
Combining di�erent Failure Detectors for Solving a Large-Scale

Consensus Problem

S. Haddad F. Nguilla Kooh

Lamsade Lamsade, Esigetel

haddad@lamsade.dauphine.fr nguilla@[lamsade.dauphine.fr,esigetel.fr]

Lamsade, Univ. Paris-Dauphine Esigetel, Dépt. de la Recherche

Pl. Maréchal de Lattre de Tassigny 1, rue port de Valvins

75775 Paris Cédex 16, France 77215 Fontainebleau-Avon, France

Abstract

Dependable services in distributed systems rely on

some kind of agreement. Such an agreement can be

obtained by solving the consensus problem. Most of

the proposed consensus' algorithms are based on mu-

tual knowledge of the participants and thus inadequate

to wide area networks (WANs). In previous papers,

we proposed protocols which deal with WANs consti-

tuted of interconnected physical groups of machines

(LANs/domains). These protocols rely on Chandra

and Toueg' unreliable failure detectors model for asyn-

chronous systems extended to handle broadcast ad-

dresses and safeness of a whole subnet. Nevertheless,

we assumed the same characteristics for local and dis-

tant failure detectors. In the present paper, we pro-

pose a new algorithm which takes into account a dif-

ferent behavior for the detectors. More precisely, local

detectors behave as the S class of Chandra and Toueg

and so are more reliable than the distant detectors

which behave as the �S class. Moreover, the distant

failure detector we de�ne, has the ability to test the

failure of a local network via a broadcast address. We

prove the correctness of the new algorithm and give

some implementations hints in the Internet context.

1 Introduction

In fault-tolerant distributed systems, local or re-

mote processes often require to reach some kind of

agreement [12, 3]. As pointed out in [8], the consen-

sus paradigm is not only interesting from a theoretical

point of view [12, 11, 5], but it can be used for prac-

tical purposes (group's membership, management of

replicas, banking, trading, �ight reservation etc.).

To reach an agreement, processes launch a consensus

protocol. This protocol enables a set of processes to

decide on a common value which depends on their ini-

tial inputs, despite the possible presence of faulties.

Formally, it requires that 1)if a process decides a value

then this value must have been proposed by some

process (Validity); 2)a process decides at most once

(Integrity); 3)no two processes decide di�erent values

(Uniform Agreement); and that 4) every correct pro-

cess eventually decides some value (Termination).

In the absence of faults, attaining a satisfactory mu-

tual agreement is an easy matter. However such an

hypothesis is seldom satis�ed in real systems.

In purely asynchronous systems, Fisher et al [6] have

shown the impossibility to solve the consensus prob-

lem even with at most one faulty process. In order to

circumvent this negative result, several authors intro-

duced new models by strengthening the assumptions

about the environment. One of them is the asyn-

chronous system model with unreliable failure detec-

tors [2]. This model is interesting since it does not

make restrictive assumptions on the environment.

Di�erent algorithms solving the consensus problem

have been proposed. Nevertheless, most of them are

not intended for wide area networks such as Internet.

Indeed, Internet provides opportunities and challenges

for collaborative distributed applications [1]. In pre-

vious works [9, 10], we have proposed protocols which

solve consensus problem in a system involving local

networks. These protocols use a class

^

S of failure de-

tector that we have de�ned. This class is an exten-

sion of the class S of unreliable failure detector de-

�ned by Chandra and Toueg. We have shown that

our proposition brings more bene�ts with respect of

the exchanged messages than the original algorithm in

the context of WANs. The new consensus algorithm

we develop have similar goals than those mentioned

in [9, 10]. It enables local strategies for deciding val-

ues, it consumes less communications messages (and

especially the long-distant communications) and uses

anonymous communications between LANs. Each

LAN is represented by its current non-faulty processes

(we assume one process per machine). This machine

form a physical group and simulate a macro-process

which participates to the wide consensus. Within any

LAN, the processes apply a local consensus protocol

during each macrostep of the global protocol in order

to ensure consistency of processes' states and ac-

tions. The main contributions of the new protocol

are to guarantee that a value decided is a value pro-

posed by some domain. In addition, the protocol ter-

minates not only if some processes crashed but even if

some domains become unreachable. Moreover, our ap-

proach takes into account the di�erence between com-

munications aspects in local networks and the tech-

nical constraint in WAN setup. Hence, it considers

two forms of hypothesis especially for our failure de-

tectors : stronger hypotheses in LAN and weaker ones

in WAN. The present work assumes that :

- our environment involves groups of processes located

in LANs. Inside a LAN, communications are point-to-

point and distant communications between LANs are

anonymous via broadcast addresses,

- any process maintains an unreliable failure detector

to test the failure of another process in the same LAN

or the global failure of another LAN. For reason scale,

the new unreliable failure detector called S � S com-

bines two detector classes: the class S used within

LAN and �S class between domains, but adapted to

WAN requirements.

