this paper we onentrate ourselves on the �rst problem (obviously,

these bounds must be omputed without omputing the distribution � on the

S

G

k

). More spei�ally, as showed by many authors [8, 6, 7, 1℄, the most di�ult

problem is frequently to derive a lower bound of R

=k

so that we only study this

problem in the following.

In the rest of the paper, we rename, for ease of reading,R

=k

as R and S

G

k

as S,

so that we study the omputation of a lower bound R

�

of R =

P

s2S

r(s)�(sjS).

Note that, in this paper, we assume that there is a single entry point in S,

orresponding to the beginning of servie. In fat, if this is not the ase, Courtois

has shown that there is a family (�

s

0

) of positive reals with

P

s

0

2in(S)

�

s

0

= 1

suh that �(sjS) =

P

s

0

2in(S)

�

s

0

�

s

0

(sjS) where in(S) is the set of entry points

of S and �

s

0

the steady state probabilities of the modi�ed hain with all input

transitions of S "redireted" to s

0

. Hene, we may derive a bound R

�

from

bounds R

s

0

�

.

Evidently, a �rst lower bound of R is min

s2S

fr(s)g�(S). This is obviously

very poor, sine if 9s : r(s) = 0 then the lower bound is zero. To go further, we

suppose that, one again, the spae S itself, possesses a struture whih will help

to de�ne tighter bounds. If interations are sequenes of elementary ations, S

may be partitioned into subsets (S

i

)

1�i�n

suh that r is onstant in eah S

i

. If

r(s) = r

i

for s 2 S

i

, then R =

P

n

i=1

r

i

�(S

i

jS) (with �(AjB) =

P

s2A

�(sjB)).

We propose two methods to �nd a lower bound of R, whih are based on

an extension of the strong stohasti ordering of Markov hains to aggregated

versions of these hains (see Proposition 1) without omputing the bounded ag-

gregated hain. We all "adapted bounding matries" (see De�nition 1) matries

whih allow suh an extension. The �rst method bounds the onditional proba-

bilities �(:jS) themselves. As we shall see in Setion 3 we obtain R

�

> 0 under

onditions disussed at the end of the setion. To ope with systems whih do

not satisfy the required onditions of method 1, we propose in Setion 4 a seond

method, whih relaxes these onditions but needs more strutural properties.

3 First method

Let us reall that we want to ompute a lower bound of R

S

=

P

s2S

r(s)�(sjS)

where S is a subspae of the whole state spae S of a Markov hain. Moreover

we assume that S may be partitioned into n subsets S

i

suh that S

i

= fs 2

S j r(s) = r

i

g, so that R

S

=

P

n

i=1

r

i

�(S

i

jS). In this setion we shall diretly

lower bound eah �(S

i

jS) using properties of substohasti matries. From these



bounds b�

�

[i℄, we an derive the lower bound R

�

S

=

P

n

i=1

r

i

b�

�

[i℄ with R

�

S

> 0

under onditions explained at the end of the setion.

We then present a general lass of systems for whih our method is appliable,

followed by an e�etive example of suh a system.

3.1 Idea of the method

Our main objetive is to obtain bounds b�

�

[i℄ using only the parameters of the

model (for instane the generator Q of the hain) and not the steady state

probabilities on S whih will not be omputed. To this end, we �rst restate

the problem in the framework of DTMCs. As usual with the uniformization

method, we take P = I

jSj

+

1

M

Q

jS

whereM � max

s2S

f�Q[s; s℄g and Q

jS

is the

restrition of Q to S.

Sine, for DTMCs, we an establish a link between the steady state probabil-

ities and the matrix P via the so alled visit-ratios, we de�ne bounds for �(S

i

jS)

from bounds of matries derived from the matrix P .

Denoting by s

0

the unique entry state in S from the rest of the whole state

spae, it is well known that

�(sjS) =

V (s

0

; s)

P

s

0

2S

V (s

0

; s

0

)

(1)

where V (s

0

; s) denotes the mean number of visits to s from s

0

before leaving S.

To get a lower bound of �(S

i

jS), it is then su�ient to ompute a lower bound of

P

s2S

i

V (s

0

; s) and an upper bound of

P

s

0

2S

V (s

0

; s

0

). The link with the matrix

P lies in the relation V (s

0

; s) =

�

P

k�0

P

k

�

[s

0

; s℄

A majorization of

P

s

0

V (s

0

; s

0

) by a diret (omponentwise) majorization

of P may, in the general ase, provide a non stritly substohasti jSj � jSj

matrix P

+

so that the power sum of P

+

would have no meaning. Hene, we

ompute a majorization of �(S

i

jS) by an upper bounding aggregation on the

(S

i

), with a n�n matrix

b

P

+

, the bounding being "ompatible" with the power

sum operator. On the other hand, we ompute a minorization of �(S

i

jS) by a

lower bounding (again a n� n matrix) of P [s

i

; S

j

℄ =

P

s

j

2S

j

P [s

i

; s

j

℄ 8s

i

2 S

i

.

Another advantage of the introdution of these two n�n matries is that, sine

we ompute powers of matries, smaller matries will allow faster and more

aurate omputations.

Note that, in fat, we may hoose di�erent partitions (S

i

) for the upper

bounding of

P

s

0

V (s

0

; s

0

) and the lower bounding of V (s

0

; s). However, for ease

of reading, we keep the same partition for the rest of this setion.

3.2 Bounding substohasti matries

In this setion, we provide a mean to de�ne bounds for a substohasti matrix

and its power series. The following lemma sets out su�ient onditions for a

n� n matrix to lower bound V (s

0

; S

i

) =

P

s

i

2S

i

V (s

0

; s

i

).



