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Abstract. This paper presents a new method to compute bounds of
performance parameters of Markov chains exhibiting a partition of the
state space with some family of subsets visited in a sequential order. We
use this structure to compute bounds of steady state reward rates on
these subsets without computing the global steady state probabilities of
the whole chain. The method presented is based on a combination of an
aggregation procedure on the subsets and a strong stochastic ordering
on the resulting aggregated space.

1 Introduction

Performance models based on Continuous Time Markov Chains (CTMC) have
proven their usefulness for many years. In this context, performance measures
can be frequently expressed as (steady state) expected reward rates (or instanta-
neous reward in steady state) R = ) . sc 7(s)7[s] where 7(s) is the reward rate
associated with the state s and 7 the (row) vector of the steady state probabili-
ties of the CTMC M = (8%, Q, m) with state space S, generator @ and initial
probabilities mg. Unfortunately, it is often impossible to compute 7 with an an-
alytical method due to the complexity of the interactions among the entities of
the system (there is no "closed" form for 7). In these situations, we are lead
to numerically solve the linear system w@) = 0. There are, however, well known
difficulties for solving this equation, among these the size of the state space, and
for many systems, the stiffness of the linear system when there are rare events in
the modelled system. To cope with these problems, state space reduction meth-
ods have been proven very powerful. To compute the exact solution, reduction
methods usually involve the whole state space. These methods are based on the
structure of the behaviour of the system, like tensor based methods, or on exact
Markovian aggregation (lumping methods). Another large class of methods is
based on approximate solutions. The price to pay for the efficiency of the com-
putation is then the difficulty to appreciate the quality of the result. Finally,
bounding methods, often based on partial reduction of the chain, are a tradeoff
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between the two previous ways, providing both efficient solution methods and
quantifiable estimation of the quality of the results.

Whatever the bounding method, it is always guided by the structure of the
model, deduced from the properties of the studied system. An important struc-
tural property of M is the possibility to factorize the state space into a partition
of N subspaces S,?, allowing the decomposition R = lecv:l Ry Depending on
the properties of M with respect to the S,f, several methods have been devised,
mainly based on the Courtois results [2, 3] and/or stochastic orderings [10].

In this paper, we are concerned with systems exhibiting sequences of ele-
mentary actions such that, in each sequence, there is a non null probability to
reach the next action. Examples of such systems are those with sequences of
client/server like interactions, repairable systems, data base systems. Many au-
thors, for instance [8,6,5,1], have studied such systems and it has been shown
that beside bounding the total probability of states corresponding to a given
sequence (i.e. m(SF)), one of the main problems is to obtain bounds of the prob-
ability distribution inside a S¢. We present here a new method to bound the
conditional steady state reward rates on the subsets of states corresponding to
these sequences of actions. Towards this goal, we extend the strong stochastic or-
dering between Markovian processes to aggregated versions of the processes from
structural information about the Markov chain, without computing the bounded
aggregated chain.

The organization of the paper is as follows: in Section 2 we present the
context of the work and our approach. In Section 3, we introduce a first method
to compute lower bounds of rewards rates on subsets of states, together with
results about strong stochastic ordering and aggregation. We also define a general
application framework and we study a detailed example with numerical results.
In Section 4, a second method is proposed which extends results to other classes
of systems and we explain in details computations of the bounds through an
example. Section 5 concludes the paper. An extended version of this paper, with
detailed numerical results is available [4].

2 Approach

We are interested in systems with client and server entities and activities which
may be classified as autonomous client’s activities and interaction activities be-
tween clients and servers. Whatever the (high level) modelling formalism of such
systems (QN, SPN, ...), this leads to CTMCs where it is possible to identify sets
S,? corresponding to these interactions. In the present study, we indeed work at
the Markov chain level. In many important cases, although the state space of
interactions is large due to their complexity, the corresponding reward remains
"small" with regard to the contribution of the autonomous activities. This is also
the case for dependability models, where "client/server interactions" states are
the partial or total failure states of the repairable system. It is then meaningful
to only compute bounds of the reward of these states.



If the whole state space of the chain is S = Wy_, S, then the reward is
R = Zgil Ry, and Ry, = m(SF) Zses,f r(s)m(s|SE). We can regard the quantity
R = ZSESkG r(s)m(s|SF) as the (steady state) conditional reward rate of the

measure on S,?. To obtain bounds for R we may then compute bounds for R
and for 7(S{’). Note however that for some important models [8], only R/, are
needed. In this paper we concentrate ourselves on the first problem (obviously,
these bounds must be computed without computing the distribution 7 on the
S&). More specifically, as showed by many authors [8, 6,7, 1], the most difficult
problem is frequently to derive a lower bound of R/ so that we only study this
problem in the following.

In the rest of the paper, we rename, for ease of reading, R/, as R and S,f as S,
so that we study the computation of a lower bound R~ of R = ) s 7(s)7(s]S).

Note that, in this paper, we assume that there is a single entry point in 5,
corresponding to the beginning of service. In fact, if this is not the case, Courtois
has shown that there is a family (8,/) of positive reals with > ;g Bs =1
such that m(s[S) = 30 cins) By (s|S) where in(S) is the set of entry points
of S and 7* the steady state probabilities of the modified chain with all input
transitions of S "redirected" to s’. Hence, we may derive a bound R~ from
bounds R* ~.

