
Reaching Agreement in Hierarchical Groups

�

F. Nguilla Kooh, S. Haddad

E-mail: [nguilla,haddad@]lamsade.dauphine.fr

lamsade, Université Paris-Dauphine

Place du Maréchal de Lattre de Tassigny

75775 Paris Cédex 16, France

Abstract

We present a mechanism based on Chandra and

Toueg unreliable failure detectors model. This mech-

anism can be used as building block for distributed

systems running on Internet and requiring a non-

blocking agreement between their components. The

protocol we propose tolerates both local participants

and groups of participants' failures in a large-scale and

asynchronous environment prone to failures.

1 Introduction

Group [2, 1] and agreement (or simply consensus)

paradigms [17] represent fundamental aspects in dis-

tributed computing. They are oftenly used in order

to ensure the availability or the global consistency

of a service in spite of some components' failures.

Groupware, brokerage or transactional systems, man-

agement of replicated databases are some examples of

real applications using these paradigms.

Many algorithms have been proposed to solve the

consensus problem in various execution environment

models (see for example [5, 7, 4]). However, the great

majority of them supposes a mutual knowledge of the

participants what limits mainly their application �eld

to local area networks. In previous articles [11, 12, 10],

we proposed some algorithms solving the consensus

problem in a wide area network. These algorithms

are intended to be used in asynchronous environments

augmented with "unreliable" failure detectors [4].

One knows indeed that in a completely asyn-

chronous environment the consensus problem is not

solvable[8]. This result implies the impossibility of a

consistent management of groups [3]. Hence, di�er-

ent complementary assumptions have been proposed.

�

Supported in part by esigetel, Département de la

Recherche, 1, rue port de Valvins. 77215 Fontainebleau-Avon,

France. Contact: nguilla@esigetel.fr

Among the models suggested, that of Chandra and

Toueg has the advantage of making assumptions on

the behavior of the detectors and not on the underly-

ing network. Thus, various concrete environments can

satisfy the conditions associated with the detectors.

As in our preceding works [11, 12, 10], we consider

an environment constituted of groups of participants.

Within a group, the participants know each other mu-

tually and communicate directly. Each group has a

broadcast address known by the participants of the

other groups. This is the only possible interface to

communicate with this group from outside. Each par-

ticipant has a detector which tests the status of the

other participants of the same group and that of the

other groups.

Chandra and Toueg de�ned several degrees of reli-

ability for the detectors and proposed algorithms for

two of them: S and �S. Our models of detector are

characterized by two behaviors : detection inside a

group and detection between groups. Our algorithms

suppose an internal behavior of the detectors similar

to the class S and a variable external behavior (either

equivalent to the class S [11, 12] or to �S [10]). This

approach has the interest to combine two classes of

detectors, each of them providing the adequate prop-

erties to the con�guration of network concerned : for

example a stronger reliability of failure detection in lo-

cal area networks (owing to their good characteristics:

large bandwidth, predictable transit delay ...) than in

the Internet for instance (low data �ows, failures of

the communications' links, routing problems ...).

In this paper, we propose a generic mechanism solv-

ing a consensus problem involving entities organized

hierarchically (with more than two levels). This mech-

anism takes keeps and uni�es the principles of our pre-

ceding algorithms. Consequently, it works with groups

of entities, each entity being able to be either a sub-

group of entities or a participant. At the root of this

hierarchy, the detectors behave either as S or as �S. In



an internal node of the hierarchy the detectors behave

such as the class S.

The interest of this new approach is to allow a

decision-making of groups of variable granularity re-

sulting from the decisions of the sub-groups or the

participants of which they are made up.

The new approach satis�es the usual properties

de�ning the consensus problem. It has the following

advantages:

� its authorizes a local decision policy for each sub-

group. This local policy enables entities of the ex-

pected sub-group to choose the value which will be

proposed like sub-group decided value for the proto-

col's steps of the higher level;

� its involves anonymous sub-groups which commu-

nicate through sub-groups or individual addresses;

� the protocol consumes less messages than the orig-

inate algorithms by reducing the number of exchanged

message and especially the distant communications;

� furthermore, the protocol works not only if "sim-

ple" participants fail but also when some sub-groups

become unreachable (due to crash or link's failure).