Lemma 1. Let

b

P

�

be a n � n matrix suh that 8i; j, 8s

i

2 S

i

;

b

P

�

[i; j℄ �

P [s

i

; S

j

℄. Then

0

�

X

k�0

(

b

P

�

)

k

1

A

[i; j℄ � min

s

i

2S

i

fV (s

i

; S

j

)g (2)

Proof. Sine V (s

i

; S

j

) =

�

P

k�0

P

k

�

[s

i

; S

j

℄, let us prove by indution that for

any k: (

b

P

�

)

k

[i; j℄ � min

s

i

2S

i

fP

k

[s

i

; S

j

℄g.

The property is learly true from the hypothesis for k = 1. Assuming that

the property is true for k, we have

P

k+1

[s

i

; S

j

℄

def

=

X

s

j

2S

j

n

X

l=1

X

s

l

2S

l

P

k

[s

i

; s

l

℄:P [s

l

; s

j

℄ =

n

X

l=1

X

s

l

2S

l

P

k

[s

i

; s

l

℄:P [s

l

; S

j

℄

�

n

X

l=1

(

b

P

�

)

k

[i; l℄:

b

P

�

[l; j℄

from the hypothesis and the property for k.

In ontrast with the minorization, the majorization of V (s

0

; S

i

) imposes some

onstraints on the bounding matrix. Adaptation is an extension of the strong

stohasti ordering [10℄ onept between Markovian proesses to

b

P

+

and an

aggregation of P on the (S

i

). Monotoniity, like for Markovian proesses, ensures

the expansion of an initial strong stohasti ordering to any (disrete) time, by

transitions of the hain.

De�nition 1. A n�n matrix X is monotoni i� 81 � i < j � n; 81 � m �

n;

P

m

l=1

X [i; l℄ �

P

m

l=1

X [j; l℄

A n � n matrix

b

P

+

is an adapted (upper) bound of P with respet to the

partition (S

i

)

1�i�n

i� (i) it is monotoni and (ii) 81 � i � n; 8s 2 S

i

; 81 �

m � n;

P

m

j=1

P

s

0

2S

j

P [s; s

0

℄ �

P

m

j=1

b

P

+

[i; j℄

Adaptation is a su�ient ondition to upper bound the visit-ratios, as stated

in the next proposition whih is the equivalent to the result for Markovian pro-

esses.

Proposition 1. If

b

P

+

is an adapted upper bound of P , then for any integer k

81 � i � n; 8s 2 S

i

; 81 � m � n;

m

X

j=1

X

s

0

2S

j

P

k

[s; s

0

℄ �

m

X

j=1

(

b

P

+

)

k

[i; j℄ (3)

Proof. The proof is done by indution.

� For k = 0, if i > m the inequality resumes to 0 � 0, and if i � m, it resumes

to 1 � 1.



� Let us assume that the property is true for k.

A =

m

X

j=1

(

b

P

+

)

k+1

[i; j℄ =

m

X

j=1

n

X

l=1

(

b

P

+

)

k

[i; l℄

b

P

+

[l; j℄ =

n

X

l=1

(

b

P

+

)

k

[i; l℄

m

X

j=1

b

P

+

[l; j℄

Using a lassial transformation

A =

"

n

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[n; j℄

3

5

.

.

.

+

"

t

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[t; j℄�

m

X

j=1

b

P

+

[t+ 1; j℄

3

5

.

.

.

+

"

1

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[1; j℄�

m

X

j=1

b

P

+

[2; j℄

3

5

By monotoniity of

b

P

+

, eah seond term of the produts is positive, hene we

may apply the indutive inequality on the �rst terms for s 2 S

i

A � B =

"

n

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[n; j℄

3

5

.

.

.

+

"

t

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[t; j℄�

m

X

j=1

b

P

+

[t+ 1; j℄

3

5

.

.

.

+

"

1

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[1; j℄�

m

X

j=1

b

P

+

[2; j℄

3

5

We now apply the inverse transformation to B: B =

P

n

l=1

�

P

s

0

2S

l

P

k

[s; s

0

℄

�

h

P

m

j=1

b

P

+

[l; j℄

i

and sine

b

P

+

is an adapted upper bound of P , B � C =

P

n

l=1

�

P

s

0

2S

l

P

k

[s; s

0

℄

�

h

P

m

j=1

P

s

00

2S

j

P [s

0

; s

00

℄

i

. Rearranging the order of sum-

mation, we get C =

P

m

j=1

P

s

00

2S

j

P

n

l=1

P

s

0

2S

l

P

k

[s; s

0

℄P [s

0

; s

00

℄ =

P

m

j=1

P

s

00

2S

j

P

k+1

[s; s

00

℄

3.3 Bounds for onditional steady state probabilities

Gathering previous results, we an state the following theorem whih provides a

lower bound of �(S

i

jS). Then we explain how to obtain an upper bound �(S

i

jS)

using these lower bounds and relations established above.



Theorem 1. Let

b

P

�

and

b

P

+

be the matries of lemma 1 and proposition 1,

and let

b

P

+

is stritly substohasti. Then, for any i

�(S

i

jS) �

�

P

k�0

(

b

P

�

)

k

�

[1; i℄

P

n

j=1

�

P

k�0

(

b

P

+

)

k

�

[1; j℄

(4)

Proof. From (1), and hoosing i = 1 and s

i

= s

0

we apply lemma 1 and propo-

sition 1 with m = n and taking the limit in the sum over k.

From the previous bounds, we an now ompute an upper bound of �(S

i

jS).

The derivation of this bound is similar to the omplement property used for

probability distributions: Pr(SnA) = 1� Pr(A) ) Pr(A) � 1� Pr

�

(SnA) with

Pr

�

(SnA) � Pr(A).

