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Abstra
t. This paper presents a new method to 
ompute bounds of

performan
e parameters of Markov 
hains exhibiting a partition of the

state spa
e with some family of subsets visited in a sequential order. We

use this stru
ture to 
ompute bounds of steady state reward rates on

these subsets without 
omputing the global steady state probabilities of

the whole 
hain. The method presented is based on a 
ombination of an

aggregation pro
edure on the subsets and a strong sto
hasti
 ordering

on the resulting aggregated spa
e.

1 Introdu
tion

Performan
e models based on Continuous Time Markov Chains (CTMC) have

proven their usefulness for many years. In this 
ontext, performan
e measures


an be frequently expressed as (steady state) expe
ted reward rates (or instanta-

neous reward in steady state) R =

P

s2S

G

r(s)�[s℄ where r(s) is the reward rate

asso
iated with the state s and � the (row) ve
tor of the steady state probabili-

ties of the CTMCM = (S

G

; Q; �

0

) with state spa
e S

G

, generator Q and initial

probabilities �

0

. Unfortunately, it is often impossible to 
ompute � with an an-

alyti
al method due to the 
omplexity of the intera
tions among the entities of

the system (there is no "
losed" form for �). In these situations, we are lead

to numeri
ally solve the linear system �Q = 0. There are, however, well known

di�
ulties for solving this equation, among these the size of the state spa
e, and

for many systems, the sti�ness of the linear system when there are rare events in

the modelled system. To 
ope with these problems, state spa
e redu
tion meth-

ods have been proven very powerful. To 
ompute the exa
t solution, redu
tion

methods usually involve the whole state spa
e. These methods are based on the

stru
ture of the behaviour of the system, like tensor based methods, or on exa
t

Markovian aggregation (lumping methods). Another large 
lass of methods is

based on approximate solutions. The pri
e to pay for the e�
ien
y of the 
om-

putation is then the di�
ulty to appre
iate the quality of the result. Finally,

bounding methods, often based on partial redu
tion of the 
hain, are a tradeo�
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between the two previous ways, providing both e�
ient solution methods and

quanti�able estimation of the quality of the results.

Whatever the bounding method, it is always guided by the stru
ture of the

model, dedu
ed from the properties of the studied system. An important stru
-

tural property ofM is the possibility to fa
torize the state spa
e into a partition

of N subspa
es S

G

k

, allowing the de
omposition R =

P

N

k=1

R

k

. Depending on

the properties ofM with respe
t to the S

G

k

, several methods have been devised,

mainly based on the Courtois results [2, 3℄ and/or sto
hasti
 orderings [10℄.

In this paper, we are 
on
erned with systems exhibiting sequen
es of ele-

mentary a
tions su
h that, in ea
h sequen
e, there is a non null probability to

rea
h the next a
tion. Examples of su
h systems are those with sequen
es of


lient/server like intera
tions, repairable systems, data base systems. Many au-

thors, for instan
e [8, 6, 5, 1℄, have studied su
h systems and it has been shown

that beside bounding the total probability of states 
orresponding to a given

sequen
e (i.e. �(S

G

k

)), one of the main problems is to obtain bounds of the prob-

ability distribution inside a S

G

k

. We present here a new method to bound the


onditional steady state reward rates on the subsets of states 
orresponding to

these sequen
es of a
tions. Towards this goal, we extend the strong sto
hasti
 or-

dering between Markovian pro
esses to aggregated versions of the pro
esses from

stru
tural information about the Markov 
hain, without 
omputing the bounded

aggregated 
hain.

The organization of the paper is as follows: in Se
tion 2 we present the


ontext of the work and our approa
h. In Se
tion 3, we introdu
e a �rst method

to 
ompute lower bounds of rewards rates on subsets of states, together with

results about strong sto
hasti
 ordering and aggregation.We also de�ne a general

appli
ation framework and we study a detailed example with numeri
al results.

In Se
tion 4, a se
ond method is proposed whi
h extends results to other 
lasses

of systems and we explain in details 
omputations of the bounds through an

example. Se
tion 5 
on
ludes the paper. An extended version of this paper, with

detailed numeri
al results is available [4℄.

2 Approa
h

We are interested in systems with 
lient and server entities and a
tivities whi
h

may be 
lassi�ed as autonomous 
lient's a
tivities and intera
tion a
tivities be-

tween 
lients and servers. Whatever the (high level) modelling formalism of su
h

systems (QN, SPN, : : :), this leads to CTMCs where it is possible to identify sets

S

G

k


orresponding to these intera
tions. In the present study, we indeed work at

the Markov 
hain level. In many important 
ases, although the state spa
e of

intera
tions is large due to their 
omplexity, the 
orresponding reward remains

"small" with regard to the 
ontribution of the autonomous a
tivities. This is also

the 
ase for dependability models, where "
lient/server intera
tions" states are

the partial or total failure states of the repairable system. It is then meaningful

to only 
ompute bounds of the reward of these states.



If the whole state spa
e of the 
hain is S

G

=

U

N

k=1

S

G

k

, then the reward is

R =

P

N

k=1

R

k

andR

k

= �(S

G

k

)

P

s2S

G

k

r(s)�(sjS

G

k

). We 
an regard the quantity

R

=k

=

P

s2S

G

k

r(s)�(sjS

G

k

) as the (steady state) 
onditional reward rate of the

measure on S

G

k

. To obtain bounds for R we may then 
ompute bounds for R

=k

and for �(S

G

k

). Note however that for some important models [8℄, only R

=k

are

needed. In this paper we 
on
entrate ourselves on the �rst problem (obviously,

these bounds must be 
omputed without 
omputing the distribution � on the

S

G

k

). More spe
i�
ally, as showed by many authors [8, 6, 7, 1℄, the most di�
ult

problem is frequently to derive a lower bound of R

=k

so that we only study this

problem in the following.

In the rest of the paper, we rename, for ease of reading,R

=k

as R and S

G

k

as S,

so that we study the 
omputation of a lower bound R

�

of R =

P

s2S

r(s)�(sjS).

Note that, in this paper, we assume that there is a single entry point in S,


orresponding to the beginning of servi
e. In fa
t, if this is not the 
ase, Courtois

has shown that there is a family (�

s

0

) of positive reals with

P

s

0

2in(S)

�

s

0

= 1

su
h that �(sjS) =

P

s

0

2in(S)

�

s

0

�

s

0

(sjS) where in(S) is the set of entry points

of S and �

s

0

the steady state probabilities of the modi�ed 
hain with all input

transitions of S "redire
ted" to s

0

. Hen
e, we may derive a bound R

�

from

bounds R

s

0

�

.