Evidently, a first lower bound of R is mingses{r(s)}n(S). This is obviously
very poor, since if 3s : r(s) = 0 then the lower bound is zero. To go further, we
suppose that, once again, the space S itself, possesses a structure which will help
to define tighter bounds. If interactions are sequences of elementary actions, S
may be partitioned into subsets (S;)1<i<n such that r is constant in each S;. If
r(s) =r; for s € S, then R=Y"7" | r;7w(S;|S) (with w(A|B) =3, 4 7(s|B)).

We propose two methods to find a lower bound of R, which are based on
an extension of the strong stochastic ordering of Markov chains to aggregated
versions of these chains (see Proposition 1) without computing the bounded ag-
gregated chain. We call "adapted bounding matrices" (see Definition 1) matrices
which allow such an extension. The first method bounds the conditional proba-
bilities 7 (.|S) themselves. As we shall see in Section 3 we obtain R~ > 0 under
conditions discussed at the end of the section. To cope with systems which do
not satisfy the required conditions of method 1, we propose in Section 4 a second
method, which relaxes these conditions but needs more structural properties.

3 First method

Let us recall that we want to compute a lower bound of Rs = ¢ r(s)m(s|S)
where S is a subspace of the whole state space S of a Markov chain. Moreover
we assume that S may be partitioned into n subsets S; such that S; = {s €
S| r(s) = ri}, so that Rg = >, r;m(S;|S). In this section we shall directly
lower bound each 7(S;|S) using properties of substochastic matrices. From these
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bounds 7~[¢], we can derive the lower bound Rg = Y"1 | 7~ [i] with Rg > 0
under conditions explained at the end of the section.

We then present a general class of systems for which our method is applicable,
followed by an effective example of such a system.

3.1 Idea of the method

Our main objective is to obtain bounds 7~ [i] using only the parameters of the
model (for instance the generator ) of the chain) and not the steady state
probabilities on S which will not be computed. To this end, we first restate
the problem in the framework of DTMCs. As usual with the uniformization
method, we take P = I|g)+ 37 Qs where M > mazses{—Q[s, s|} and Qs is the
restriction of @ to S.

Since, for DTMCs, we can establish a link between the steady state probabil-
ities and the matrix P via the so called visit-ratios, we define bounds for =(S;|S)
from bounds of matrices derived from the matrix P.

Denoting by so the unique entry state in S from the rest of the whole state
space, it is well known that

V(so,s)
Zs’ES V(SO7 SI)

where V (sp, s) denotes the mean number of visits to s from so before leaving S.
To get a lower bound of 7(S;|S), it is then sufficient to compute a lower bound of
> ses, V(s0,5) and an upper bound of 3, 4 V(s0, s'). The link with the matrix

P lies in the relation V (sg, s) = (Zkzo P’“) [s0, 9]

A majorization of ) V(so,s’) by a direct (componentwise) majorization
of P may, in the general case, provide a non strictly substochastic |S| x |S]|
matrix PT so that the power sum of PT would have no meaning. Hence, we
compute a majorization of 7(S;|S) by an upper bounding aggregation on the
(S;), with a n x n matrix P+, the bounding being "compatible" with the power
sum operator. On the other hand, we compute a minorization of 7(S;|S) by a
lower bounding (again a n x n matrix) of P[s;, S;] = 32, cq. Plsi, s;] Vsi € Si.
Another advantage of the introduction of these two n x n matrices is that, since
we compute powers of matrices, smaller matrices will allow faster and more
accurate computations.

Note that, in fact, we may choose different partitions (S;) for the upper
bounding of )", V(so, s") and the lower bounding of V (so, s). However, for ease
of reading, we keep the same partition for the rest of this section.

m(s|S) = (1)

3.2 Bounding substochastic matrices

In this section, we provide a mean to define bounds for a substochastic matrix
and its power series. The following lemma sets out sufficient conditions for a
n X n matrix to lower bound V' (so, Si) = 3_, cs. V (50, 8i)-



Lemma 1. Let P~ be a n x n matriz such that Vi,j, Vs; € S, ﬁ_[i,j] <
Pls;, S;]. Then

Y (P)* | [iyd] < ming,es AV (si, Sj)} (2)
k>0
Proof. Since V (s, S;) = (Zk>0 ) [si,S;], let us prove by induction that for

any ki (P7)*[i, j] < ming,cs,{P*[si, S;]}.
The property is clearly true from the hypothesis for k& = 1. Assuming that
the property is true for k, we have

n

prtt [si,S;] = def Z Z Z P [si, s1].P[si1,85] = Z Z sl,sl] Pls;, S;]

5;€S; =1 51€5; SIES|

(P7)*[i,1.P 1, 4]

M: i

N
Il
-

from the hypothesis and the property for k.

In contrast with the minorization, the majorization of V (s, S;) imposes some
constraints on the bounding matrix. Adaptation is an extension of the strong
stochastic ordering [10] concept between Markovian processes to P* and an
aggregation of P on the (S;). Monotonicity, like for Markovian processes, ensures
the expansion of an initial strong stochastic ordering to any (discrete) time, by
transitions of the chain.