Let V =

P

s2S

V (s

0

; s), we have from proposition 1, (with

b

P

+

stritly sub-

stohasti):

P

i

j=1

V (s

0

; S

j

) �

P

i

j=1

�

P

k�0

(

b

P

+

)

k

�

[1; j℄

def

= V

+

i

. From lemma 1,

V �

P

n

j=1

�

P

k�0

(

b

P

�

)

k

�

[1; j℄

def

= V

�

. Sine �(S

i

jS) =

P

s2S

i

V (s

0

;s)

V

,

P

i

j=1

�(S

j

jS)

=

P

i

j=1

V (s

0

;S

j

)

V

�

V

+

i

V

�

. Hene

�(S

i

jS) � maxf

V

+

i

V

�

�

i�1

X

j=1

�

�

(S

j

jS); 1�

X

j 6=i

�

�

(S

j

jS)g (5)

where �

�

(S

j

jS) is the lower bound given by the theorem 1.

The e�etive omputation of the above bounds of �(S

i

jS) involves the nu-

merial alulation of two power series of matries whih are performed with

standard methods [9℄.

3.4 A general appliation framework

S
1

S
2

S
n-1

S
n

S

s
0

S

Fig. 1. Struture of the state spae of the general appliation framework (method 1)



In this setion we show how to build matries

b

P

�

and

b

P

+

for a large lass of

systems. The struture of these systems must be suh that we should be able to

derive the

b

P

�

and

b

P

+

matries diretly from the model. Moreover, the memory

requirements for the omputation of

b

P

�

and

b

P

+

must be polynomial, or even

linear, with respet to the size of the model. We assume that the struture of the

state spae S is as depited in Figure 1 and that there is only one entry state

in S, whih belongs to S

1

. Finally, we impose that the system may leave S from

eah state of S

n

.

The de�nition of

b

P

�

is the easiest one. We simply take

b

P

�

=

0

B

B

B

B

B

B

�

� �

� �

.

.

.

.

.

.

.

.

.

�

�

1

C

C

C

C

C

C

A

with

b

P

�

[i; j℄

8

<

:

� min

s2S

i

P

s

0

2S

j

P [s; s

0

℄ if j = i

or j = i+ 1

= 0 otherwise

It is lear that

b

P

�

ful�lls the hypothesis of lemma 1.

The idea behind the de�nition of an upper bound

b

P

+

is to lower the tran-

sition probabilities of leaving S and to lower the "advane" from S

i

to S

i+1

.

Let us suppose that the struture of the system allows us to derive to se-

quenes (L

i

) and (N

i

) with the following properties. Let us denote by Leave(s) =

1�

P

s

0

2Snfsg

P [s; s

0

℄ the transition probability of leaving S from s, then 81 �

i � n; 0 � L

i

� min

s2S

l

;l�i

fLeave(s)g (L

n

> 0 sine the hain may leave S with

a non null probability from eah state of S

n

). L

n�1

lower bounds the transition

probability for the hain to leave S from S

n�1

or S

n

and L

1

lower bounds the

transition probability for the hain to leave S. (L

i

) is obviously an inreasing

sequene.

The N

i

(Next), instead, has to lower bound the transition probabilities from

any state of S

i

to the set S

i+1

: 0 < N

i

� min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄. Note that we

propose the ondition 0 < N

i

rather than 0 � N

i

, whih seems quite natural,

and provides a su�ient ondition for

b

P

+

to be stritly substohasti (see the

proof of lemma 2). With these onditions, we de�ne the matrix

b

P

+

=

0

B

B

B

B

B

B

�

1� L

1

�N

1

N

1

1� L

2

�N

2

N

2

.

.

.

.

.

.

.

.

.

N

n�1

1� L

n

1

C

C

C

C

C

C

A

with

b

P

+

[i; j℄ = 0 if

j 6= i or j 6= i+ 1

Lemma 2.

b

P

+

is stritly substohasti and is an adapted upper bound of P with

respet to the partition (S

i

)

1�i�n

.

Proof. �

b

P

+

is stritly substohasti: for 1 � i � n�1:

b

P

+

[i; i℄ = 1�L

i

�N

i

� 1�

min

s2S

l

;l�i

f1�

P

s

0

2S

P [s; s

0

℄g�min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ = max

s2S

l

;l�i

P

s

0

2S

P [s; s

0

℄�



min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ � max

s2S

i

P

s

0

2S

P [s; s

0

℄�min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ �

0

For all other values of j, learly

b

P

+

[i; j℄ � 0. Moreover

P

j

b

P

+

[i; j℄ = 1�L

i

�

1. Sine 1� L

n

< 1, and 8i � n� 1; N

i

> 0,

b

P

+

is stritly substohasti.

�

b

P

+

is monotoni: we have to show that for i < j andm given:A =

P

m

l=1

b

P

+

[i; l℄ �

P

m

l=1

b

P

+

[j; l℄ = B and by transitivity, it is su�ient to prove the property for

j = i+ 1. We have the following situations:

m A B

m < i 0 0

m = i

b

P

+

[i; i℄ 0

m = i+ 1 1� L

i

1� L

i+1

�N

i+1

� 1� L

i+1

and A � B sine

(L

i

) is inreasing

m > i+ 1 1� L

i

1� L

i+1

(same as above)

�

b

P

+

is an adapted upper bound of P : given i; j;m and s 2 S

i

, let us prove that

A =

P

m

j=1

P

s

0

2S

j

P [s; s

0

℄ �

P

m

j=1

b

P

+

[i; j℄ = B.

For m < i: A = B = 0.