Evidently, a �rst lower bound of R is min

s2S

fr(s)g�(S). This is obviously

very poor, sin
e if 9s : r(s) = 0 then the lower bound is zero. To go further, we

suppose that, on
e again, the spa
e S itself, possesses a stru
ture whi
h will help

to de�ne tighter bounds. If intera
tions are sequen
es of elementary a
tions, S

may be partitioned into subsets (S

i

)

1�i�n

su
h that r is 
onstant in ea
h S

i

. If

r(s) = r

i

for s 2 S

i

, then R =

P

n

i=1

r

i

�(S

i

jS) (with �(AjB) =

P

s2A

�(sjB)).

We propose two methods to �nd a lower bound of R, whi
h are based on

an extension of the strong sto
hasti
 ordering of Markov 
hains to aggregated

versions of these 
hains (see Proposition 1) without 
omputing the bounded ag-

gregated 
hain. We 
all "adapted bounding matri
es" (see De�nition 1) matri
es

whi
h allow su
h an extension. The �rst method bounds the 
onditional proba-

bilities �(:jS) themselves. As we shall see in Se
tion 3 we obtain R

�

> 0 under


onditions dis
ussed at the end of the se
tion. To 
ope with systems whi
h do

not satisfy the required 
onditions of method 1, we propose in Se
tion 4 a se
ond

method, whi
h relaxes these 
onditions but needs more stru
tural properties.

3 First method

Let us re
all that we want to 
ompute a lower bound of R

S

=

P

s2S

r(s)�(sjS)

where S is a subspa
e of the whole state spa
e S of a Markov 
hain. Moreover

we assume that S may be partitioned into n subsets S

i

su
h that S

i

= fs 2

S j r(s) = r

i

g, so that R

S

=

P

n

i=1

r

i

�(S

i

jS). In this se
tion we shall dire
tly

lower bound ea
h �(S

i

jS) using properties of substo
hasti
 matri
es. From these



bounds b�

�

[i℄, we 
an derive the lower bound R

�

S

=

P

n

i=1

r

i

b�

�

[i℄ with R

�

S

> 0

under 
onditions explained at the end of the se
tion.

We then present a general 
lass of systems for whi
h our method is appli
able,

followed by an e�e
tive example of su
h a system.

3.1 Idea of the method

Our main obje
tive is to obtain bounds b�

�

[i℄ using only the parameters of the

model (for instan
e the generator Q of the 
hain) and not the steady state

probabilities on S whi
h will not be 
omputed. To this end, we �rst restate

the problem in the framework of DTMCs. As usual with the uniformization

method, we take P = I

jSj

+

1

M

Q

jS

whereM � max

s2S

f�Q[s; s℄g and Q

jS

is the

restri
tion of Q to S.

Sin
e, for DTMCs, we 
an establish a link between the steady state probabil-

ities and the matrix P via the so 
alled visit-ratios, we de�ne bounds for �(S

i

jS)

from bounds of matri
es derived from the matrix P .

Denoting by s

0

the unique entry state in S from the rest of the whole state

spa
e, it is well known that

�(sjS) =

V (s

0

; s)

P

s

0

2S

V (s

0

; s

0

)

(1)

where V (s

0

; s) denotes the mean number of visits to s from s

0

before leaving S.

To get a lower bound of �(S

i

jS), it is then su�
ient to 
ompute a lower bound of

P

s2S

i

V (s

0

; s) and an upper bound of

P

s

0

2S

V (s

0

; s

0

). The link with the matrix

P lies in the relation V (s

0

; s) =

�

P

k�0

P

k

�

[s

0

; s℄

A majorization of

P

s

0

V (s

0

; s

0

) by a dire
t (
omponentwise) majorization

of P may, in the general 
ase, provide a non stri
tly substo
hasti
 jSj � jSj

matrix P

+

so that the power sum of P

+

would have no meaning. Hen
e, we


ompute a majorization of �(S

i

jS) by an upper bounding aggregation on the

(S

i

), with a n�n matrix

b

P

+

, the bounding being "
ompatible" with the power

sum operator. On the other hand, we 
ompute a minorization of �(S

i

jS) by a

lower bounding (again a n� n matrix) of P [s

i

; S

j

℄ =

P

s

j

2S

j

P [s

i

; s

j

℄ 8s

i

2 S

i

.

Another advantage of the introdu
tion of these two n�n matri
es is that, sin
e

we 
ompute powers of matri
es, smaller matri
es will allow faster and more

a

urate 
omputations.

Note that, in fa
t, we may 
hoose di�erent partitions (S

i

) for the upper

bounding of

P

s

0

V (s

0

; s

0

) and the lower bounding of V (s

0

; s). However, for ease

of reading, we keep the same partition for the rest of this se
tion.

3.2 Bounding substo
hasti
 matri
es

In this se
tion, we provide a mean to de�ne bounds for a substo
hasti
 matrix

and its power series. The following lemma sets out su�
ient 
onditions for a

n� n matrix to lower bound V (s

0

; S

i

) =

P

s

i

2S

i

V (s

0

; s

i

).



Lemma 1. Let

b

P

�

be a n � n matrix su
h that 8i; j, 8s

i

2 S

i

;

b

P

�

[i; j℄ �

P [s

i

; S

j

℄. Then

0

�

X

k�0

(

b

P

�

)

k

1

A

[i; j℄ � min

s

i

2S

i

fV (s

i

; S

j

)g (2)

Proof. Sin
e V (s

i

; S

j

) =

�

P

k�0

P

k

�

[s

i

; S

j

℄, let us prove by indu
tion that for

any k: (

b

P

�

)

k

[i; j℄ � min

s

i

2S

i

fP

k

[s

i

; S

j

℄g.

The property is 
learly true from the hypothesis for k = 1. Assuming that

the property is true for k, we have

P

k+1

[s

i

; S

j

℄

def

=

X

s

j

2S

j

n

X

l=1

X

s

l

2S

l

P

k

[s

i

; s

l

℄:P [s

l

; s

j

℄ =

n

X

l=1

X

s

l

2S

l

P

k

[s

i

; s

l

℄:P [s

l

; S

j

℄

�

n

X

l=1

(

b

P

�

)

k

[i; l℄:

b

P

�

[l; j℄

from the hypothesis and the property for k.

In 
ontrast with the minorization, the majorization of V (s

0

; S

i

) imposes some


onstraints on the bounding matrix. Adaptation is an extension of the strong

sto
hasti
 ordering [10℄ 
on
ept between Markovian pro
esses to

b

P

+

and an

aggregation of P on the (S

i

). Monotoni
ity, like for Markovian pro
esses, ensures

the expansion of an initial strong sto
hasti
 ordering to any (dis
rete) time, by

transitions of the 
hain.

De�nition 1. A n�n matrix X is monotoni
 i� 81 � i < j � n; 81 � m �

n;

P

m

l=1

X [i; l℄ �

P

m

l=1

X [j; l℄

A n � n matrix

b

P

+

is an adapted (upper) bound of P with respe
t to the

partition (S

i

)

1�i�n

i� (i) it is monotoni
 and (ii) 81 � i � n; 8s 2 S

i

; 81 �

m � n;

P

m

j=1

P

s

0

2S

j

P [s; s

0

℄ �

P

m

j=1

b

P

+

[i; j℄

Adaptation is a su�
ient 
ondition to upper bound the visit-ratios, as stated

in the next proposition whi
h is the equivalent to the result for Markovian pro-


esses.