Definition 1. A n x n matriz X is monotonic iff V1<i<j<n, Vi1<m <
n, Z;’ll XTi, 1] > 2121 X1[j,1]

A n x n matriz PT is an adapted (upper) bound of P with respect to the
partition (S;)i1<i<n iff (i) it is monotonic and (i) V1<i<n, Vs€S;, V1<

m < n, E;nzl Es’esj Pls,s'] < E;nzl P*i, j]
Adaptation is a sufficient condition to upper bound the visit-ratios, as stated

in the next proposition which is the equivalent to the result for Markovian pro-
cesses.

Proposition 1. If Pt is an adapted upper bound of P, then for any integer k
Vi<i<n, Vs€§;, Vi1<m<mn, ZZP’”SS]<ZP+ [i,7] (3)
j=1s'€S;

Proof. The proof is done by induction.

e For k£ = 0, if i > m the inequality resumes to 0 < 0, and if ¢ < m, it resumes
to 1 <1.



e Let us assume that the property is true for k.

A= Y (PHI = 30 S PHHE P L] = YT S PHL
j=1 j=11=1 =1 j=1
Using a classical transformation
A= D EHI| Y PT N,
Li=1 1 [j=1

Sl DGR R DI ED SRR

Li=1 i

By monotonicity of 13+, each second term of the products is positive, hence we
may apply the inductive inequality on the first terms for s € S;

A>B= ZZP’”SS] Zﬁ+[n,j]

LiI=1 s'eS;

+ ZZP’”SS] iﬁ*‘[td]—iﬁ"‘[t-{-Lj]
Li=1

s'€S | i=1 j=1

=1 s'eS;

i [Z 3 Pk[g,sl]] Zﬁm,j] —Zﬁﬂ?,j]

We now apply the inverse transformation to B: B = Y /L) [Y, g, P¥[s,s']]
[Z;n:l 13+[l,j]} and since P+ is an adapted upper bound of P, B > C =

Yoy Dges, Pls, s [Z;nzl gres; Pls’y s”]]. Rearranging the order of sum-

ma‘t’iona we get’ C = Z;nZI Es”GSj E?:l ZS’ES[ Pk [87 SI]P[SI7 S”] = E;ﬂ:l Zsuesj
Pk+1[s, SII]

3.3 Bounds for conditional steady state probabilities

Gathering previous results, we can state the following theorem which provides a
lower bound of 7(S;|S). Then we explain how to obtain an upper bound = (S;|S)
using these lower bounds and relations established above.



Theorem 1. Let P~ and Pt be the matrices of lemma 1 and proposition 1,
and let Pt is strictly substochastic. Then, for any i

(ZesoP ) 11,i]

m(SilS) > =
St (Seso(PHF) 11,7]

(4)

Proof. From (1), and choosing i = 1 and s; = sop we apply lemma 1 and propo-
sition 1 with m = n and taking the limit in the sum over k.

From the previous bounds, we can now compute an upper bound of 7(S;|5).
The derivation of this bound is similar to the complement property used for
probability distributions: Pr(S\A) =1 — Pr(4) = Pr(4) <1 —-Pr (S\A4) with
Pr7(S\A) < Pr(A).

Let V =3 sV (s0,5), we have from proposition 1, (with pt strictly sub-

stochastic): Zj.:l V(s0,8;5) < Zj':l (Zkzo(ﬁﬂ’“) 1,5 % V;*. From lemma 1,

n S—\k qdef < 4. ES V(s0,s) i
V> 20 (SesoP)F) (141 v Since n(S]5) = £, 20 w(S19)
= Z;:1 v(s{)/,s,-) < “;—J_r Hence
V'_;,_ i—1
7(SilS) < max{= = Y7 (S)19). 1= Y7 7(S;1S)} (5)
j=1 j#i

where 7~ (5;]5) is the lower bound given by the theorem 1.

The effective computation of the above bounds of 7(S;|S) involves the nu-
merical calculation of two power series of matrices which are performed with
standard methods [9].

3.4 A general application framework

Fig. 1. Structure of the state space of the general application framework (method 1)



In this section we show how to build matrices P~ and P+ for a large class of
systems. The structure of these systems must be such that we should be able to
derive the P~ and PT matrices directly from the model. Moreover, the memory
requirements for the computation of P~ and P+ must be polynomial, or even
linear, with respect to the size of the model. We assume that the structure of the
state space S is as depicted in Figure 1 and that there is only one entry state
in S, which belongs to S;. Finally, we impose that the system may leave S from
each state of S,,.

The definition of P~ is the easiest one. We simply take

* x
R o R <minses; Y ges, Pls,s'] ifj =i
P = R with P [i, j] orj=i+1
- =0 otherwise
*

It is clear that P~ fulfills the hypothesis of lemma 1.

The idea behind the definition of an upper bound Pt is to lower the tran-
sition probabilities of leaving S and to lower the "advance" from S; to S;y1.
Let us suppose that the structure of the system allows us to derive to se-
quences (L;) and (V;) with the following properties. Let us denote by Leave(s) =
1- Es'es\{s} P[s,s'] the transition probability of leaving S from s, then V1 <
i<n, 0<L; <minges,,>i{Leave(s)} (L, > 0 since the chain may leave S with
a non null probability from each state of S,,). L,,—; lower bounds the transition
probability for the chain to leave S from S,_; or S,, and L; lower bounds the
transition probability for the chain to leave S. (L;) is obviously an increasing
sequence.