For m = i: A =

P

s

0

2S

i

P [s; s

0

℄ = 1�

P

s

0

=2S

P [s; s

0

℄�

P

s

0

2S

i+1

P [s; s

0

℄ from

the properties of the hain in S, so that A � 1 � (1 �

P

s

0

2S

P [s; s

0

℄) � N

i

�

1� L

i

�N

i

= B

Form > i:A =

P

s

0

2S

i

P [s; s

0

℄+

P

s

0

2S

i+1

P [s; s

0

℄ = 1�Leave(s) � 1�L

i

= B

again from the properties of the hain in S.

Above results were established with the hypothesis that we have only one

entry point belonging to S

1

. Courtois and Semal [2℄ showed that if we have a

set S

(0)

1

of entry points in S

1

, there are positive reals (a

s

)

s2S

(0)

1

suh that the

steady state distribution is a linear ombination of the steady state distributions

�

(s)

orresponding to the modi�ed Markov hain where all inputs in S

1

are

"redireted" to s 2 S

(0)

1

: � =

P

s2S

(0)

1

a

s

�

(s)

, with

P

s2S

(0)

1

a

s

= 1. Sine our

bounds do not depend on the atual entry point in S

1

, we see that they are still

valid for all the distributions �

(s)

, therefore for any distribution � orresponding

to a hain without a unique entry point in S

1

.

3.5 An example

We illustrate the general framework exposed above and we present numerial

results for a detailed example of a system. In the framework of lients/servers

systems, let us assume that lients request a servie that is omposed of two

phases: omputation of the requested results and transmission of these results

from the server to the lient. The omputation may be done by n distint

units with exponential servie distribution with di�erent rates �

l

, and the trans-

mission may be arried out in nt di�erent ways, also with exponential servie

distribution with rates �

m

. Therefore, probability distributions of omputation

and transmission phases are hyperexponential. Here, S is the set of states with



n�1 requests being served (either doing atual servie or being transmitted) by

a set of servers, S

i

is the set of states where the results of i� 1 lient's requests

of the n� 1 are being transmitted, omputed but not yet reeived by the lient,

and n� i requests for whih the server is still in the omputation phase. From a

state in S

i

, a server may begin its transmission of results, whih means that the

hain leaves S

i

and enters S

i+1

, or a new request enters the servie subsystem

or one lient has reeived its results, whih means that the hain leaves S, or an

ation independent of the servies ours, whih is translated by a transition of

the hain inside S

i

. We suppose that the system may atually leave the servie

area (i.e. S

n

) when all requests are in the reeption of results phase. It ould not

be the ase: for example an Erlang distribution (with more than one stage) for

transmission, generates (Markovian) entry states in S

n

that do not ful�ll this

ondition.

Computation of the bounding matries First, let us note that expressions (4)

and (5) for bounds do not depend on the atual value of M involved in the

uniformization proedure. Sine it is easy to ompute one suh value from the

model of the system, we simply assume here that M is �xed.

We now show how to ompute the matries

b

P

�

and

b

P

+

. Le us denote by

�

min

; �

max

; �

min

and �

max

the respetive minimum and maximum of the various

rates of omputation and transmission. We hoose

b

P

�

[i; i+ 1℄ =

(n�i)�

min

M

and

sine

b

P

�

[i; i℄must ful�ll

b

P

�

[i; i℄ � min

s2S

i

f1�

P

s

0

=2S

i

q

s;s

0

M

g, we set

b

P

�

[i; i℄ = 1�

(n�i)�

max

+(i�1)�

max

+x

max

M

where x

max

denotes an upper bound of the arrival rate

of new requests. A possible value for M is then M = (n� 1)maxf�

max

; �

max

g+

x

max

+ 1.

For what onerns

b

P

+

, we de�ne the quantities L

i

andN

i

. Sine ontributions

to Leave(s) ome from internal (end of servie of a lient'request) and external

(new request) events of S, we an minorize Leave(s) using a minorization of the

arrival rates (x

min

). So we take L

i

=

(i�1)�

min

+x

min

M

. On the other side, we hoose

N

i

=

(n�i)�

min

M

.

Complexity redution Let us evaluate the redution of the state spae using the

aggregated states orresponding to the S

i

instead of the subsets S

i

themselves.

As we an hoose one omputation among n and one transmission among nt ,

jS

i

j =

�

n�i+n�1

n�1

�

�

�

i�1+nt�1

i�1

�

. Sine minfn� i; i� 1g � b

n�1

2

, we have, with

inreasing values of n,

�

n�i+n�1

n�1

�

= �((n�1)

n�1

) = �(n

n�1

) or

�

i�1+nt�1

i�1

�

=

�((i� 1)

nt�1

) = �(n

nt�1

), that is to say, jS

i

j � �(n

minfnt;ng�1

). For example,

with n = 100;n = 5 and nt = 10 we substitute one element for a subset S

i

with

about 10

5

elements.

Numerial results We have omputed bounding vetors b�

�

and b�

+

for a simpli-

�ed version of our example: we assume only two stages in the hyperexponential

distribution for omputation, and also two stages in the one for transmission.

We have �xed n = 10 and x

min

= x

max

= 0. The �rst results are about the



quality of the bounds, with respet to the values of �

min

; �

max

; �

min

and �

max

.