Proposition 1. If

b

P

+

is an adapted upper bound of P , then for any integer k

81 � i � n; 8s 2 S

i

; 81 � m � n;

m

X

j=1

X

s

0

2S

j

P

k

[s; s

0

℄ �

m

X

j=1

(

b

P

+

)

k

[i; j℄ (3)

Proof. The proof is done by indu
tion.

� For k = 0, if i > m the inequality resumes to 0 � 0, and if i � m, it resumes

to 1 � 1.



� Let us assume that the property is true for k.

A =

m

X

j=1

(

b

P

+

)

k+1

[i; j℄ =

m

X

j=1

n

X

l=1

(

b

P

+

)

k

[i; l℄

b

P

+

[l; j℄ =

n

X

l=1

(

b

P

+

)

k

[i; l℄

m

X

j=1

b

P

+

[l; j℄

Using a 
lassi
al transformation

A =

"

n

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[n; j℄

3

5

.

.

.

+

"

t

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[t; j℄�

m

X

j=1

b

P

+

[t+ 1; j℄

3

5

.

.

.

+

"

1

X

l=1

(

b

P

+

)

k

[i; l℄

#

2

4

m

X

j=1

b

P

+

[1; j℄�

m

X

j=1

b

P

+

[2; j℄

3

5

By monotoni
ity of

b

P

+

, ea
h se
ond term of the produ
ts is positive, hen
e we

may apply the indu
tive inequality on the �rst terms for s 2 S

i

A � B =

"

n

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[n; j℄

3

5

.

.

.

+

"

t

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[t; j℄�

m

X

j=1

b

P

+

[t+ 1; j℄

3

5

.

.

.

+

"

1

X

l=1

X

s

0

2S

l

P

k

[s; s

0

℄

#

2

4

m

X

j=1

b

P

+

[1; j℄�

m

X

j=1

b

P

+

[2; j℄

3

5

We now apply the inverse transformation to B: B =

P

n

l=1

�

P

s

0

2S

l

P

k

[s; s

0

℄

�

h

P

m

j=1

b

P

+

[l; j℄

i

and sin
e

b

P

+

is an adapted upper bound of P , B � C =

P

n

l=1

�

P

s

0

2S

l

P

k

[s; s

0

℄

�

h

P

m

j=1

P

s

00

2S

j

P [s

0

; s

00

℄

i

. Rearranging the order of sum-

mation, we get C =

P

m

j=1

P

s

00

2S

j

P

n

l=1

P

s

0

2S

l

P

k

[s; s

0

℄P [s

0

; s

00

℄ =

P

m

j=1

P

s

00

2S

j

P

k+1

[s; s

00

℄

3.3 Bounds for 
onditional steady state probabilities

Gathering previous results, we 
an state the following theorem whi
h provides a

lower bound of �(S

i

jS). Then we explain how to obtain an upper bound �(S

i

jS)

using these lower bounds and relations established above.



Theorem 1. Let

b

P

�

and

b

P

+

be the matri
es of lemma 1 and proposition 1,

and let

b

P

+

is stri
tly substo
hasti
. Then, for any i

�(S

i

jS) �

�

P

k�0

(

b

P

�

)

k

�

[1; i℄

P

n

j=1

�

P

k�0

(

b

P

+

)

k

�

[1; j℄

(4)

Proof. From (1), and 
hoosing i = 1 and s

i

= s

0

we apply lemma 1 and propo-

sition 1 with m = n and taking the limit in the sum over k.

From the previous bounds, we 
an now 
ompute an upper bound of �(S

i

jS).

The derivation of this bound is similar to the 
omplement property used for

probability distributions: Pr(SnA) = 1� Pr(A) ) Pr(A) � 1� Pr

�

(SnA) with

Pr

�

(SnA) � Pr(A).

Let V =

P

s2S

V (s

0

; s), we have from proposition 1, (with

b

P

+

stri
tly sub-

sto
hasti
):

P

i

j=1

V (s

0

; S

j

) �

P

i

j=1

�

P

k�0

(

b

P

+

)

k

�

[1; j℄

def

= V

+

i

. From lemma 1,

V �

P

n

j=1

�

P

k�0

(

b

P

�

)

k

�

[1; j℄

def

= V

�

. Sin
e �(S

i

jS) =

P

s2S

i

V (s

0

;s)

V

,

P

i

j=1

�(S

j

jS)

=

P

i

j=1

V (s

0

;S

j

)

V

�

V

+

i

V

�

. Hen
e

�(S

i

jS) � maxf

V

+

i

V

�

�

i�1

X

j=1

�

�

(S

j

jS); 1�

X

j 6=i

�

�

(S

j

jS)g (5)

where �

�

(S

j

jS) is the lower bound given by the theorem 1.

The e�e
tive 
omputation of the above bounds of �(S

i

jS) involves the nu-

meri
al 
al
ulation of two power series of matri
es whi
h are performed with

standard methods [9℄.

3.4 A general appli
ation framework

S

1


S

2


S

n-1


S

n


S


s

0


S


Fig. 1. Stru
ture of the state spa
e of the general appli
ation framework (method 1)



In this se
tion we show how to build matri
es

b

P

�

and

b

P

+

for a large 
lass of

systems. The stru
ture of these systems must be su
h that we should be able to

derive the

b

P

�

and

b

P

+

matri
es dire
tly from the model. Moreover, the memory

requirements for the 
omputation of

b

P

�

and

b

P

+

must be polynomial, or even

linear, with respe
t to the size of the model. We assume that the stru
ture of the

state spa
e S is as depi
ted in Figure 1 and that there is only one entry state

in S, whi
h belongs to S

1

. Finally, we impose that the system may leave S from

ea
h state of S

n

.

The de�nition of

b

P

�

is the easiest one. We simply take

b

P

�

=

0

B

B

B

B

B

B

�

� �

� �

.

.

.

.

.

.

.

.

.

�

�

1

C

C

C

C

C

C

A

with

b

P

�

[i; j℄

8

<

:

� min

s2S

i

P

s

0

2S

j

P [s; s

0

℄ if j = i

or j = i+ 1

= 0 otherwise

It is 
lear that

b

P

�

ful�lls the hypothesis of lemma 1.

The idea behind the de�nition of an upper bound

b

P

+

is to lower the tran-

sition probabilities of leaving S and to lower the "advan
e" from S

i

to S

i+1

.