The N; (Next), instead, has to lower bound the transition probabilities from
any state of S; to the set S;11: 0 < N; < minges, ZS’GSi+1 PJs, s']. Note that we
propose the condition 0 < N; rather than 0 < Nj;, which seems quite natural,
and provides a sufficient condition for PT to be strictly substochastic (see the
proof of lemma 2). With these conditions, we define the matrix

1—Li — Ny N
1—Ly— Ny No
~ - with P+[i, j] = 0if
C jAiorj#i+1

Lemma 2. Pt is strictly substochastic and is an adapted upper bound of P with
respect to the partition (S;)i1<i<n-

Proof. P+ is strictly substochastic: for 1 < i < n—1: ﬁ*[i,i] =1-L;—N; > 1—
minSGSlJZi{l_Zs’eS P[57 SI]}_minSESi Es’eSiH P[57 SI] = MaXses;,1>i Zs’eS P[57 SI]_
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mingeg, Eslesi+1 P[s,s'] > maxses; )y cg P[s,s'] —minges, Zslesi+1 Pls, s']
0

IN

For all other values of j, clearly P*[i, j] > 0. Moreover > Ptli,j] =1-L;
1.Since 1 — L, <1,and Vi <n —1, N; > 0, PT is strictly substochastic.
o Pt is monotonic: we have to show that for i < j and m given: A=Y PHil] >
Yoty PT[4,1] = B and by transitivity, it is sufficient to prove the property for

j =1+ 1. We have the following situations:
m A B
m <1 0 0
m=i  P*[i,i]0
m:z+11—L, 1—Li+1—Ni+1§1—Li+1andAZBsince
(L;) is increasing
m>i+11—L; 1—L;;; (same as above)

e Pt isan adapted upper bound of P: given i ], m and s € S;, let us prove that
A=Y Yes, Pls,s] < S PHiLj] =

Form <i: A=B=0.

Form=i: A=3%,cq Pls,s'1 =1=3 a5 Pls,s'] = Xyes,,, Pls,s'] from
the properties of the chain in S, so that A <1 — (1 =3, g P[s,s']) = N; <
1-L;—N;=B

Form > it A =35 Pls,s'1+> ,cs,., Pls,s'] = 1—Leave(s) <1-L; = B
again from the properties of the chain in §

Above results were established with the hypothesis that we have only one
entry point belonging to S;. Courtois and Semal [2] showed that if we have a

s€5© such that the

steady state distribution is a linear combination of the steady state distributions
7(*) corresponding to the modified Markov chain where all inputs in S; are
"redirected" to s € S{O): T = Esesio) asm®) | with Zsesf’) as = 1. Since our
bounds do not depend on the actual entry point in S7, we see that they are still
valid for all the distributions 7(*) | therefore for any distribution # corresponding
to a chain without a unique entry point in Sj.

set Sfo) of entry points in S;, there are positive reals (as)

3.5 An example

We illustrate the general framework exposed above and we present numerical
results for a detailed example of a system. In the framework of clients/servers
systems, let us assume that clients request a service that is composed of two
phases: computation of the requested results and transmission of these results
from the server to the client. The computation may be done by nc distinct
units with exponential service distribution with different rates oy, and the trans-
mission may be carried out in nt different ways, also with exponential service
distribution with rates (,,. Therefore, probability distributions of computation
and transmission phases are hyperexponential. Here, S is the set of states with



n — 1 requests being served (either doing actual service or being transmitted) by
a set of servers, S; is the set of states where the results of ¢ — 1 client’s requests
of the n — 1 are being transmitted, computed but not yet received by the client,
and n — i requests for which the server is still in the computation phase. From a
state in S;, a server may begin its transmission of results, which means that the
chain leaves S; and enters S;;1, or a new request enters the service subsystem
or one client has received its results, which means that the chain leaves S, or an
action independent of the services occurs, which is translated by a transition of
the chain inside S;. We suppose that the system may actually leave the service
area (i.e. S,,) when all requests are in the reception of results phase. It could not
be the case: for example an Erlang distribution (with more than one stage) for
transmission, generates (Markovian) entry states in S, that do not fulfill this
condition.

Computation of the bounding matrices First, let us note that expressions (4)
and (5) for bounds do not depend on the actual value of M involved in the
uniformization procedure. Since it is easy to compute one such value from the
model of the system, we simply assume here that M is fixed.

We now show how to compute the matrices P~ and P*. Le us denote by
Qmin, Omax, Omin and Bmax the respective minimum and maximum of the various
rates of computation and transmission. We choose ﬁ’[i,i +1] = % and

2rgs, t
M

- }, weset P=[i,i] = 1—
i where .« denotes an upper bound of the arrival rate
of new requests. A possible value for M is then M = (n — 1) max{amax, Bmax } +
Tmax + 1. R

For what concerns P, we define the quantities L; and N;. Since contributions
to Leave(s) come from internal (end of service of a client’request) and external
(new request) events of S, we can minorize Leave(s) using a minorization of the
arrival rates (Zmin). So we take L; = (’71)5“‘% On the other side, we choose

N; = 7(”—11'\)401@“ .

since P~[i, i) must fulfill P=[i,i] < minyeg, {1—
(n—i)amax+(i—1) Bmax+Tmax

Complezity reduction Let us evaluate the reduction of the state space using the
aggregated states corresponding to the S; instead of the subsets S; themselves.
As we can choose one computation among nc and one transmission among nt,
|Si| = (”_g‘i”lc_l) X (l_litﬁt_l). Since min{n —i,i — 1} > | 251 ], we have, with
increasing values of o, ("5 ) = O((n—1)"¢" 1) = O e Yor (YY) =
O((i — 1)™~1) = @(n™1), that is to say, |S;| > O(nmir{rt:ne}=1) For example,
with n = 100, nc = 5 and nt = 10 we substitute one element for a subset S; with
about 10° elements.