This paper is organized as follows. Section two details

our system model as well as the hypotheses on the

detectors. Section three describes the S � S protocol,

sketches a proof of its correctness and discusses about

some implementation issues. Section four concludes

the paper and present some upcoming work.

2 The system model

We consider an environment (e.g. Internet) where

E represents the WAN and is constituted of a set of

domains. E = (D

1

; :::; D

g

; :::; D

G

) with G the number

of domains. Each domain D

g

includes a �xed number

of processes. D

g

= fP

(g;1)

; :::; P

(g;p)

; :::; P

(g;Ng)

} where

P

(g;p)

denotes process p of S

g

and Ng is the number of

processes of the domain D

g

. Each P

(g;p)

has a network

address known by the processes of D

g

and each do-

main D

g

maintains a broadcast address known by the

processes of the other domains. Subsequently, P

(g;p)

(resp. D

g

) will denote both the process (resp. the

domain) and its network address (resp. its broadcast

address). We consider an asynchronous system where

underlying communication network is reliable. Thus,

messages are not lost, generated or garbled. To en-

sure the communication inside the group, we use the

following primitives : 1) R_GroupBroadcast is used

when a process need to send a message reliably to the

all members of E via the broadcast address of their re-

spective domain (Refer to [1, 2] for some implementa-

tions). 2) R_Deliver required to deliver reliably to the

application a message received at a network address.

3) Moreover, when a process waits for a message from

a domain it considers only the �rst message sent by

one of its members and stops its waiting statement on

the broadcast address of the expected domain.

2.1 Failure detection model

The unsolvability of the consensus problem in asyn-

chronous distributed systems due to the di�culty to

detect failures in a complete and accurate way in such

system, leads Chandra and Toueg to introduce the

concept of unreliable failure detectors. A failure detec-

tor is a module that gives to a process hints about fail-

ures of the other processes of the systems with which it

communicates. Chandra and Toueg pointed out that

there are two undesirable behaviours for a detector :

not detecting a faulty process and suspecting a correct

process. One way to control the detectors is to require

a kind of completeness (i.e. detecting a faulty process)

and accuracy (i.e. not suspecting a correct process).

Completeness enforces the detection of any faulty pro-

cess while accuracy restricts the mistakes (i.e. incor-

rect suspicions) the failure detectors can make.

In our model, we consider only correct or fail-stop pro-

cess (resp. domain). A domain is correct as long

as it has a correct process, otherwise it is faulty.

We do not address Byzantine failures.

Any process has a Combined Failure Detectors to con-

trol processes of its own domain or the other domains.

It cannot test individually the failure of remote pro-

cesses (let us recall that it does not even know their

network addresses). Our failure detection model S �S

relies on two classes (�S and S) of unreliable failure

detectors [2]. �S class is characterized by strong com-

pleteness and eventual weak accuracy properties while

S class is characterized by strong completeness and

weak accuracy properties (see previous section).

The Combined Failure Detectors (CFD) representing

our class S � S failure detector behaves in two ways :

In internal communication case it acts like class S as a

Member Failure Detector (MFD) to inspect the other

members of a domain . And in the context of com-

munications between domains, its acts as a Domain

Failure Detector (DFD) on domain address to control

if some domain is non-operational.

The properties that describe the combined unreliable

failure detectors classes S �S are explained as follows :

Combined Accuracy

-Domain Weak Accuracy : In each domain, there is a

correct member which will never be suspected by any

member of this domain as long as the domain re-

mains non-faulty.

- Wide Eventual Weak Accuracy: In the environment

E, there is a time after which some correct domain will

no longer be suspected by any correct member of E

Combined Completeness

- Domain Strong Completeness: Each faulty member

of a domain, will be eventually suspected by any cor-

rect member of this domain.

- Wide Strong Completeness : In the environment,

each faulty domain will be eventually suspected by

any correct member of any correct domain.

3 The Wide consensus

3.1 Informal description of the protocol

All the processes of each domain behave in uni-

form way with respect to the other domains. For local

agreement, they execute a local consensus protocol.

This protocol may di�er from those executed in the

other domains. During the wide protocol, the recep-

tion of an external message sent by another domain,

compells the receiver to launch a local consensus. This

enforces all members of each domain to be synchro-

nized in order to ensure local consistency within each

domain. Another point that di�erentiates our algo-

rithm to the originate one is the proposed values. In

our case, input values are not individual processes'

values but domain values agreed by local consensus.