Let us suppose that the stru
ture of the system allows us to derive to se-

quen
es (L

i

) and (N

i

) with the following properties. Let us denote by Leave(s) =

1�

P

s

0

2Snfsg

P [s; s

0

℄ the transition probability of leaving S from s, then 81 �

i � n; 0 � L

i

� min

s2S

l

;l�i

fLeave(s)g (L

n

> 0 sin
e the 
hain may leave S with

a non null probability from ea
h state of S

n

). L

n�1

lower bounds the transition

probability for the 
hain to leave S from S

n�1

or S

n

and L

1

lower bounds the

transition probability for the 
hain to leave S. (L

i

) is obviously an in
reasing

sequen
e.

The N

i

(Next), instead, has to lower bound the transition probabilities from

any state of S

i

to the set S

i+1

: 0 < N

i

� min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄. Note that we

propose the 
ondition 0 < N

i

rather than 0 � N

i

, whi
h seems quite natural,

and provides a su�
ient 
ondition for

b

P

+

to be stri
tly substo
hasti
 (see the

proof of lemma 2). With these 
onditions, we de�ne the matrix

b

P

+

=

0

B

B

B

B

B

B

�

1� L

1

�N

1

N

1

1� L

2

�N

2

N

2

.

.

.

.

.

.

.

.

.

N

n�1

1� L

n

1

C

C

C

C

C

C

A

with

b

P

+

[i; j℄ = 0 if

j 6= i or j 6= i+ 1

Lemma 2.

b

P

+

is stri
tly substo
hasti
 and is an adapted upper bound of P with

respe
t to the partition (S

i

)

1�i�n

.

Proof. �

b

P

+

is stri
tly substo
hasti
: for 1 � i � n�1:

b

P

+

[i; i℄ = 1�L

i

�N

i

� 1�

min

s2S

l

;l�i

f1�

P

s

0

2S

P [s; s

0

℄g�min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ = max

s2S

l

;l�i

P

s

0

2S

P [s; s

0

℄�



min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ � max

s2S

i

P

s

0

2S

P [s; s

0

℄�min

s2S

i

P

s

0

2S

i+1

P [s; s

0

℄ �

0

For all other values of j, 
learly

b

P

+

[i; j℄ � 0. Moreover

P

j

b

P

+

[i; j℄ = 1�L

i

�

1. Sin
e 1� L

n

< 1, and 8i � n� 1; N

i

> 0,

b

P

+

is stri
tly substo
hasti
.

�

b

P

+

is monotoni
: we have to show that for i < j andm given:A =

P

m

l=1

b

P

+

[i; l℄ �

P

m

l=1

b

P

+

[j; l℄ = B and by transitivity, it is su�
ient to prove the property for

j = i+ 1. We have the following situations:

m A B

m < i 0 0

m = i

b

P

+

[i; i℄ 0

m = i+ 1 1� L

i

1� L

i+1

�N

i+1

� 1� L

i+1

and A � B sin
e

(L

i

) is in
reasing

m > i+ 1 1� L

i

1� L

i+1

(same as above)

�

b

P

+

is an adapted upper bound of P : given i; j;m and s 2 S

i

, let us prove that

A =

P

m

j=1

P

s

0

2S

j

P [s; s

0

℄ �

P

m

j=1

b

P

+

[i; j℄ = B.

For m < i: A = B = 0.

For m = i: A =

P

s

0

2S

i

P [s; s

0

℄ = 1�

P

s

0

=2S

P [s; s

0

℄�

P

s

0

2S

i+1

P [s; s

0

℄ from

the properties of the 
hain in S, so that A � 1 � (1 �

P

s

0

2S

P [s; s

0

℄) � N

i

�

1� L

i

�N

i

= B

Form > i:A =

P

s

0

2S

i

P [s; s

0

℄+

P

s

0

2S

i+1

P [s; s

0

℄ = 1�Leave(s) � 1�L

i

= B

again from the properties of the 
hain in S.

Above results were established with the hypothesis that we have only one

entry point belonging to S

1

. Courtois and Semal [2℄ showed that if we have a

set S

(0)

1

of entry points in S

1

, there are positive reals (a

s

)

s2S

(0)

1

su
h that the

steady state distribution is a linear 
ombination of the steady state distributions

�

(s)


orresponding to the modi�ed Markov 
hain where all inputs in S

1

are

"redire
ted" to s 2 S

(0)

1

: � =

P

s2S

(0)

1

a

s

�

(s)

, with

P

s2S

(0)

1

a

s

= 1. Sin
e our

bounds do not depend on the a
tual entry point in S

1

, we see that they are still

valid for all the distributions �

(s)

, therefore for any distribution � 
orresponding

to a 
hain without a unique entry point in S

1

.

3.5 An example

We illustrate the general framework exposed above and we present numeri
al

results for a detailed example of a system. In the framework of 
lients/servers

systems, let us assume that 
lients request a servi
e that is 
omposed of two

phases: 
omputation of the requested results and transmission of these results

from the server to the 
lient. The 
omputation may be done by n
 distin
t

units with exponential servi
e distribution with di�erent rates �

l

, and the trans-

mission may be 
arried out in nt di�erent ways, also with exponential servi
e

distribution with rates �

m

. Therefore, probability distributions of 
omputation

and transmission phases are hyperexponential. Here, S is the set of states with



n�1 requests being served (either doing a
tual servi
e or being transmitted) by

a set of servers, S

i

is the set of states where the results of i� 1 
lient's requests

of the n� 1 are being transmitted, 
omputed but not yet re
eived by the 
lient,

and n� i requests for whi
h the server is still in the 
omputation phase. From a

state in S

i

, a server may begin its transmission of results, whi
h means that the


hain leaves S

i

and enters S

i+1

, or a new request enters the servi
e subsystem

or one 
lient has re
eived its results, whi
h means that the 
hain leaves S, or an

a
tion independent of the servi
es o

urs, whi
h is translated by a transition of

the 
hain inside S

i

. We suppose that the system may a
tually leave the servi
e

area (i.e. S

n

) when all requests are in the re
eption of results phase. It 
ould not

be the 
ase: for example an Erlang distribution (with more than one stage) for

transmission, generates (Markovian) entry states in S

n

that do not ful�ll this


ondition.

Computation of the bounding matri
es First, let us note that expressions (4)

and (5) for bounds do not depend on the a
tual value of M involved in the

uniformization pro
edure. Sin
e it is easy to 
ompute one su
h value from the

model of the system, we simply assume here that M is �xed.

We now show how to 
ompute the matri
es

b

P

�

and

b

P

+

. Le us denote by

�

min

; �

max

; �

min

and �

max

the respe
tive minimum and maximum of the various

rates of 
omputation and transmission. We 
hoose

b

P

�

[i; i+ 1℄ =

(n�i)�

min

M

and

sin
e

b

P

�

[i; i℄must ful�ll

b

P

�

[i; i℄ � min

s2S

i

f1�

P

s

0

=2S

i

q

s;s

0

M

g, we set

b

P

�

[i; i℄ = 1�

(n�i)�

max

+(i�1)�

max

+x

max

M

where x

max

denotes an upper bound of the arrival rate

of new requests. A possible value for M is then M = (n� 1)maxf�

max

; �

max

g+

x

max

+ 1.