Numerical results We have computed bounding vectors 7~ and 7+ for a simpli-
fied version of our example: we assume only two stages in the hyperexponential
distribution for computation, and also two stages in the one for transmission.
We have fixed n = 10 and Zmin = Zmax = 0. The first results are about the



quality of the bounds, with respect to the values of amin, @max, Bmin and Bmax-
As quality criterion, we compare the value ¢ = Y1 77 [i] to 1: the more ¢ is
near from 1, the better will be the lower bound. To obtain an indication on the
variation of ¢ with respect to the rates a and 3, we have computed c for different

ratios A, = @max—tmis and Ag = w (0.1, 0.5, 1) as well as for various

ratios g;ln (0.1, 1, 10). Results are regorted in table 1. It clearly appears, as

case| gmin | Ao [Ag[d 7 | T[]
0.01 {0.1]0.1]0.9023
0.1 {0.1]0.1)0.8660
0.1 {0.1]0.5]0.7995
0.1 {0.5]0.1)0.5970
0.1 {0.5]0.5]0.5585
0.1 (1 1]0.1]0.4224
1 0.1]0.1{0.7596
1 0.5(0.1]0.3846
10 {0.1/0.1]0.5660
10 |0.5|0.5(0.1453

O O© 0~ O Ui W

—_

Table 1. Summary of numerical results

expected, that the lower is ‘;3‘“—‘, the better is the bound.

7 A~ T min,, ws0) maxs, 7o) Tt At
1{0.0766025|0.5407474/0.5856063  |0.6039496 0.6747501|0.1172291
2(0.1640449(0.2457943|0.2940281  |0.3005905 0.3797969|0.2635029
3|0.2127773[0.0662072|0.0841023  |0.0922648 0.2002099|1.1699492
4/0.2555454(0.0117033|0.0157206  [0.0186712 0.1457060(6.8037702
5(0.2942371{0.0014186{0.0020100  |0.0025982 0.1354212|51.121
6(0.3298200{0.0001194|0.0001782 |0.0002516 0.1341221|532.16846
710.3628701{0.0000069{0.0000108 |0.0000167 0.1340096|8012.1245
8(0.3937673/0. 4.306E-07 |7.304E-07  |0.1340029(183468.89
910.4227813]0. 0. 0. 0.1340027|7083390.2
10/0.4501153|0. 0. 0. 0.1340027|6.073E+08

Table 2. Comparison between bounds and exact values for 7 (case 2)

Given these results, we have computed the possible exact values 7(%) cor-
responding to modified chain with entry point in so € S;. We obtain 7(%0)
by first computing the matrix P and then visit-ratios matrix V (V[s,s'] =

(Ekzo Pk> [s,s']) (all matrices are |S|x|S|; in our example, | S| = 220). We have

compared the vectors 7(%¢) and 7~ for the first cases giving high ¢ values: re-



) A~ T min,, (50 maxs, 70 ot AT
1{0.1201605|0.5407474(0.6145978  |0.6326504 0.7456626|0.1786329
2(0.2747293(0.2044843|0.2819420  |0.2896483 0.4093995|0.4134366
3|0.3978016{0.0433919{0.0720558  |0.0795974 0.2483071|2.1195382
4/0.5055382(0.0058865|0.0119049  {0.0142554 0.2108017|13.787473
5(0.5968059(0.0005392|0.0013374  |0.0017443 0.2054544|116.78769
6(0.6727950{0.0000340{0.0001038  |0.0001479 0.2049492|1384.7932
710.7353948(0.0000015{0.0000055  |0.0000086 0.2049167|23863.654
8(0.786597010. 0. 0. 0.2049153|626920.53
9(0.8282621]0. 0. 0. 0.2049152(27810027.
10/0.8620358|0. 0. 0. 0.2049152(2.743E+09

Table 3. Comparison between bounds and exact values for 7 (case 3)

7 [i]—min,, 7¢0[4]

sults are presented in Tables 2 and 3. In these tables, A~ (i) =

ming, 70 [2]
gives the relative error between min,,cg, 7(*°)[i] and 7 [i]. Likewise, At (i) =

+il—max.. m(50)[; .
n 7 [i] —maxs m 70 M. We can observe that the relative error for the lower bound

max,, 70 [4]
increases with ¢, and less quickly in the case 2 than in the case 3.