As quality riterion, we ompare the value  =

P

n

i=1

b�

�

[i℄ to 1: the more  is

near from 1, the better will be the lower bound. To obtain an indiation on the

variation of  with respet to the rates � and �, we have omputed  for di�erent

ratios �

�

=

�

max

��

min

�

min

and �

�

=

�

max

��

min

�

min

(0.1, 0.5, 1) as well as for various

ratios

�

min

�

min

(0.1, 1, 10). Results are reported in table 1. It learly appears, as

ase

�

min

�

min

�

�

�

�

P

n

i=1

b�

�

[i℄

1 0.01 0.1 0.1 0.9023

2 0.1 0.1 0.1 0.8660

3 0.1 0.1 0.5 0.7995

4 0.1 0.5 0.1 0.5970

5 0.1 0.5 0.5 0.5585

6 0.1 1 0.1 0.4224

7 1 0.1 0.1 0.7596

8 1 0.5 0.1 0.3846

9 10 0.1 0.1 0.5660

10 10 0.5 0.5 0.1453

Table 1. Summary of numerial results

expeted, that the lower is

�

min

�

min

, the better is the bound.

i �

�

b�

�

min

s

0

b�

(s

0

)

max

s

0

b�

(s

0

)

b�

+

�

+

1 0.0766025 0.5407474 0.5856063 0.6039496 0.6747501 0.1172291

2 0.1640449 0.2457943 0.2940281 0.3005905 0.3797969 0.2635029

3 0.2127773 0.0662072 0.0841023 0.0922648 0.2002099 1.1699492

4 0.2555454 0.0117033 0.0157206 0.0186712 0.1457060 6.8037702

5 0.2942371 0.0014186 0.0020100 0.0025982 0.1354212 51.121

6 0.3298200 0.0001194 0.0001782 0.0002516 0.1341221 532.16846

7 0.3628701 0.0000069 0.0000108 0.0000167 0.1340096 8012.1245

8 0.3937673 0. 4.306E-07 7.304E-07 0.1340029 183468.89

9 0.4227813 0. 0. 0. 0.1340027 7083390.2

10 0.4501153 0. 0. 0. 0.1340027 6.073E+08

Table 2. Comparison between bounds and exat values for b� (ase 2)

Given these results, we have omputed the possible exat values b�

(s

0

)

or-

responding to modi�ed hain with entry point in s

0

2 S

1

. We obtain b�

(s

0

)

by �rst omputing the matrix P and then visit-ratios matrix V (V [s; s

0

℄ =

�

P

k�0

P

k

�

[s; s

0

℄) (all matries are jSj�jSj; in our example, jSj = 220). We have

ompared the vetors b�

(s

0

)

and b�

�

for the �rst ases giving high  values: re-



i �

�

b�

�

min

s

0

b�

(s

0

)

max

s

0

b�

(s

0

)

b�

+

�

+

1 0.1201605 0.5407474 0.6145978 0.6326504 0.7456626 0.1786329

2 0.2747293 0.2044843 0.2819420 0.2896483 0.4093995 0.4134366

3 0.3978016 0.0433919 0.0720558 0.0795974 0.2483071 2.1195382

4 0.5055382 0.0058865 0.0119049 0.0142554 0.2108017 13.787473

5 0.5968059 0.0005392 0.0013374 0.0017443 0.2054544 116.78769

6 0.6727950 0.0000340 0.0001038 0.0001479 0.2049492 1384.7932

7 0.7353948 0.0000015 0.0000055 0.0000086 0.2049167 23863.654

8 0.7865970 0. 0. 0. 0.2049153 626920.53

9 0.8282621 0. 0. 0. 0.2049152 27810027.

10 0.8620358 0. 0. 0. 0.2049152 2.743E+09

Table 3. Comparison between bounds and exat values for b� (ase 3)

sults are presented in Tables 2 and 3. In these tables, �

�

(i) =

b�

�

[i℄�min

s

0

b�

(s

0

)

[i℄

min

s

0

b�

(s

0

)

[i℄

gives the relative error between min

s

0

2S

1

b�

(s

0

)

[i℄ and b�

�

[i℄. Likewise, �

+

(i) =

b�

+

[i℄�max

s

0

b�

(s

0

)

[i℄

max

s

0

b�

(s

0

)

[i℄

. We an observe that the relative error for the lower bound

inreases with i, and less quikly in the ase 2 than in the ase 3.

Finally, let us note that, sine we should obtain a non null lower bound, it is

neessary that, either r

1

6= 0 or N

1

6= 0 if r

1

= 0, and more generally, N

i

6= 0.

The ondition N

1

6= 0, also pointed out by other authors [7℄, means that, if

the reward rate is null in S

1

, the system must be able (i.e. with a non null

probability) to enter S

2

(beginning of the last phase of servie for one request)

from eah state of S

1

. Like for S

n

(and L

n

) this may not be always the ase.

This justi�es the introdution of another method whih relaxes this onstraint.

We make up for the weakening of the onditions on S

1

with more strutural

information about the state spae of the hain.

4 A more elaborated method

We derive in this setion another lower bound of R

S

=

P

s2S

r(s)�(sjS) where

S is a subspae of the whole state spae S, partitioned in n subspaes S

i

, so that

R

S

=

P

n

i=1

r

i

�(S

i

jS).

In many situations, we are interested in systems for whih the sequene (r

i

)

is inreasing : the more the request is in progress, the greater is the assoiated

reward. Hene, in ontrast with the �rst method, we do not ompute a ompo-

nentwise minorization of b�

=S

(b�

=S

[i℄ = �(S

i

jS)). Instead, we de�ne a probability

vetor b�

�

suh that b�

�

<

st

b�

=S

where <

st

denotes the strong stohasti order-

ing. Thus we get from <

st

properties

R

�

S

def

=

n

X

i=1

r

i

b�

�

[i℄ �

n

X

i=1

r

i

b�

=S

[i℄ = R

S



The distribution b�

�

is omputed thanks to a re�nement of the partition of S:

eah S

i

is now itself partitioned into (S

i;j

)

1�j�n

i

. Using the forward equations

of the hain on S, and from results of the previous setion, we de�ne indutively

b�

�

[i℄ starting with i = 1.

Here also, we ould introdue di�erent partitions (S

i;j

) of a given S

i

for upper

and lower bounding of probabilities. We keep only one partition for both bounds

for readability.