For what 
on
erns

b

P

+

, we de�ne the quantities L

i

andN

i

. Sin
e 
ontributions

to Leave(s) 
ome from internal (end of servi
e of a 
lient'request) and external

(new request) events of S, we 
an minorize Leave(s) using a minorization of the

arrival rates (x

min

). So we take L

i

=

(i�1)�

min

+x

min

M

. On the other side, we 
hoose

N

i

=

(n�i)�

min

M

.

Complexity redu
tion Let us evaluate the redu
tion of the state spa
e using the

aggregated states 
orresponding to the S

i

instead of the subsets S

i

themselves.

As we 
an 
hoose one 
omputation among n
 and one transmission among nt ,

jS

i

j =

�

n�i+n
�1

n�1

�

�

�

i�1+nt�1

i�1

�

. Sin
e minfn� i; i� 1g � b

n�1

2


, we have, with

in
reasing values of n,

�

n�i+n
�1

n�1

�

= �((n�1)

n
�1

) = �(n

n
�1

) or

�

i�1+nt�1

i�1

�

=

�((i� 1)

nt�1

) = �(n

nt�1

), that is to say, jS

i

j � �(n

minfnt;n
g�1

). For example,

with n = 100;n
 = 5 and nt = 10 we substitute one element for a subset S

i

with

about 10

5

elements.

Numeri
al results We have 
omputed bounding ve
tors b�

�

and b�

+

for a simpli-

�ed version of our example: we assume only two stages in the hyperexponential

distribution for 
omputation, and also two stages in the one for transmission.

We have �xed n = 10 and x

min

= x

max

= 0. The �rst results are about the



quality of the bounds, with respe
t to the values of �

min

; �

max

; �

min

and �

max

.

As quality 
riterion, we 
ompare the value 
 =

P

n

i=1

b�

�

[i℄ to 1: the more 
 is

near from 1, the better will be the lower bound. To obtain an indi
ation on the

variation of 
 with respe
t to the rates � and �, we have 
omputed 
 for di�erent

ratios �

�

=

�

max

��

min

�

min

and �

�

=

�

max

��

min

�

min

(0.1, 0.5, 1) as well as for various

ratios

�

min

�

min

(0.1, 1, 10). Results are reported in table 1. It 
learly appears, as


ase

�

min

�

min

�

�

�

�

P

n

i=1

b�

�

[i℄

1 0.01 0.1 0.1 0.9023

2 0.1 0.1 0.1 0.8660

3 0.1 0.1 0.5 0.7995

4 0.1 0.5 0.1 0.5970

5 0.1 0.5 0.5 0.5585

6 0.1 1 0.1 0.4224

7 1 0.1 0.1 0.7596

8 1 0.5 0.1 0.3846

9 10 0.1 0.1 0.5660

10 10 0.5 0.5 0.1453

Table 1. Summary of numeri
al results

expe
ted, that the lower is

�

min

�

min

, the better is the bound.

i �

�

b�

�

min

s

0

b�

(s

0

)

max

s

0

b�

(s

0

)

b�

+

�

+

1 0.0766025 0.5407474 0.5856063 0.6039496 0.6747501 0.1172291

2 0.1640449 0.2457943 0.2940281 0.3005905 0.3797969 0.2635029

3 0.2127773 0.0662072 0.0841023 0.0922648 0.2002099 1.1699492

4 0.2555454 0.0117033 0.0157206 0.0186712 0.1457060 6.8037702

5 0.2942371 0.0014186 0.0020100 0.0025982 0.1354212 51.121

6 0.3298200 0.0001194 0.0001782 0.0002516 0.1341221 532.16846

7 0.3628701 0.0000069 0.0000108 0.0000167 0.1340096 8012.1245

8 0.3937673 0. 4.306E-07 7.304E-07 0.1340029 183468.89

9 0.4227813 0. 0. 0. 0.1340027 7083390.2

10 0.4501153 0. 0. 0. 0.1340027 6.073E+08

Table 2. Comparison between bounds and exa
t values for b� (
ase 2)

Given these results, we have 
omputed the possible exa
t values b�

(s

0

)


or-

responding to modi�ed 
hain with entry point in s

0

2 S

1

. We obtain b�

(s

0

)

by �rst 
omputing the matrix P and then visit-ratios matrix V (V [s; s

0

℄ =

�

P

k�0

P

k

�

[s; s

0

℄) (all matri
es are jSj�jSj; in our example, jSj = 220). We have


ompared the ve
tors b�

(s

0

)

and b�

�

for the �rst 
ases giving high 
 values: re-



i �

�

b�

�

min

s

0

b�

(s

0

)

max

s

0

b�

(s

0

)

b�

+

�

+

1 0.1201605 0.5407474 0.6145978 0.6326504 0.7456626 0.1786329

2 0.2747293 0.2044843 0.2819420 0.2896483 0.4093995 0.4134366

3 0.3978016 0.0433919 0.0720558 0.0795974 0.2483071 2.1195382

4 0.5055382 0.0058865 0.0119049 0.0142554 0.2108017 13.787473

5 0.5968059 0.0005392 0.0013374 0.0017443 0.2054544 116.78769

6 0.6727950 0.0000340 0.0001038 0.0001479 0.2049492 1384.7932

7 0.7353948 0.0000015 0.0000055 0.0000086 0.2049167 23863.654

8 0.7865970 0. 0. 0. 0.2049153 626920.53

9 0.8282621 0. 0. 0. 0.2049152 27810027.

10 0.8620358 0. 0. 0. 0.2049152 2.743E+09

Table 3. Comparison between bounds and exa
t values for b� (
ase 3)

sults are presented in Tables 2 and 3. In these tables, �

�

(i) =

b�

�

[i℄�min

s

0

b�

(s

0

)

[i℄

min

s

0

b�

(s

0

)

[i℄

gives the relative error between min

s

0

2S

1

b�

(s

0

)

[i℄ and b�

�

[i℄. Likewise, �

+

(i) =

b�

+

[i℄�max

s

0

b�

(s

0

)

[i℄

max

s

0

b�

(s

0

)

[i℄

. We 
an observe that the relative error for the lower bound

in
reases with i, and less qui
kly in the 
ase 2 than in the 
ase 3.

Finally, let us note that, sin
e we should obtain a non null lower bound, it is

ne
essary that, either r

1

6= 0 or N

1

6= 0 if r

1

= 0, and more generally, N

i

6= 0.

The 
ondition N

1

6= 0, also pointed out by other authors [7℄, means that, if

the reward rate is null in S

1

, the system must be able (i.e. with a non null

probability) to enter S

2

(beginning of the last phase of servi
e for one request)

from ea
h state of S

1

. Like for S

n

(and L

n

) this may not be always the 
ase.