This paper is structured as follow : the second sec-

tion gives a survey of the group paradigm, the con-

sensus problem and unreliable failure detectors model.

The third section presents our model of execution

by describing the properties de�ning the hierarchi-

cal problem of consensus and those characterizing our

model of failure detector. In section four, we present

the generic and hierarchical consensus protocols and

its di�erent instanciations. The last section discusses

about aspects of implementation and gives some ele-

ments of conclusion.

2 Group, Consensus and Unreliable

Failure Detectors Paradigms

2.1 The Group Paradigm

A group is a set of processes (or objects) that coop-

erate towards some common goal or share some global

state that is distributed or replicated. Members of a

group have a consistent view of the current composi-

tion of the group (group's view) via a group member-

ship service. They are noti�ed when a member joins

or leaves the group (voluntarily or due to its failure).

The group membership service tracks this change and

transforms it into group's view agreed by all correct

members.

The group paradigm has traditionally been used for

achieving di�erent purposes. [1, 15] : 1) for maintain-

ing a share state (for fault-tolerance, or load balanc-

ing); 2) as services with clients; 3) for groupware; 4)

for parallel programming or for disseminating informa-

tion; 5) for network or distributed system management

(collecting and propagating management information;

6) for mobility (application or object migration) and

so forth. The distributed operating system ISIS [2]

was the �rst to use this paradigm.

Di�erent systems consider either static groups

(membership does not change during the system's life-

time) or dynamic groups (where the group's view can

change over time). Like in ISIS, we can distinguish

di�erent styles of groups : Peer groups(when a set

of processes cooperate closely); Client-server groups

(when any process communicate with any group via

the group's name and when this process has the appro-

priate permissions); Di�usion group is a client-server

group in which the clients register themselves but in

which group members send messages to the full set

of clients; and Hierarchical group is a structure built

from multiple component groups, for reasons scale.

2.2 Agreement with Failure Detectors

Initially evoked by Pease et al [17], the consensus

problem is now in the heart of the most of agreement

problems (group membership, broadcast, Byzantine

agreement, k-set agreement ...) [14, 13].

Informally, a consensus protocol enables a set of

participants to decide on a common value which de-

pends on their initial inputs, despite the crashes or the

suspicions of some of them. Informally,

1) to ensure the Validity property, a value decided

by some participant must have been proposed by some

participant;

2) no two participants may decide di�erent values

Uniform Agreement;

3) and each correct participant eventually decides

some value; that ensures the Termination of the pro-

tocol.

The di�culty to detect failures in a complete and

accurate way in purely asynchronous system, make the

consensus problem unsolvable in such systems [8].

That leads Chandra and Toueg to introduce the

concept of unreliable failure detectors. A failure detec-

tor is a module that gives to a process hints about fail-

ures of the other processes of the systems with which it

communicates. The unreliability comes from the fact

that it can make mistake by suspecting a correct pro-

cess or not suspecting a faulty one. One way to control

the detectors is to require a kind of completeness (i.e.

detecting a faulty process) and accuracy (i.e. not sus-

pecting a correct process). Completeness enforces the



detection of any faulty process while accuracy restricts

the mistakes (i.e. incorrect suspicions) the failure de-

tectors can make.

Each class of failure detector is de�ned by the same

completeness and accuracy properties.

The mechanism we propose uses the classes named

�S

1

and S

2

.

3 Model

We consider a distributed system without timing

assumptions (on communication delays or process rel-

ative speeds) and running in wide area network such as

Internet. We assume that communications are asyn-

chronous and reliable (a message sent to a correct and

reachable entity will eventually be received).

The environment is represented by a group g com-

posed of a set of entities organized hierarchically as a

tree.