4.1 Disrete strong stohasti ordering

We restate in our spei� ontext, the equivalene of two of the de�nitions of

strong stohasti ordering between two probability distributions over f1; : : : ; ng

(proofs of the lemmas are omitted due to lak of spae and may be found in [4℄).

Lemma 3. Let p and q be two probability distributions over f1; : : : ; ng and m �

n, suh that 81 � i � m;

P

i

j=1

p

j

�

P

i

j=1

q

j

and

P

m

j=1

p

j

=

P

m

j=1

q

j

.

Then, for any inreasing sequene (r

i

)

1�i�m

of positive numbers:

P

m

i=1

p

i

r

i

�

P

m

i=1

q

i

r

i

A su�ient ondition to ensure the hypothesis of the previous lemma is given

by the lassial omparison riterion for sums of positive numbers.

Lemma 4. Let p and q be two probability distributions over f1; : : : ; ng suh that

P

m

j=1

p

j

=

P

m

j=1

q

j

(m � n). If, 81 < j � m,

p

j

p

j�1

�

q

j

q

j�1

then 81 � i � m,

P

i

j=1

p

j

�

P

i

j=1

q

j

.

Applying these lemmas to our problem, we only need to �nd a probability distri-

bution b�

�

suh that

b�

�

[i+1℄

b�

�

[i℄

�

�(S

i+1

)

�(S

i

)

=

�(S

i+1

jS)

�(S

i

jS)

. In fat, to ompute b�

�

, it is

su�ient to de�ne a sequene (�

i

) suh that �

1

= 1 and 81 � i � n� 1; �

i+1

�

�(S

i+1

)

�(S

i

)

, sine we an then take b�

�

[i℄ =

�

i

�

i�1

����

1

P

n

i=1

�

i

�

i�1

����

1

.

4.2 Computation of the minorization ratios

In this setion we provide an algorithm to ompute the ratios �

i

. Let us �rst

set some notations: �

i

(row vetor with jS

i

j omponents) is the restrition of

� to S

i

; �

=i

(row vetor with jS

i

j omponents) is the onditional version of �

i

:

�

=i

[s℄ =

�[s℄

�(S

i

)

; b�

=i

(row vetor with dimension n

i

) is the onditional steady

state probability vetor on the aggregated states S

i;j

of S

i

: b�

=i

[j℄ = �(S

i;j

jS

i

) =

P

s2S

i;j

�[s℄

�(S

i

)

; Q is the generator of the Markov hain. Sine the state spae S is

partitioned into disjoint subsets S

i

, sequentially visited, a transition ours only

inside S

i

or from S

i

to S

i+1

. We may then view Q as a blok matrix Q = [Q

i;j

℄.

Q

i;j

gives the transition rates from states of S

i

to states of S

j

and is a non null

matrix only for j = i; i+ 1.



Priniple of the algorithm We start from the set of equilibrium equations

�

1

Q

12

+ �

2

Q

22

= 0

.

.

.

�

i�1

Q

i�1;i

+ �

i

Q

i;i

= 0 (6)

.

.

.

�

n�1

Q

n�1;n

+ �

n

Q

n;n

= 0

Equation (6) may be rewritten (Q

i;i

is regular sine Q is a generator):

�

i

= ��

i�1

:Q

i�1;i

:Q

�1

i;i

(7)

whih is the basis for the iterative omputation of the �

i

.

The ith step of the algorithm omputes two vetors b�

�

=i

and b�

+

=i

suh that

b�

�

=i

� b�

=i

� b�

+

=i

and the number �

i

�

�(S

i

)

�(S

i�1

)

from the set of values previously

omputed:

81 � j � i� 1

(

b�

�

=j

and b�

+

=j

with b�

�

=j

� b�

=j

� b�

+

=j

�

j

with �

j

�

�(S

j

)

�(S

j�1

)

Note that, although we only want to ompute the �

i

, we need to introdue

the bounds b�

�

=j

and b�

+

=j

: as we shall see, b�

�

=i�1

is required to de�ne �

i

and b�

�

=i�1

and b�

+

=i�1

are required to ompute b�

�

=i

.

Initial step Let P

1

be a "pseudo uniformized" (sine Q

1;1

is not a generator)

substohasti matrix assoiated with Q

1;1

andM � max

s2S

f�q

s;s

g: P

1

= I

jS

1

j

+

1

M

Q

1;1

, with I

jS

1

j

the jS

1

j Identity matrix. We hoose

b

P

�

1

(n

1

�n

1

matrix) suh

that

b

P

�

1

[x; y℄ � min

s2S

1;x

f

P

s

0

2S

1;y

P

1

[s; s

0

℄g and we ompute an upper adapted

(to P ) matrix

b

P

+

1

. Like with the �rst method, using the visit-ratios (

b

P

�

1

ful�lls

the hypothesis of lemma 1 and

b

P

+

1

ful�lls those of proposition 1 with respet to

the partition (S

1;j

) of S

1

), we set

b�

�

=1

[j℄ =

�

P

k�0

(

b

P

�

1

)

k

�

[1; j℄

P

n

1

l=1

�

P

k�0

(

b

P

+

1

)

k

�

[1; l℄

and b�

+

=1

[j℄ = 1�

X

l6=j

b�

�

=1

[l℄

sine b�

=1

[j℄ = 1�

P

l6=j

b�

=1

[l℄.