This justi�es the introdu
tion of another method whi
h relaxes this 
onstraint.

We make up for the weakening of the 
onditions on S

1

with more stru
tural

information about the state spa
e of the 
hain.

4 A more elaborated method

We derive in this se
tion another lower bound of R

S

=

P

s2S

r(s)�(sjS) where

S is a subspa
e of the whole state spa
e S, partitioned in n subspa
es S

i

, so that

R

S

=

P

n

i=1

r

i

�(S

i

jS).

In many situations, we are interested in systems for whi
h the sequen
e (r

i

)

is in
reasing : the more the request is in progress, the greater is the asso
iated

reward. Hen
e, in 
ontrast with the �rst method, we do not 
ompute a 
ompo-

nentwise minorization of b�

=S

(b�

=S

[i℄ = �(S

i

jS)). Instead, we de�ne a probability

ve
tor b�

�

su
h that b�

�

<

st

b�

=S

where <

st

denotes the strong sto
hasti
 order-

ing. Thus we get from <

st

properties

R

�

S

def

=

n

X

i=1

r

i

b�

�

[i℄ �

n

X

i=1

r

i

b�

=S

[i℄ = R

S



The distribution b�

�

is 
omputed thanks to a re�nement of the partition of S:

ea
h S

i

is now itself partitioned into (S

i;j

)

1�j�n

i

. Using the forward equations

of the 
hain on S, and from results of the previous se
tion, we de�ne indu
tively

b�

�

[i℄ starting with i = 1.

Here also, we 
ould introdu
e di�erent partitions (S

i;j

) of a given S

i

for upper

and lower bounding of probabilities. We keep only one partition for both bounds

for readability.

4.1 Dis
rete strong sto
hasti
 ordering

We restate in our spe
i�
 
ontext, the equivalen
e of two of the de�nitions of

strong sto
hasti
 ordering between two probability distributions over f1; : : : ; ng

(proofs of the lemmas are omitted due to la
k of spa
e and may be found in [4℄).

Lemma 3. Let p and q be two probability distributions over f1; : : : ; ng and m �

n, su
h that 81 � i � m;

P

i

j=1

p

j

�

P

i

j=1

q

j

and

P

m

j=1

p

j

=

P

m

j=1

q

j

.

Then, for any in
reasing sequen
e (r

i

)

1�i�m

of positive numbers:

P

m

i=1

p

i

r

i

�

P

m

i=1

q

i

r

i

A su�
ient 
ondition to ensure the hypothesis of the previous lemma is given

by the 
lassi
al 
omparison 
riterion for sums of positive numbers.

Lemma 4. Let p and q be two probability distributions over f1; : : : ; ng su
h that

P

m

j=1

p

j

=

P

m

j=1

q

j

(m � n). If, 81 < j � m,

p

j

p

j�1

�

q

j

q

j�1

then 81 � i � m,

P

i

j=1

p

j

�

P

i

j=1

q

j

.

Applying these lemmas to our problem, we only need to �nd a probability distri-

bution b�

�

su
h that

b�

�

[i+1℄

b�

�

[i℄

�

�(S

i+1

)

�(S

i

)

=

�(S

i+1

jS)

�(S

i

jS)

. In fa
t, to 
ompute b�

�

, it is

su�
ient to de�ne a sequen
e (�

i

) su
h that �

1

= 1 and 81 � i � n� 1; �

i+1

�

�(S

i+1

)

�(S

i

)

, sin
e we 
an then take b�

�

[i℄ =

�

i

�

i�1

����

1

P

n

i=1

�

i

�

i�1

����

1

.

4.2 Computation of the minorization ratios

In this se
tion we provide an algorithm to 
ompute the ratios �

i

. Let us �rst

set some notations: �

i

(row ve
tor with jS

i

j 
omponents) is the restri
tion of

� to S

i

; �

=i

(row ve
tor with jS

i

j 
omponents) is the 
onditional version of �

i

:

�

=i

[s℄ =

�[s℄

�(S

i

)

; b�

=i

(row ve
tor with dimension n

i

) is the 
onditional steady

state probability ve
tor on the aggregated states S

i;j

of S

i

: b�

=i

[j℄ = �(S

i;j

jS

i

) =

P

s2S

i;j

�[s℄

�(S

i

)

; Q is the generator of the Markov 
hain. Sin
e the state spa
e S is

partitioned into disjoint subsets S

i

, sequentially visited, a transition o

urs only

inside S

i

or from S

i

to S

i+1

. We may then view Q as a blo
k matrix Q = [Q

i;j

℄.

Q

i;j

gives the transition rates from states of S

i

to states of S

j

and is a non null

matrix only for j = i; i+ 1.



Prin
iple of the algorithm We start from the set of equilibrium equations

�

1

Q

12

+ �

2

Q

22

= 0

.

.

.

�

i�1

Q

i�1;i

+ �

i

Q

i;i

= 0 (6)

.

.

.

�

n�1

Q

n�1;n

+ �

n

Q

n;n

= 0

Equation (6) may be rewritten (Q

i;i

is regular sin
e Q is a generator):

�

i

= ��

i�1

:Q

i�1;i

:Q

�1

i;i

(7)

whi
h is the basis for the iterative 
omputation of the �

i

.

The ith step of the algorithm 
omputes two ve
tors b�

�

=i

and b�

+

=i

su
h that

b�

�

=i

� b�

=i

� b�

+

=i

and the number �

i

�

�(S

i

)

�(S

i�1

)

from the set of values previously


omputed:

81 � j � i� 1

(

b�

�

=j

and b�

+

=j

with b�

�

=j

� b�

=j

� b�

+

=j

�

j

with �

j

�

�(S

j

)

�(S

j�1

)

Note that, although we only want to 
ompute the �

i

, we need to introdu
e

the bounds b�

�

=j

and b�

+

=j

: as we shall see, b�

�

=i�1

is required to de�ne �

i

and b�

�

=i�1

and b�

+

=i�1

are required to 
ompute b�

�

=i

.

Initial step Let P

1

be a "pseudo uniformized" (sin
e Q

1;1

is not a generator)

substo
hasti
 matrix asso
iated with Q

1;1

andM � max

s2S

f�q

s;s

g: P

1

= I

jS

1

j

+

1

M

Q

1;1

, with I

jS

1

j

the jS

1

j Identity matrix. We 
hoose

b

P

�

1

(n

1

�n

1

matrix) su
h

that

b

P

�

1

[x; y℄ � min

s2S

1;x

f

P

s

0

2S

1;y

P

1

[s; s

0

℄g and we 
ompute an upper adapted

(to P ) matrix

b

P

+

1

. Like with the �rst method, using the visit-ratios (

b

P

�

1

ful�lls

the hypothesis of lemma 1 and

b

P

+

1

ful�lls those of proposition 1 with respe
t to

the partition (S

1;j

) of S

1

), we set

b�

�

=1

[j℄ =

�

P

k�0

(

b

P

�

1

)

k

�

[1; j℄

P

n

1

l=1

�

P

k�0

(

b

P

+

1

)

k

�

[1; l℄

and b�

+

=1

[j℄ = 1�

X

l6=j

b�

�

=1

[l℄

sin
e b�

=1

[j℄ = 1�

P

l6=j

b�

=1

[l℄.