Each entity of the system is either a sub-group of

entities or a "simple" participant. Each entity has a

reference (identi�er of group or participant) so that

a participant in this organization can be indicated

g

1

:g

2

::::g

p

:i where i indicates the identi�er of the par-

ticipant g

p

the group containing the participant, g

i

the

group containing the group g

i�1

and g

1

is contained in

g. Each entity has an address. In the case of a partic-

ipant, it is its network address; in the case of a group,

it is a broadcast address such that any message sent at

this address is received by the participants belonging

directly or indirectly to this group. Further and

for simplicity, the broadcast address and the identi�er

of the entity will indicate the same thing.

� It will be said that a participant p is included in a

group G if it belongs directly or indirectly to this

group. For example, g

1

:g

2

::::g

p

:i belongs to g

p

and it

is included in g; g

1

; g

2

:::; g

p

3.1 Failure Detector Model

An entity is suspected or fails by crashing. We do

not handle neither Byzantine nor links' failures. A

group is faulty when all participants included in this

group fail.

Our asynchronous system augmented with unreli-

able failure detector is close to the one proposed by

Chandra and Toueg [4] with the di�erence that our

approach is intended to be use in a WAN.

1

strong completeness and eventual weak accuracy

2

strong completeness and weak accuracy

A failure detector mechanism associated to each

participant to the consensus protocol. It is a module

which gives to the expected participant hints (possi-

bly erroneous) about the operationnality of the entities

with which it communicates. More precisely the par-

ticipant g

1

:g

2

:::::; g

p

:i communicates with the entities

which belong to the groups g; g

1

:::; g

p

. This mecha-

nism works like a black box and can be questioned at

any time by the participant.

3.1.1 Detectors' Behaviors

Let g

i

a group, e1 and e2 two entities of g

i

. We dis-

tinguish two levels in our hierarchy. We call exter-

nal level the level constituted of groups representing

LANs. These groups are accessible directly through

Internet. The internal levels represent all entities lo-

cated in each LAN.

The new class of the detector we have de�ned is de-

noted � S; �S=S �. That means in internal level, the

class S will be used and between nodes of the external

level the class �S or S could be used depending on

the strength of the constraints of the systems or the

applications. This variable combined failure detector

behaves during an execution as follows:

Large Completeness: If e1 is a faulty entity

(group or participant) then e1 will be suspected af-

ter a �nite time by e2 if e2 is a participant or by all

participant included in e2.

Large Accuracy

� In an internal level (i.e. within di�erent entity

belong indirectly with g, our detector itself acts like

the detector S

For any group g

i

6= g which remains correct during

the execution, there exists a correct entity of g

i

which

will never be suspected faulty by the participants in-

cluded in this group

� At the external level (i.e. between the entities

which belong to g or of higher hierarchical level), the

detector can behave like S or �S

There is a correct entity belonging to g which will be

trusted after a �nite time by all participants included

in g

4 Generic and Hierarchical Consensus

Our protocol relies on the following idea. A partic-

ipant of a sub-group sg included in a group g acts in a

redundant way such as its sub-group's representative

within the group g during the decision-making process.

To ensure the consistency of the actions of these par-

ticipants after the initial phase and after each phase



corresponding to the reception of a message, an inter-

nal consensus within sg is launched in order to ensure

sub-group consistency in terms of state and actions

according to the the global protocol.

We give here the internal algorithm of consensus

which is a recursive adaptation of that proposed for the

detector S�S and S [12, 10]. The principal parameters

handled are : the group g

0

in which the consensus

takes place, the path in the tree from the group g

0

the

participant g

1

:g

2

:::::g

p

:i (indicated in the algorithm by

part ), the value of input (or initial value of an entity)

and the identi�er of consensus (several consensus are

launched within a sub-group). It returns the decided

value.

Initially, each participant proposes its value if it be-

longs to the group or recursively calls the algorithm

to decide value of the entity of which it is a represen-

tative. The identi�er of consensus is a list of values

of which the length is equal to the depth of the re-

cursive calls and whose each element represents the

asynchronous number of round of the corresponding

entity.

After sending a message to a sub-group sg, the psg's

members receive directly or indirectly these messages

by the broadcast mechanism; each message is time-

stamped with the identi�er of the consensus in order

to avoid any confusion at the reception. Each recep-

tion gives place to an update of the local variables

before proceeding the next step. As in the same way

as initially, the participant which acts as a represen-

tative calls a new consensus to ensure the consistency

mentioned above. This new consensus is time-stamped

with the current identi�er su�xed by the round of ex-

ecution in the consensus.