Finally, let us note that, since we should obtain a non null lower bound, it is
necessary that, either r; # 0 or Ny # 0 if r; = 0, and more generally, N; # 0.
The condition Ny # 0, also pointed out by other authors [7], means that, if
the reward rate is null in S, the system must be able (i.e. with a non null
probability) to enter Sa (beginning of the last phase of service for one request)
from each state of S;. Like for S,, (and L,,) this may not be always the case.
This justifies the introduction of another method which relaxes this constraint.
We make up for the weakening of the conditions on S; with more structural
information about the state space of the chain.

4 A more elaborated method

We derive in this section another lower bound of Rs = ) _s7(s)m(s]|S) where
S is a subspace of the whole state space S, partitioned in n subspaces S;, so that
RS - Z?:l TiF(S,'|S).

In many situations, we are interested in systems for which the sequence (r;)
is increasing: the more the request is in progress, the greater is the associated
reward. Hence, in contrast with the first method, we do not compute a compo-
nentwise minorization of 7 ,s (7,5[i] = 7(S;|S)). Instead, we define a probability
vector 7~ such that 7~ <y 7,g where <y denotes the strong stochastic order-
ing. Thus we get from <4 properties

n n
_ de o~ —~ .
Ry &S ria il < ridyslil = Rs
=1 =1



The distribution 7~ is computed thanks to a refinement of the partition of S:
each S; is now itself partitioned into (S; j)i1<j<n;. Using the forward equations
of the chain on S, and from results of the previous section, we define inductively
7~ [i] starting with ¢ = 1.

Here also, we could introduce different partitions (S; ;) of a given S; for upper
and lower bounding of probabilities. We keep only one partition for both bounds
for readability.

4.1 Discrete strong stochastic ordering

We restate in our specific context, the equivalence of two of the definitions of
strong stochastic ordering between two probability distributions over {1,...,n}
(proofs of the lemmas are omitted due to lack of space and may be found in [4]).

Lemma 3. Let p and g be two probability distributions over {1,...,n} and m <
n, such that V1 < i < m, 2;21 pj > 2;21 gj and Z;nzl pj = Z;nzl q;-
Then, for any increasing sequence (r;)i1<i<m Of positive numbers: 2111 piri <
21'11 qiTi

A sufficient condition to ensure the hypothesis of the previous lemma is given
by the classical comparison criterion for sums of positive numbers.

Lemma 4. Let p and q be two probability distributions over {1,...,n} such that
Z?:lpjzz;ilqj (m <n). If,V1 < j <m, -2 < % then V1 < i < m,

: 7 pi-1 — ¢
(3 (3
Ej:l pj = Ej:l q;-

Applying these lemmas to our problem, we only need to find a probability distri-

bution 7~ such that Tt < mit1) _ 71l 1 fact to compute 77, it is

=[] — (S m(Si]S)
sufficient to define a sequence (p;) such that p; =l and V1 <i<n—1, pjy1 <
m(Sit1) S = PiPi—1p1
Tisy~» since we can then take 7 [7] S

4.2 Computation of the minorization ratios

In this section we provide an algorithm to compute the ratios p;. Let us first
set some notations: m; (row vector with |S;| components) is the restriction of
m to Si; my; (row vector with |S;| components) is the conditional version of m;:
mls] = %; 7/; (row vector with dimension n;) is the conditional steady

state probability vector on the aggregated states S; ; of S;: 7/5[j] = 7(S;i ;|Si) =

Zoes,, ™l

— ) Q is the generator of the Markov chain. Since the state space S is
partitioned into disjoint subsets S;, sequentially visited, a transition occurs only
inside S; or from S; to Si;1. We may then view @) as a block matrix @ = [Q;,;].
()i,; gives the transition rates from states of S; to states of S; and is a non null
matrix only for j =1¢,i+ 1.



Principle of the algorithm We start from the set of equilibrium equations

T1Q12 + M2 =0
Ti—1Qi—1,; + T Qi =0 (6)

Tn-1Q@n-1,n + T Qnn =0
Equation (6) may be rewritten (Q;; is regular since () is a generator):
T = —mi—1.Qi—1,i Zil (7)
which is the basis for the iterative computation of the p;.

The ith step of the algorithm computes two vectors 7?72 and 7?72 such that

%/_l. <7y < %/t. and the number p; < ﬂ”éfj)l) from the set of values previously
computed:
o~ /\+ . o~ ~ /\+
Vi<j<i_l T and T with T < ﬂéé )S T
<J< . (S
Pi with p; < 775725

Note that, although we only want to compute the p;, we need to introduce

o~ /\+ . o~ . . o~
the bounds T and T/ ras we shall see, T 18 required to define p; and T/ic1

and 7?;._1 are required to compute T Vi

Initial step Let P; be a "pseudo uniformized" (since @11 is not a generator)
substochastic matrix associated with Q1,1 and M > maxses{—qss}: P1 = I|s,|+

27 Q1,1, with Ijg,| the |S;| Identity matrix. We choose ﬁf (ny1 X ny matrix) such
that 181_ [2,y] < minges, {3, cs, , Pi[s;s']} and we compute an upper adapted
(to P) matrix P;'. Like with the first method, using the visit-ratios (P;~ fulfills

the hypothesis of lemma 1 and ﬁ1+ fulfills those of proposition 1 with respect to
the partition (S1,;) of S1), we set

Yo (PT)F) [1, 4]
( = ) and %71[]] =1- 27‘71 [1]

Tl = =
Y i (Ekzo(Pfr)k) [1,1] 12]

since 71 [j] =1 =3, 71 [l].