Computations for a step i � Let us �rst give another expression of �Q

�1

i;i



If �Q

i;i

= [q

0

s;s

0

℄ we have: q

0

s;s

= �q

s;s

> 0 and q

0

s;s

0

= �q

s;s

0

< 0 for s 6= s

0

,

and q

s;s

�

P

s

0

6=s

q

s;s

0

, sin
e Q is a generator. Let M

i

� max

s2S

i

f�q

s;s

g and P

i

the substo
hasti
 (jS

i

j � jS

i

j) matrix su
h that �Q

i;i

=M

i

(I � P

i

) so that

P

i

[s; s

0

℄ =

�

q

s;s

M

i

if s = s

0

1 +

q

s;s

0

M

i

otherwise

Sin
e Q

i;i

is regular, �Q

�1

i;i

=

1

M

i

:

P

k�0

P

k

i

So, from equation (7)

�

i

=

1

M

i

:�

i�1

:Q

i�1;i

:

X

k�0

P

k

i

=

�(S

i�1

)

M

i

:�

=i�1

:Q

i�1;i

:

X

k�0

P

k

i

(8)

� Computation of b�

�

=i

Sin
e b�

=i

[j℄ =

1

�(S

i

)

�(S

i;j

), we 
ompute a lower bound of �(S

i;j

) and an

upper bound of �(S

i

).

� Lower bound of �(S

i;j

)

From (8)

�(S

i;j

) =

1

M

i

:

X

s

00

2S

i;j

X

s

0

2S

i

X

s2S

i�1

�

i�1

[s℄:Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

Moving the summation over s

00

�(S

i;j

) =

1

M

i

:

X

s

0

2S

i

X

s2S

i�1

�

i�1

[s℄:Q

i�1;i

[s; s

0

℄:

X

s

00

2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

Splitting the summation over s

0

and moving it partially

�(S

i;j

) =

1

M

i

:

n

i

X

v=1

X

s2S

i�1

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

X

s

00

2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

0

; s

00

℄

If we have a matrix

b

P

�

i

(n

i

�n

i

, to be 
omputed) su
h that

b

P

�

i

[x; y℄ � min

s2S

i;x

f

P

s

0

2S

i;y

P

i

[s; s

0

℄g then, from lemma 1

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

X

s2S

i�1

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

We now split the summation over s

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

X

s2S

i�1;u

�

i�1

[s℄:

X

s

0

2S

i

;v

Q

i�1;i

[s; s

0

℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄



and we introdu
e a matrix

b

Q

�

i�1;i

(n

i�1

�n

i

, to be 
omputed) su
h that

b

Q

�

i�1;i

[x; y℄ �

min

s2S

i�1;x

f

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄g. Hen
e

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

X

s2S

i�1;u

�

i�1

[s℄:

b

Q

�

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

from the property of the ve
tor b�

�

=i�1

we obtain

�(S

i;j

) �

1

M

i

:

n

i

X

v=1

n

i�1

X

u=1

�(S

i�1

)b�

�

=i�1

[u℄:

b

Q

�

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[v; j℄

that is to say

�(S

i;j

) �

�(S

i�1

)

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

[j℄ (9)

� Upper bound of �(S

i

)

From (8), and with the same kind of derivation

�(S

i

) = �

i

(S

i

)

�(S

i�1

)

M

i

:

X

s2S

i

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

�(S

i

) =

�(S

i�1

)

M

i

:

n

i

X

j=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i

Q

i�1;i

[s

0

; s

00

℄:

X

s2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

�(S

i

) =

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

X

s2S

i;j

0

�

X

k�0

P

k

i

1

A

[s

00

; s℄

Let

b

P

+

i

(to be 
omputed) be a stri
tly substo
hasti
 and upper bounding n

i

�n

i

matrix with respe
t to the partition (S

i;j

) of S

i

, then, from Proposition 1,

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

X

s

0

2S

i�1

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

X

s

0

2S

i�1;u

�

=i�1

[s

0

℄:

X

s

00

2S

i;v

Q

i�1;i

[s

0

; s

00

℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

Let

b

Q

+

i�1;i

(n

i�1

� n

i

, to be 
omputed) be su
h that

b

Q

+

i�1;i

[x; y℄ � max

s2S

i�1;x

f

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄g. Then,

�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

X

s

0

2S

i�1;u

�

=i�1

[s

0

℄:

b

Q

+

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄



�(S

i

) �

�(S

i�1

)

M

i

:

n

i

X

j=1

n

i

X

v=1

n

i�1

X

u=1

b�

+

=i�1

[u℄:

b

Q

+

i�1;i

[u; v℄:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

[v; j℄

from the property of the ve
tor b�

+

=i�1

, whi
h may rewritten as

�(S

i

) �

�(S

i�1

)

M

i

:b�

+

=i�1

:

b

Q

+

i�1;i

:

0

�

X

k�0

(

b

P

+

i

)

k

1

A

:1

T

n

i

(10)

with 1

T

n

i

the 
olumn ve
tor with n

i


omponents, all equal to 1.

Finally, by (9) and (10), we set

b�

�

=i

[j℄

def

=

b�

�

=i�1

:

b

Q

�

i�1;i

:

�

P

k�0

(

b

P

�

i

)

k

�

[j℄

b�

+

=i�1

:

b

Q

+

i�1;i

:

�

P

k�0

(

b

P

+

i

)

k

�

:1

T

n

i

(11)

� Computation of b�

+

=i

Sin
e b�

=i

[j℄ = 1�

P

l6=j

b�

=i

[l℄, we simply de�ne b�

+

=i

[j℄

def

= 1�

P

l6=j

b�

�

=i

[l℄.

� Computation of �

i

From (9), we have �(S

i

) �

�(S

i�1

)

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

�

P

k�0

(

b

P

�

i

)

k

�

:1

T

n

i

and we


an de�ne

�

i

def

=

1

M

i

:b�

�

=i�1

:

b

Q

�

i�1;i

:

0

�

X

k�0

(

b

P

�

i

)

k

1

A

:1

T

n

i

(12)

Note that we must have �

2

6= 0 to obtain non trivial lower bounds b�

�

[i℄.

From 12, this is equivalent to the existen
e of j and k su
h that b�

�

=1

[j℄ > 0 and

b

Q

�

1;2

[j; k℄ > 0. This means that there must be a subset S

1;j

of S

1

and a subset

S

2;k

of S

2

su
h that from ea
h state of S

1;j

(and not of S

1

as in the �rst method),

the system must be able to jump into S

2;k

.