4.1 Algorithms

Let g

0

a group and g

1

:g

2

:::::g

p

sub-groups of entities

belonging to g

0

. � is g

0

's "estimate" if � is agreed by

all participants which belong directly or indirectly to

g

0

(i.e. in g

1

:g

2

:::::g

p

).

-Phase 0: At the beginning of the protocol, each

group chooses its value by the launch of the sub-group

consensus involving all participants included in this

group. This is achieved by the recursive call of the

S � Consensus procedure.

Each group's member proposes for the "group con-

sensus" a value that it wishes to be the group's input

value for the wide consensus protocol. At the end of

the "group consensus", all group's members agree on

a value.

4.1.1 S � S-Consensus

At each round, a participant executes partially or to-

tally the four phases that follow with respect to the

role it plays during the protocol as long as a �nal

decision has not been taken.

The algorithm works in asynchronous rounds :

At each round some sub-group coordinates the

whole set of sub-groups. We note this "coordinating

sub-group" C

g

(equal to the sub-group round num-

ber modulo G). A participant which belongs to this

sub-group is called a "coordinating" participant (noted

P

(c;p)

) and the participants of the other sub-groups

"simple participants".

-Phase 1 : All participants send their group's "es-

timate" to the "coordinating" group via its broadcast

address. The �rst estimates are initial groups' inputs.

-Phase 2 : Each participant of the current "coor-

dinating group" gathers d(G+1)e=2 estimates related

to the �rst messages received from d(G+1)e=2 groups.

When a member collects this number of estimates, it

selects the most recent de�ned. It launches the con-

sensus procedure in order to be synchronized with its

peers. After that, any coordinating participant sends

the estimate decided in its group. This estimate is

the one with the highest time-stamp (i.e. the highest

round)

-Phase 3 : In this phase the "simple participants"

send an acknowledgment if they receive the estimate

of the coordinating group and a non-acknowledgment

if they suspect this group.

-Phase 4 : As phase 2, the coordinating group

waits for a majority of acknowledgments or non-

acknowledgments. The �rst participant which reaches

this number launches a consensus. If the consensus

gives only acknowledgments, the participants decide

from the estimate of the expected group.

We consider the point of view of the participant i

of a group noted g

0

, g

1

:g

2

:::::g

p

:i or more simply part.

�ADP represents all LANs participating to the con-

sensus; � IdC identi�es each execution of a consensus

procedure; � 4

part

is a vector containing messages re-

ceived at di�erent rounds. � estimate

part

is part's

estimate; � r

part

is p's current round number; � ts

part

is the last round in which part updated estimate

part

,

initially set to 0; � r

g

is the last round in which the

domain g updated estimate

g

; � � 2 CFD

part

means

that process (g,p) suspects � by querying its combined

failure detector CFD.

Each participant called part executes totally or par-

tially the algorithm below according to the role played

by its group.



S � S-Consensus(g

0

, g

1

:g

2

:::::g

p

:i ,InputValue, IdC)

Phase 0 (local):

V

part

 �?;?; :::;?�

g0

/*V

part

: Vector of values

maintained by a participant part of the group g

0

*/

/* Executed by each member part of a group g

0

*/

0.1. state

part

 undecided

0.2. ts

part

 0

0.3. r

part

 ts

(g;p)

0.4. If p=0 Then 4

part

[i] InputV alue

0.5. Else 4

part

 S-Consensus(g

0

,

0.5b g

1

:g

2

:::::g

p

:i,InputValue,(IdC,0))

0.6. EndIf

While state

part

= undecided

r

part

 r

part

+ 1

c

g0

 (r

part

mod G) + 1

{c

g0

is the index of the current coordinating domain}

Phase 1 : /* Each participant i sends the

estimate

part

to the current coordinating group*/

1.1. Send(i; (IdC; r

part

); estimate

(g;p)