Computations for a step i � Let us �rst give another expression of �Q

�1

i;i



If �Q

i;i

= [q

0

s;s

0

℄ we have: q

0

s;s

= �q

s;s

> 0 and q

0

s;s

0

= �q

s;s

0

< 0 for s 6= s

0

,

and q

s;s

�

P

s

0

6=s

q

s;s

0

, sine Q is a generator. Let M

i

� max

s2S

i

f�q

s;s

g and P

i

the substohasti (jS

i

j � jS

i

j) matrix suh that �Q

i;i

=M

i

(I � P

i

) so that

P

i

[s; s

0

℄ =

�

q

s;s

M

i

if s = s

0

1 +

q

s;s

0

M

i

otherwise

Sine Q

i;i

is regular, �Q

�1

i;i

=

1

M

i

:

P

k�0

P

k

i

So, from equation (7)

�

i

=

1

M

i

:�

i�1

:Q

i�1;i

:

X

k�0

P

k

i

=

�(S

i�1

)

M

i

:�

=i�1

:Q

i�1;i

:

X

k�0

P

k

i

(8)

� Computation of b�

�

=i

Sine b�

=i

[j℄ =

1

�(S

i

)

�(S

i;j

), we ompute a lower bound of �(S

i;j

) and an

upper bound of �(S

i

).

� Lower bound of �(S

i;j

)

From (8)

�(S

i;j

) =

1

M

i

:

X

s

00

2S

i;j

X

s

0

2S

i

X

s2S

i�1

�

i�1

[s℄:Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

Moving the summation over s

00

�(S

i;j

) =

1

M

i

:

X

s

0

2S

i

X

s2S

i�1

�

i�1

[s℄:Q

i�1;i

[s; s

0

℄:

X

s

00

2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

Splitting the summation over s

0

and moving it partially

�(S

i;j

) =

1

M

i

:

n

i

X

v=1

X

s2S

i�1

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

X

s

00

2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

If we have a matrix

b

P

�

i

(n

i

�n

i

, to be omputed) suh that

b

P

�

i

[x; y℄ � min

s2S

i;x

f

P

s

0

2S

i;y

P

i

[s; s

0

℄g then, from lemma 1

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

X

s2S

i�1

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

We now split the summation over s

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

X

s2S

i�1;u

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄



and we introdue a matrix

b

Q

�

i�1;i

(n

i�1

�n

i

, to be omputed) suh that

b

Q

�

i�1;i

[x; y℄ �

min

s2S

i�1;x

f

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄g. Hene

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

X

s2S

i�1;u

�

i�1

[s℄:

b

Q

�

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

from the property of the vetor b�

�

=i�1

we obtain

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

�(S

i�1

)b�

�

=i�1

[u℄:

b

Q

�

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

that is to say

�(S

i;j

) �

�(S

i�1

)

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[j℄ (9)

� Upper bound of �(S

i

)

From (8), and with the same kind of derivation

�(S

i

) = �

i

(S

i

)

�(S

i�1

)

M

i

:

X

s2S

i

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

�(S

i

) =

�(S

i�1

)

M

i

:

n

i

X

j=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i

Q

i�1;i

[s

0

; s

00

℄:

X

s2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

�(S

i

) =

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

X

s2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

Let

b

P

+

i

(to be omputed) be a stritly substohasti and upper bounding n

i

�n

i

matrix with respet to the partition (S

i;j

) of S

i

, then, from Proposition 1,

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

X

s

0

2S

i�1;u

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

Let

b

Q

+

i�1;i

(n

i�1

� n

i

, to be omputed) be suh that

b

Q

+

i�1;i

[x; y℄ � max

s2S

i�1;x

f

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄g. Then,

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

X

s

0

2S

i�1;u

�

=i�1

[s

0

℄:

b

Q

+

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄



�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

b�

+

=i�1

[u℄:

b

Q

+

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

from the property of the vetor b�

+

=i�1

, whih may rewritten as

�(S

i

) �

�(S

i�1

)

M

i

:b�

+

=i�1

:

b

Q

+

i�1;i

:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

:1

T

n

i

(10)

with 1

T

n

i

the olumn vetor with n

i

omponents, all equal to 1.

Finally, by (9) and (10), we set

b�

�

=i

[j℄

def

=

b�

�

=i�1

:

b

Q

�

i�1;i

:

�

P

k�0

(

b

P

�

i

)

k

�

[j℄

b�

+

=i�1

:

b

Q

+

i�1;i

:

�

P

k�0

(

b

P

+

i

)

k

�

:1

T

n

i

(11)

� Computation of b�

+

=i

Sine b�

=i

[j℄ = 1�

P

l6=j

b�

=i

[l℄, we simply de�ne b�

+

=i

[j℄

def

= 1�

P

l6=j

b�

�

=i

[l℄.

� Computation of �

i

From (9), we have �(S

i

) �

�(S

i�1

)

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

�

P

k�0

(

b

P

�

i

)

k

�

:1

T

n

i

and we

an de�ne

�

i

def

=

1

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

:1

T

n

i

(12)

Note that we must have �

2

6= 0 to obtain non trivial lower bounds b�

�

[i℄.

From 12, this is equivalent to the existene of j and k suh that b�

�

=1

[j℄ > 0 and

b

Q

�

1;2

[j; k℄ > 0. This means that there must be a subset S

1;j

of S

1

and a subset

S

2;k

of S

2

suh that from eah state of S

1;j

(and not of S

1

as in the �rst method),

the system must be able to jump into S

2;k

.

4.3 Example

The goal of this setion is to explain how the various matries required by the

algorithm just presented may be derived from the model of the system. Numer-

ial results are presented in the extended version [4℄ of the paper. We study

a modi�ed version of the example of Setion 3.5 and we onentrate ourselves

on the omputation phase of the request servie in the sub-state spae S

i

of

S (n � i requests in omputation phase, i � 1 requests in transmission phase).