Computations for a step ¢ e Let us first give another expression of —Q;’il



If —Qii = [q} o] we have: ¢y = —¢ss > 0 and ¢, , = —gs,s <0 for s # &,
and ¢ 5 > Zs,# gs,s', since @ is a generator. Let M; > maxsecs, {—¢s,s} and P;
the substochastic (|S;| x |S;|) matrix such that —Q;; = M; (I — P;) so that

L. if s=4'

Pils, s'] { 1+ QT, otherwise

-1

Since Qi,; is regular, —Q;; = Mi > k>0 PF So, from equation (7)

1 w(S;
7ri:‘z\f'/'rlezlzX:]Dk (z )'/T/lezlzZPk (8)
k>0 k>0
e Computation of %/;'
Since @/;[j] = +r5ym(Si,;), we compute a lower bound of 7(S; ;) and an

upper bound of 7(S;).

— Lower bound of 7(S; ;)
From (8)

1
W(Sz’,j):ﬁi- S>3 > malslQivils, s | Y_PF[s,s”
s'"€S; ; s'€S; s€ESi—1 k>0
Moving the summation over s”
SCRER S SID DA TR TN D b oy cd IR
s'€S; SES;—1 S”GS,"J' k>0
Splitting the summation over s’ and moving it partially
Z > mieilsl X Qiovilsisl 3 (B[S
v=1s€S;_1 s'eS;,v s'"eS; ; \k>0

If we have a matrix ﬁ* (n; X n;, to be computed) such that 13[ [z,y] < mingeg, ,
{Xves,, Bils,s']} then from lemma 1

M Z Z mi—1[s]- Z Qi-1,ils,5']. Z(ﬁz_)k [v,J]

v=1sE€S;_1 s'€8;,v k>0
We now split the summation over s
n; Ni—1

2 ZZ S omalsl Y. Qicvals s | Y (P)F | v, 4]

v=1 u=1 s€S;_1,u s'€S;,v k>0



and we introduce a matrix Q; | ; (n;_1 xn;, to be computed) such that @;M[x, y] <

minges,_, , {Es’esi,y Qi—1,i[s,s']}. Hence

n; MNi—1
—ZZE:m Qi alus vl | DB [v.4]
v=1 u=1 $€Si—_1u k>0
from the property of the vector %/;.71 we obtain
n; MNi—1
A[ZED Si—)7_y [ul-Q7 1 ilu 0l | (B ) [0, d]
v=1 u=1 k>0
that is to say
’/T(S'fl) ~— N S5— .
W(Si7]’) Z #-W/i,yQi_Li' Z(Pz )k []]
(3

k>0

— Upper bound of «(S;)
From (8), and with the same kind of derivation

71'(5,-):71' ] ZQz 115 s" ZP’“
s€S; s'eS; 1 s'"esS; k>0
S' _ l 1 / ) Tl M Pk
m(Si) = Y el Y el 1 Y (R
j=1s'"€S;_1 s'"eS; s€Si; \k>0

"

[s

!

w50 =T0ALY Y Y mell ¥ el X (X

v=1s'€S;_1 s €S s€S;,; \k>0

"

s, s]

I,S]

[s

Let 132»+ (to be computed) be a strictly substochastic and upper bounding n; x n;

matrix with respect to the partition (S; ;) of S;, then, from Proposition 1,

n; n;
1 5 .
(5 < DL Si SSTN munlsl YD Qicaals s | D@0 ) v.4]
j=lv=1s'€S;, €8S, k>0
n; n; Ni—-1
1) ~
w(s) < TEEL SN Y w3 Qe | B!
j=1lv=1 u=1l s’€S;_1,4 s""ES; k>0
Let Ql 1 (ni—1 X n;, to be computed) be such that Ql 1@, y] > maxges,

{Es "€Si,y Ql—l,l[S, S ]} Then,

n;g MNn; Ni—-1

leZZ Yo w10 ol | SO (B

j=1v=1 u=1 s'€Si—1,u k>0

w(S;i)

I /\

[v, 1]

8]

[v, 7]



n; n; Ni—1

w5 < TSN S AL Qr ol | DB | 0.1

j=1v=1 u=1 k>0
from the property of the vector %/t._l, which may rewritten as

w(S;i—1) ~ ~
r(s) < WO 0SB Az, (10)

M; k>0
with 1%1_ the column vector with n; components, all equal to 1.
Finally, by (9) and (10), we set
.y def i1 @il (Zk>o(Pf)k) 7]

Tl = = (1)
/ A/z 1 Qz 1,4 (Ekzo(PiJr)k) ].gl

e Computation of %/t.

Since 7/;[j] =1 = 32,,; 7/:[l], we simply define 7?72[]] =

L= 5, FAlll
e Computation of p;
From (9), we have 7(S;) > (J\},- L) Ky Q;M. (Ekzo(ﬁ[)k) A7 and we

can define

def 1 o~ ~_ =~_\r
Pi = ﬁ-ﬂ'/i_l-QFl,i' Z(Pz )k -151- (12)
¢ k>0

Note that we must have p» # 0 to obtain non trivial lower bounds 7~ [i].
From 12, this is equivalent to the existence of j and k such that %71 [] > 0 and

@iQ[j, k] > 0. This means that there must be a subset S; ; of S; and a subset
Sa. 1, of So such that from each state of S ; (and not of S; as in the first method),
the system must be able to jump into S 4.