; ts

part

) To

c

g0

Phase 2 /*Each member of the coordinating do-

main gathers d(G + 1)e=2) estimates and proposes a

new domain's estimate*/

2.1. If part 2 c

g0

Then

2.2. Wait until [For d(G+ 1)e=2) domains g',

2.3. Received (g

0

; (IdC; r

part

);

2.4. estimate

g

0

; ts

g

0

From g

0

]

2.5. 4

part

[(IdC; r

part

)] 

2.6. f(g

0

; (IdC; r

part

); estimate

0

g

; ts

g

0

)

2.7. jpart Received (g

0

; (IdC; r

part

);

2.8. estimate

(g

0

;q)

; ts

(

g

0

; q)) From (g

0

; q) }

2.9. S-Consensus(g

1

, g

1

:g

2

:::::g

p

:i,4

part

,

(IdC; r

part

))

2.10 t largest ts

g

0

Such That

2.11 (g

0

; r

part

; estimate

g

0

; ts

g

0

2.12 2 4

part

[r

part

]

2.13 estimate

part

 Select one estimate

r

g

0

2.13b /* Deterministic selection */

2.14 Such That(q; (IdC; r

part

); estimate

g

0

;

2.15 ts

g

0

) 2 4

part

[(IdC; r

part

)]

2.16 Send (i; (IdC; r

part

); estimate

part

) To ADP

Phase 3 /*All simple participants wait for the new

group's estimate sent by a member of the current co-

ordinating group*/

3.Ini estimate

c

 null

3.0. Wait until [9part 2 c

g

3.1. Received(c

part

; (IdC; r

part

); estimate

c

part

)

3.2. From c

part

Or c

g

2 CFD

part

]

3.3. S-Consensus(g

1

, g

1

:g

2

:::::g

p

:i,estimate

c

part

,

(IdC; r

part

))

3.4. If estimate

c

6= null Then

3.5. /* part received estimate

c

part

*/

3.6. estimate

part

 estimate

c

part

3.7. ts

part

 r

part

3.8. r

g0

 ts

part

3.9. Send (i; (IdC; r

part

); ack) To c

part

3.10 Else

3.11 Send(p; (IdC; r

part

); nack) To c

g0

3.12 /* p suspects that c

g0

crashed */

Phase 4 {Each member of the current coordinat-

ing group waits for d(G+1)e=2 replies. If d(G+1)e=2

group adopted their group's estimate, all correct mem-

bers of the coordinating group R-broadcast a decide

message after a consensus }

4.0. If part 2 c

g0

4.1. Wait until [For d(G+ 1)e=2) domains g',

4.1b 9g

0

;: Received(g

0

; (IdC; r

part

); ack)

4.1c Or (g

0

; (idenditifier; r

part

); nack)]

4.2. V

part

 null

4.3. If [For (G+1)/2 group g', 9(g

0

; q) :

4.3b Received (g

0

; (IdC; r

part

); ack)]

4.4. V

part

 ack

4.5. Else

4.6. V

g;p

 nack

4.7. S-Consensus(g

1

, g

1

:g

2

:::::g

p

:i,V

g;p

,

4.7b (IdC; r

part

))

4.8. if V

part

= ack

4.9. R_GroupBroadcast (part;

4:9b (IdC; r

part

);

4.10. estimate

part

; decide)

/* If part R-delivers a decide message, part decides

accordingly */

H.0. When R-delivers (g

0

; r

g

0

;

H.0b estimate

g

0

; decide)

H.1. If state

part

= undecided

H.2. Decide(estimate

g

0

)

H.3. state

part

 decided

Fig. 2: Solving consensus problem hierarchically

4.1.2 Proof: (Sketches)

Let us recall that we assume that there is at least one

correct simple participant which is never suspected as

long as its group is not crashed and that there is a

majority of groups that remain corrects during any

run.

Due to space constraints, we will give only some

points on which are based the proof of consensus prop-

erties satis�ed by our protocol.

A "coordinating" participant is a member of the

current coordinating sub-group.

-Result 0 :All the estimates received by a coordi-

nating member are values proposed by sub-groups.