Thus, a domain could be viewed as a macro-process.

The algorithm works in asynchronous rounds :

At each round some domain coordinates the whole

group of domains. We note this "coordinating do-

main" C

g

(equal to the domain round number modulo

G). A process which belongs to this domain is called

a "coordinating" process (noted P

(c;p)

) and the pro-

cesses of the other domains "simple processes".

-Phase 0: At the beginning of the protocol, each do-

main chooses its value by the local consensus proce-

dure involving all members of the respective domain.

The LocalConsensus procedure is quite similar to of

Chandra-Toueg's Propose procedure, excepted that

there is an additional parameter that distinguishes dif-

ferent executions of this function (All processes' mes-

sages will be timestamped with this parameter). Each

domain's member proposes for the local consensus a

value that it wishes to be the domain's input value for

the wide consensus protocol. At the end of the local

consensus, all domain's members agree on a value.

Then, at each round, it executes partially or totally

the four phases that follow with respect to the role it

play during the protocol as long as a �nal decision

has not been taken.

- Phase 1 : Processes send their domain's estimate

to the coordinating domain via its broadcast address.

The �rst estimates are initial domains' inputs.

- Phase 2 : Each process of the current "coordinat-

ing domain" gathers d(G + 1)e=2 estimates related to

the �rst messages received from d(G+1)e=2 domains.

When a member collects this number of estimates, it

selects the most recent de�ned. It launches the local

consensus procedure in order to be synchronized with

its peers. After that, any coordinating member sends

its domain's estimate. This estimate is the one with

the highest timestamp (i.e. the highest round)

- Phase 3 : In this phase the "simple processes"

send an acknowledgment if they receive the estimate of

the coordinating domain and a non-acknowledgment if

they suspect this domain.

- Phase 4 : As phase 2, the coordinating do-

main wait for a majority of acknowledgments or non-

acknowledgments. The �rst process which reaches this

number launches a local consensus. If the consensus

gives only acknowledgments, the processes decide from

the estimate of the expected domain.

3.2 The algorithm

We consider the point of view of the process p of a

domain g noted P

(g;p)

or more simply (g,p).

Notations and data structures

ADP represents the domains participating to the wide

consensus; 4

(g;p)

is a vector which contains messages

received at di�erent rounds; estimate

(g;p)

is (p,g)'s es-

timate (proposed value); r

(g;p)

is p's current round

number; ts

(g;p)

is the last round in which (g,p) updated

estimate

(g;p)

, initially set to 0; r

g

is the last round in

which the domain g updated estimate

g

; � 2 CFD

(g;p)

means that process (g,p) suspects � by querying its

combined failure detector CFD.

A process (g,p) executes some phases of the algorithm

below with regard to the role played by its domain.

CombinedWANConsensus(estimate

(g;p)

)

Phase 0 (local): /* Executed by each member (g,p)

of a domain g*/

0.1. 4

(g;p)

[r

(g;p)

] InputV alue

(g;p)

0.2. state

(g;p)

 undecided

0.3. ts

(g;p)

 0

0.4. r

(g;p)

 ts

(g;p)

0.5. /* Each domain g calculates its estimate*/

0.6. LocalConsensus(4

(g;p)

[r

(g;p)

],r

(g;p)

)

{The result is returned in 4

(g;p)

[r

(g;p)

]}

/* Rotate through coordinating domains until decision

is reached*/

While state

(g;p)

= undecided

r

(g;p)

 r

(g;p)

+ 1

c

g

 (r

(g;p)

mod n) + 1

{c

g

is the index of the current coordinating domain}

Phase 1 : /* Each process p sends the estimate

(g;p)

to the current coordinating domain*/

1.1. Send(p; r

(g;p)

; estimate

(g;p)

; ts

(g;p)

) To c

(g;p)

Phase 2 /*Each member of the coordinating domain

gathers d(G+1)e=2) estimates and proposes a new do-

main's estimate*/

2.1. If (g; p) 2 c

g

Then

2.2. Wait until [For d(G+ 1)e=2) domains g',

2.3. 9(g

0

; q): Received ((g

0

; q); r

(g;p)

;

2.4. estimate

(

g

0

; q); ts

(

g

0

; q)) From (g

0

; q)]

2.5. 4

(g;p)

[r

(g;p)

]

2.6. f((g

0

; q); r

(g;p)

; estimate

(

g

0

; q); ts

(

g

0

; q))

2.7. j(g; p) Received ((g

0

; q); r

(g;p)

;

2.8. estimate

(g

0

;q)