4.3 Example

The goal of this section is to explain how the various matrices required by the
algorithm just presented may be derived from the model of the system. Numer-
ical results are presented in the extended version [4] of the paper. We study
a modified version of the example of Section 3.5 and we concentrate ourselves
on the computation phase of the request service in the sub-state space S; of
S (n — i requests in computation phase, i — 1 requests in transmission phase).
This computation phase is now made up of four steps, the transmission phase
being unchanged. An initial stage (rate u;) is followed by a fork producing two
"sub-requests", with rate ps and ps. The join of the sub-requests (rate py) ends
the computation phase. The distribution of the computation phase service may
be viewed as a phase-type distribution of the type depicted in figure 2.



Fig. 2. Distribution of the computation phase service (method 2)

The critical choice of the method is the definition of the partitions S; ; for
the minorization and majorization in the algorithm (the same partition was used
in the presentation of the algorithm). This choice is a tradeoff between the com-
plexity of the computations, the fulfillment of the hypothesis of the theorem 1,
for the matrices Pz and P+ the tightness of the bounds and the 1nformat10n
directly available from the model Also note that the partition corresponding to
the minorization must be a refinement of the one for the majorization due to
the bound expressions of Section 3.3 and the computation of 7?2..

In our example, we may choose S; ; as the set of states for which j steps have
been done by the whole n—i requests and we can compute quantities L; ; and IV; ;
(the L; and N; values of the method 1) to define a %/t. as in method 1. For what
concerns the minorization, these S; ; are a too coarse partition, providing a weak
bounding vector ﬁ/_z.: we need more information about the advance of requests in
the different steps to define a valuable lower bound. Hence we shall take S; ; as
the partition for the minorization, where 7= (j1, jo, j3,j4), Ezzl jr =n—1iand
Jr is the number of requests in kth step. It is straightforward to verify that this
partition is a refinement of the majorization partition. Whatever the matrix, we
may choose any value M; such that M; > maxscs,{—¢s, s} For instance, we may
set M; = (n —1) maX{ul,uz + /L3,/L2,/L3,/L4} + (1 — 1)Bmax + Tmax + 1.

Minorization Here, S; ; = {s|j1 requests in initial step, j» requests with one step
done, ..., j4 requests with three steps done}.

e Recalling that we must have ]3[ [z,y] < minges, ., > yes, , Pils, s'], we set

L if 7'=01—17241,7J3,J4)

%ﬂ if 7= (1,52 —1,j3+1,j1)
Aii[jaf] = w if 7= (j1,J2,73—1,ja+1)

1_ ’"(JJ) if 7 =7

0 otherwise

with 7(7,7) = jipa + jo (2 + p3) + jz max{ps, ps} + japra + (i — 1) Bmax + Tmax-



e We must also have @;M[x,y] < minges,_, . Yoges,, @i-1,ils,s'] so that we

define @;—171'[.]_7 j’] = j4,u4 lfj’ = (j17j27j37j4 - 1) and 0 otherwise.

Magorization Here, S; j = {s|j steps have be done} (0 < j < 3(n —i)).

e We define 132-+ as with method 1 (but applied to the S;;), which ensures
that Pi+ is a strictly substochastic and upper bounding matrix. Since we need
L;; < minges,, 1>; {Leave(s)}, we take L;; = %lfm, where Inls(j) is a
lower bound of the number of requests being in their last step of computa-
tion: Inls(j) = max{0,j — 2(n — i)}. The numbers NN; ; must verify 0 < N;; <
minges, ; Y ges, ., Plss']. An accurate choice, which can be computed with-
out overhead during the computation of ﬁ[ is:

B p1j1+(pe+ps)jz+min{ps,pus }is
05 " '

Ni,j = minlz
. @zr_u must fulfills Q\T_M[j,j’] > maXses; Zs’eSi . Qi—1,i[s, '], hence we
define @?—1,1'[1"]"] = paunls(j) if j/ = j — 3 and 0 otherwise. unls(j) is an
upper bound of the number of requests being in their last step of computation:
unls(j) = jdiv3.

5 Conclusion

In this paper we have presented a new approach to compute bounds of perfor-
mance measures of Markov chains frequently encountered in system modelling.
This approach provides important savings in computation and memory require-
ments with respect to an exact computation of the steady state distribution.
When a subset of the state space of the chain may be partitioned in subspaces
sequentially visited, we have defined bounds of conditional steady state reward
rates on theses subspaces or on the whole subset. Two methods have been pro-
posed, corresponding to different properties of the model. Our methods are based
on a combination of strong stochastic ordering and aggregation. We have ex-
plained how to compute these bounds and reported first experiments showing
the interest of the approach when the system fulfills suited hypothesis. Work is
in progress to evaluate accurately the behaviour of the results for the second,
more elaborated, method. We are also studying the applicability of our method
to domains usually involving bounding methods, like performance evaluation of
fault tolerant and repairable systems, for which the reparation rates may be
seen, themselves, as rewards. In particular, we are working on application of our
results to systems with multiple entry points in the subsets visited.
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