A value proposed by a group belonging directly to g

(i.e. at the higher level of the hierarchy excluding the

root) is a value proposed by a participant and suc-

cessively approved by the successive groups on which

it belongs. So every outcome value is a group value

resulting to the recursive launch of the S-Consensus

procedure (line 0.5).

-Result 1 : Locally and globally participants

decide the same value

Thanks to the successive launches of the sub-group

consensus, all sub-group's members will have the same

decided value at any step of the protocol. Further-

more, each participant is informed for each decision

taken by the entities of the higher level through its

sub-group address. By considering each sub-group as

a macro-process the reader can apply the same demon-

stration as mentioned in [4].

-Result 2 : No participant is blocked on a wait

statement

Let us suppose that a process blocks on a wait state-

ment and let us take the earliest round and the earliest

point on that round where this blocking occurs. If it

is local consensus then all correct simple participants

are participating. By the consensus (local detectors)

properties there can't be a blocking [4]. If it is an ex-

ternal waiting statement by a simple participant, the

wide strong completeness property ensures that the

waiting will stop. If it is an external waiting state-

ment by a coordinating participant, the hypothesis of

a majority of correct groups guarantees the reception

of at least a majority of messages (by the hypotheses)

and consequently no blocking could occur.

The main properties are satis�ed. The Validity

property is veri�ed (it is a direct consequence of Re-

sult 0). No two participants (resp. sub-groups) de-

cide di�erently. It is a direct consequence of Result 1

and that ensures the Uniform Agreement. The Termi-

nation condition relies on the completeness property

and on the Result 2. Suppose that the algorithm has

reached the time when one correct sub-group at the

higher level is no longer suspected by its peers. Hence,

as no participant is blocked (by Result 2), there will

be a round when this non-suspected sub-group will be-

come the coordinating sub-group and then the global

decision will surely be taken at this time.

4.1.3 S-Consensus

Due to space constraints we will give only a brief de-

scription of this protocol.

The protocols used the class S in external and in-

ternal levels of the hierarchy customized to WAN. The

protocol works (terminates) even with one participant

(and subsequently with one higher level sub-group)

that remains correct.

The protocol works in four phases similarly like the

S�S protocol with the di�erence that there is not a co-

ordinating sub-group. The reader can refer to [11, 12]

and can easily adapts the protocols presented in those

papers for more than two levels by replacing Local-

Consensus procedure by the S �Consensus with the

additional parameters such as in S � S procedure.

4.1.4 Some Comments

If one compares the algorithms we have proposed with

the original algorithm, one can make two remarks.

Firstly, the new assumptions on the detectors are

stronger since having to be veri�ed within each sub-

group. Secondly, the number of exchanged messages

decreases signi�cantly (see [11, 10] for an evaluation

in the case of a tree of two levels).

One could evoke that the recursivity increases the

protocol complexity according to the depth of the

hierarchy (tree). This is not incorrect. Although,

the recursivity is necessary at any step of the pro-

tocol for systems requiring a "hard" consistency. For

"soft" consistency, the recursivity could be used only

in Phase0 when choosing the initial sub-group's value.

5 Conclusion and Perspective

We have presented a recursive and generic mecha-

nism to solve the consensus problem between entities

organized hierarchically as a tree. The leaves are the

participants themselves and the other nodes are the

sub-groups.

The genericity is obtained by modifying the algo-

rithms of literature according to some simple rules at

the initial phase, and according to sending and the

reception of message.

The new approach used a variable failure detector

where, at the higher level of the hierarchy, it is possible

to choose either the detector class S or �S according

to characteristics of the interconnected network.

The consensus protocol we have proposed reaches

the goals pursued by our preceding algorithms [11, 12,

10] and that it generalizes. Over and above the re-

duction of the number of messages, the conservation

of making-decision strategies speci�c to each group for

intermediate decisions, a greater �exibility of organi-

zation is provided through the concept of hierarchical

group and that of variable behavior of the detector.

The prototyping of this mechanism will mainly re-

quire to solve two implementation problems : the man-



agement of an hierarchical group and the implemen-

tation of the detectors.