4.3 Example

The goal of this se
tion is to explain how the various matri
es required by the

algorithm just presented may be derived from the model of the system. Numer-

i
al results are presented in the extended version [4℄ of the paper. We study

a modi�ed version of the example of Se
tion 3.5 and we 
on
entrate ourselves

on the 
omputation phase of the request servi
e in the sub-state spa
e S

i

of

S (n � i requests in 
omputation phase, i � 1 requests in transmission phase).

This 
omputation phase is now made up of four steps, the transmission phase

being un
hanged. An initial stage (rate �

1

) is followed by a fork produ
ing two

"sub-requests", with rate �

2

and �

3

. The join of the sub-requests (rate �

4

) ends

the 
omputation phase. The distribution of the 
omputation phase servi
e may

be viewed as a phase-type distribution of the type depi
ted in �gure 2.
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Fig. 2. Distribution of the 
omputation phase servi
e (method 2)

The 
riti
al 
hoi
e of the method is the de�nition of the partitions S

i;j

for

the minorization and majorization in the algorithm (the same partition was used

in the presentation of the algorithm). This 
hoi
e is a tradeo� between the 
om-

plexity of the 
omputations, the ful�llment of the hypothesis of the theorem 1,

for the matri
es

b

P

�

i

and

b

P

+

i

, the tightness of the bounds and the information

dire
tly available from the model. Also note that the partition 
orresponding to

the minorization must be a re�nement of the one for the majorization due to

the bound expressions of Se
tion 3.3 and the 
omputation of b�

+

=i

.

In our example, we may 
hoose S

i;j

as the set of states for whi
h j steps have

been done by the whole n�i requests and we 
an 
ompute quantities L

i;j

andN

i;j

(the L

i

and N

i

values of the method 1) to de�ne a b�

+

=i

as in method 1. For what


on
erns the minorization, these S

i;j

are a too 
oarse partition, providing a weak

bounding ve
tor b�

�

=i

: we need more information about the advan
e of requests in

the di�erent steps to de�ne a valuable lower bound. Hen
e we shall take S

i;�|

as

the partition for the minorization, where �| = (j

1

; j

2

; j

3

; j

4

),

P

4

k=1

j

k

= n� i and

j

k

is the number of requests in kth step. It is straightforward to verify that this

partition is a re�nement of the majorization partition. Whatever the matrix, we

may 
hoose any valueM

i

su
h that M

i

� max

s2S

i

f�q

s;s

g. For instan
e, we may

set M

i

= (n� i)maxf�

1

; �

2

+ �

3

; �

2

; �

3

; �

4

g+ (i� 1)�

max

+ x

max

+ 1.

Minorization Here, S

i;�|

= fsjj

1

requests in initial step, j

2

requests with one step

done, : : : ; j

4

requests with three steps doneg.

� Re
alling that we must have

b

P

�

i

[x; y℄ � min

s2S

i;x

P

s

0

2S

i;y

P

i

[s; s

0

℄, we set

b

P

�

i

[�|; �|

0

℄ =

8

>

>

>

>

>

<

>

>

>

>

>

:

j

1

�

1

M

i

if �|

0

= (j

1

� 1; j

2

+ 1; j

3

; j

4

)

j

2

(�

2

+�

3

)

M

i

if �|

0

= (j

1

; j

2

� 1; j

3

+ 1; j

4

)

j

3

minf�

2

;�

3

g

M

i

if �|

0

= (j

1

; j

2

; j

3

� 1; j

4

+ 1)

1�

r(�|;�|

0

)

M

i

if �|

0

= �|

0 otherwise

with r(�|; �|

0

) = j

1

�

1

+ j

2

(�

2

+ �

3

) + j

3

maxf�

2

; �

3

g+ j

4

�

4

+ (i� 1)�

max

+ x

max

.



� We must also have

b

Q

�

i�1;i

[x; y℄ � min

s2S

i�1;x

P

s

0

2S

i;y

Q

i�1;i

[s; s

0

℄ so that we

de�ne

b

Q

�

i�1;i

[�|; �|

0

℄ = j

4

�

4

if �|

0

= (j

1

; j

2

; j

3

; j

4

� 1) and 0 otherwise.

Majorization Here, S

i;j

= fsjj steps have be doneg (0 � j � 3(n� i)).

� We de�ne

b

P

+

i

as with method 1 (but applied to the S

i;j

), whi
h ensures

that

b

P

+

i

is a stri
tly substo
hasti
 and upper bounding matrix. Sin
e we need

L

i;j

� min

s2S

i;l

;l�j

fLeave(s)g, we take L

i;j

=

�

4

lnls(j)

M

i

, where lnls(j) is a

lower bound of the number of requests being in their last step of 
omputa-

tion: lnls(j) = maxf0; j � 2(n � i)g. The numbers N

i;j

must verify 0 < N

i;j

�

min

s2S

i;j

P

s

0

2S

i;j+1

P [s; s

0

℄. An a

urate 
hoi
e, whi
h 
an be 
omputed with-

out overhead during the 
omputation of

b

P

�

i

is:

N

i;j

= min

�|;

P

4

k=1

(k�1)j

k

=j

�

1

j

1

+(�

2

+�

3

)j

2

+minf�

2

;�

3

gj

3

M

i

.

�

b

Q

+

i�1;i

must ful�lls

b

Q

+

i�1;i

[j; j

0

℄ � max

s2S

i�1;j

P

s

0

2S

i;j

0

Q

i�1;i

[s; s

0

℄, hen
e we

de�ne

b

Q

+

i�1;i

[j; j

0

℄ = �

4

unls(j) if j

0

= j � 3 and 0 otherwise. unls(j) is an

upper bound of the number of requests being in their last step of 
omputation:

unls(j) = jdiv3.

5 Con
lusion

In this paper we have presented a new approa
h to 
ompute bounds of perfor-

man
e measures of Markov 
hains frequently en
ountered in system modelling.

This approa
h provides important savings in 
omputation and memory require-

ments with respe
t to an exa
t 
omputation of the steady state distribution.

When a subset of the state spa
e of the 
hain may be partitioned in subspa
es

sequentially visited, we have de�ned bounds of 
onditional steady state reward

rates on theses subspa
es or on the whole subset. Two methods have been pro-

posed, 
orresponding to di�erent properties of the model. Our methods are based

on a 
ombination of strong sto
hasti
 ordering and aggregation. We have ex-

plained how to 
ompute these bounds and reported �rst experiments showing

the interest of the approa
h when the system ful�lls suited hypothesis. Work is

in progress to evaluate a

urately the behaviour of the results for the se
ond,

more elaborated, method. We are also studying the appli
ability of our method

to domains usually involving bounding methods, like performan
e evaluation of

fault tolerant and repairable systems, for whi
h the reparation rates may be

seen, themselves, as rewards. In parti
ular, we are working on appli
ation of our

results to systems with multiple entry points in the subsets visited.
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