This omputation phase is now made up of four steps, the transmission phase

being unhanged. An initial stage (rate �

1

) is followed by a fork produing two

"sub-requests", with rate �

2

and �

3

. The join of the sub-requests (rate �

4

) ends

the omputation phase. The distribution of the omputation phase servie may

be viewed as a phase-type distribution of the type depited in �gure 2.
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Fig. 2. Distribution of the omputation phase servie (method 2)

The ritial hoie of the method is the de�nition of the partitions S

i;j

for

the minorization and majorization in the algorithm (the same partition was used

in the presentation of the algorithm). This hoie is a tradeo� between the om-

plexity of the omputations, the ful�llment of the hypothesis of the theorem 1,

for the matries

b

P

�

i

and

b

P

+

i

, the tightness of the bounds and the information

diretly available from the model. Also note that the partition orresponding to

the minorization must be a re�nement of the one for the majorization due to

the bound expressions of Setion 3.3 and the omputation of b�

+

=i

.

In our example, we may hoose S

i;j

as the set of states for whih j steps have

been done by the whole n�i requests and we an ompute quantities L

i;j

andN

i;j

(the L

i

and N

i

values of the method 1) to de�ne a b�

+

=i

as in method 1. For what

onerns the minorization, these S

i;j

are a too oarse partition, providing a weak

bounding vetor b�

�

=i

: we need more information about the advane of requests in

the di�erent steps to de�ne a valuable lower bound. Hene we shall take S

i;�|

as

the partition for the minorization, where �| = (j

1

; j

2

; j

3

; j

4

),

P

4

k=1

j

k

= n� i and

j

k

is the number of requests in kth step. It is straightforward to verify that this

partition is a re�nement of the majorization partition. Whatever the matrix, we

may hoose any valueM

i

suh that M

i

� max

s2S

i

f�q

s;s

g. For instane, we may

set M

i

= (n� i)maxf�

1

; �

2

+ �

3

; �

2

; �

3

; �

4

g+ (i� 1)�

max

+ x

max

+ 1.

Minorization Here, S

i;�|

= fsjj

1

requests in initial step, j

2

requests with one step

done, : : : ; j

4

requests with three steps doneg.

� Realling that we must have

b

P

�

i

[x; y℄ � min

s2S

i;x

P

s

0

2S

i;y

P

i

[s; s

0

℄, we set

b

P

�

i

[�|; �|

0

℄ =

8

>

>

>

>

>

<

>

>

>

>

>

:

j

1

�

1

M

i

if �|

0

= (j

1

� 1; j

2

+ 1; j

3

; j

4

)

j

2

(�

2

+�

3

)

M

i

if �|

0

= (j

1

; j

2

� 1; j

3

+ 1; j

4

)

j

3

minf�

2

;�

3

g

M

i

if �|

0

= (j

1

; j

2

; j

3

� 1; j

4

+ 1)

1�

r(�|;�|

0

)

M

i

if �|

0

= �|

0 otherwise

with r(�|; �|

0

) = j

1

�

1

+ j

2

(�

2

+ �

3

) + j

3

maxf�

2

; �

3

g+ j

4

�

4

+ (i� 1)�

max

+ x

max

.



� We must also have

b

Q

�

i�1;i

[x; y℄ � min

s2S

i�1;x

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄ so that we

de�ne

b

Q

�

i�1;i

[�|; �|

0

℄ = j

4

�

4

if �|

0

= (j

1

; j

2

; j

3

; j

4

� 1) and 0 otherwise.

Majorization Here, S

i;j

= fsjj steps have be doneg (0 � j � 3(n� i)).

� We de�ne

b

P

+

i

as with method 1 (but applied to the S

i;j

), whih ensures

that

b

P

+

i

is a stritly substohasti and upper bounding matrix. Sine we need

L

i;j

� min

s2S

i;l

;l�j

fLeave(s)g, we take L

i;j

=

�

4

lnls(j)

M

i

, where lnls(j) is a

lower bound of the number of requests being in their last step of omputa-

tion: lnls(j) = maxf0; j � 2(n � i)g. The numbers N

i;j

must verify 0 < N

i;j

�

min

s2S

i;j

P

s

0

2S

i;j+1

P [s; s

0

℄. An aurate hoie, whih an be omputed with-

out overhead during the omputation of

b

P

�

i

is:

N

i;j

= min

�|;

P

4

k=1

(k�1)j

k

=j

�

1

j

1

+(�

2

+�

3

)j

2

+minf�

2

;�

3

gj

3

M

i

.
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0
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℄, hene we

de�ne
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Q

+

i�1;i

[j; j

0

℄ = �

4

unls(j) if j

0

= j � 3 and 0 otherwise. unls(j) is an

upper bound of the number of requests being in their last step of omputation:

unls(j) = jdiv3.

5 Conlusion

In this paper we have presented a new approah to ompute bounds of perfor-

mane measures of Markov hains frequently enountered in system modelling.

This approah provides important savings in omputation and memory require-

ments with respet to an exat omputation of the steady state distribution.

When a subset of the state spae of the hain may be partitioned in subspaes

sequentially visited, we have de�ned bounds of onditional steady state reward

rates on theses subspaes or on the whole subset. Two methods have been pro-

posed, orresponding to di�erent properties of the model. Our methods are based

on a ombination of strong stohasti ordering and aggregation. We have ex-

plained how to ompute these bounds and reported �rst experiments showing

the interest of the approah when the system ful�lls suited hypothesis. Work is

in progress to evaluate aurately the behaviour of the results for the seond,

more elaborated, method. We are also studying the appliability of our method

to domains usually involving bounding methods, like performane evaluation of

fault tolerant and repairable systems, for whih the reparation rates may be

seen, themselves, as rewards. In partiular, we are working on appliation of our

results to systems with multiple entry points in the subsets visited.
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