The CORBA

3

Large Group Service (called CLAGS)

we are implementing is an architecture o�ering in-

frastructure for large-scale agreement (relying on our

generic protocol). It is a group service overcoming the

lack of group communication in CORBA. It is inspired

from OGS [9, 6] (designed to work only in a LAN).

With thread mechanisms it allows the management of

asynchronous messages. This makes it possible to mit-

igate the limitations of the synchronous CORBA ob-

ject invocation service.

The large-scale monitoring furnishes support for de-

tecting failure of local or remote entities. It will be

based in an adaptable mechanism de�ning time-outs.

These time-outs will depend on the parameters of the

underlying networks. It may vary over the time ac-

cording to the location of the entities involved, the net-

work characteristics and the time of communication.

This �exibility will permit to �nd an "optimal" time-

out to ensure in one hand, the reactivity of the system

according to failure and in the other hand to avoid

incorrect suspicions when the time-out (after which a

silent entity could be suspected to be faulty) is not

well-tuned.

References

[1] O. Babaoglu and A. Schiper. On group commu-

nication in large-scale distributed systems. OS

review, JACM, 29(1):62�67, Jan. 1995.

[2] Kenneth P. Birman. The process group approach

to reliable distributed computing, volume Reliable

Distributed Computing with Isis Tooklit, pages

27�57. IEEE CSSP., 10662 Los Vaqueros Circle

PO Box 3014 Los Alamitos, CA 90720-1264, 1994.

[3] D. Chandra, V. Hadzilacos, S. Toueg, and

B. Charron-Bost. On the impossibility of group

membership. Technical report, 95-1548, CS.

Dept, Cornell Univ., Ithaca, NY 14853, Oct. 1995.

[4] T. D. Chandra and Sam Toueg. Unreliable failure

detectors for reliable distributed systems. JACM,

43(2):225�267, 1996.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consen-

sus in the presence of partial synchrony. JACM,

35(2):288�323, April 1988.

3

Common Object Request Broker Architecture [16]

[6] P. Felber. The CORBA Object Group Service.

PhD thesis, Ecole Polytechnique Fédérale de

Lausanne-Suisse, 1998.

[7] C. Fetzer and F. Cristian. On the possibility of

consensus in asynchronous systems. In Proc. of

the Int. Symp. on F-T systems, Dec. 1995.

[8] Michael J. Fisher, Nancy A. Lynch, and

Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. JACM.,

32(2):374�382, April 1985.

[9] R. Guerraoui and A. Schiper. Consensus service:

a modular approach for building agreement pro-

tocols. In Proc. of the 26th IEEE FTCS, Sendai,

pages 168�177, June 1996.

[10] S. Haddad and F. Nguilla Kooh. A consensus

protocol using di�erent failure detectors in large-

scale networks. In Proc. of 14th ISCA Interna-

tional Conference on Computer and Their Appli-

cations, Cancun-Mexico, April. 1999.

[11] S. Haddad, F. K. Nguilla, and A. El-Fallah S.

A consensus protocol for wide area networks.

In Proc.of DAPSYS'98, Budapest-Hungary, Sept.

1998.

[12] F. Nguilla Kooh. Hierarchical approach for solv-

ing agreement problems in wide distributed sys-

tems. In Proc. of IASTED Int. Conf. PDCN'98,

Brisbane-Australia, 1998.

[13] L. Lamport and M.J Fisher. Byzantine generals

and transaction commit protocols. Technical re-

port, OP. 62. SRI Int., Menlo Park, Calif, 1982.

[14] L. Lamport and M. Pease R. Shostak. The byzan-

tine generals problem. ACM Trans. Program.

lang. Syst., 4(3):52�78, July 1982.

[15] Silvano Ma�eis. The object group design pattern.

In Proc. of the USENIX Conf. on OO Technolo-

gies, Toronto, June 1996.

[16] OMG. The common object request broker :

architecture and speci�cation. Available on

http://wwww.omg.org.

[17] M. Pease, R. Shostak, and L. Lamport. Reach-

ing agreement in the presence of faults. JACM.,

27(2):228�234, April 1980.