; ts

(

g

0

; q)) From (g

0

; q) }

2.9. LocalConsensus(4

(g;p)

, r

(g;p)

)

2.10 t largest ts

(g

0

;q)

Such That

2.11 ((g

0

; q); r

(g;p)

; estimate

(g

0

;q)

; ts

(

g

0

; q))

2.12 2 4

(g;p)

[r

(g;p)

]

2.13 estimate

(g;p)

 Select one estimate

r

(g

0

;q)

2.14 /* Deterministic selection */

2.15 Such That(q; r

(g;p)

; estimate

(g

0

;q)

;

2.16 ts

(g

0

;q)

) 2 4

(g;p)

[r

(g;p)

]

2.17 Send (p; r

(g;p)

; estimate

(g;p)

) To ADP

Phase 3 /*All processes wait for the new domain's

estimate sent by a member of the current coordinat-

ing domain*/

3.0. estimate

c

 null

3.1. Wait until [9(g; p) 2 c

g

3.2. Received(c

(g;p)

; r

(g;p)

; estimate

c

(g;p)

)

3.3. From c

(g;p)

Or c

g

2 CFD

(g;p)

]

3.4. LocalConsensus(estimate

c

(g;p)

, r

(g;p)

)

3.3. If estimate

c

6= null Then

3.5. /* p received estimate

c

(g;p)

*/

3.6. estimate

(g;p)

 estimate

c

(g;p)

3.7 ts

(g;p)

 r

(g;p)

3.8 r

g

 ts

(g;p)

3.9. Send (p; r

(g;p)

; ack) To c

(g;p)

3.10 Else

3.11 Send(p; r

(g;p)

; nack) To c

(g;p)

3.12 /* p suspects that c

g

crashed */

Phase 4 {Each member of the current coordinating

domain waits for d(G + 1)e=2 replies. If d(G + 1)e=2

domains adopted their domain's estimate, all correct

members of the coordinating domain R-broadcast a

decide message after a local consensus }

4.0. If (g; p) 2 c

g

4.1. Wait until [For d(G+ 1)e=2) domains g',

4.2. 9(g

0

; q): Received((g

0

; q); r

(g;p)

; ack)

4.3. Or ((g

0

; q); r

(g;p)

; nack)]

4.2. V

g;p

 null

4.3. If [For (G+1)/2 domains g', 9(g

0

; q) :

4.4 Received ((g

0

; q); r

(g;p)

; ack)]

4.5. V

g;p

 ack

4.6. Else

4.7. V

g;p

 nack

4.8. LocalConsensus(V

g;p

; r

(g;p)

)

4.9. if V

g;p

= ack

4.10 R_GroupBroadcast ((g; p); r

(g;p)

;

4.11 estimate

(g;p)

; decide)

/* If (g,p) R-delivers a decide message,(g,p) decides

accordingly */

H.0. When R-delivers ((g

0

; q); r

(g

0

;q)

;

H.1. estimate

(g

0

;q)

; decide)

H.2. If state

(g;p)

= undecided

H.3. Decide(estimate

(g

0

;q)

)

H.4. state

(g;p)

 decided

Figure 1 : The S � S-Consensus protocol

3.3 Proof's sketches of the consensus con-

ditions

The proof relies mainly on the two results R1 and

R2 below. For simplicity, we con�ne our demonstra-

tion on sketches since we follow the Chandra-Toueg

proof's steps. The reader can �nd more details in [2].

Let us recall that our proposition relies on the hy-

potheses that there is at least one correct simple pro-

cess which is never suspected as long as its domain is

not crashed and that there is a majority of domains

which are correct during any run.

-R1 :Two processes will take the same decision

Let us take the time at which the �rst decision (es-

timate) has been taken. The coordinating processes

have eventually received a majority of acknowledge-

ments. That implies that d(G + 1)e=2 of domains de-

tain this estimate. We will prove that this estimate

holds inde�nitely. We apply the demonstration in [2]

related to processes to domains. It is proved by re-

currence that if a coordinator (a coordinating domain

in our case) decides a value during a round Rd, the

next coordinating domain will decide the same value

during the round FurtherRd. The proof is by induc-

tion on the round number. Suppose that this holds

during a round NextRd with Rd � NextRd. We

will show that this is also veri�ed at a round Fur-

therRd with NextRd � FurtherRd. During the

round FurtherRd the current coordinating domain

collects a majority of preceding estimates and takes

the most recent one. Since d(G + 1)e=2 domains de-

tain have kept the estimation which leads to the de-

cision, the coordinating domain will necessary receive

this estimate. And this estimate is the most recent

one and will be selected by the coordinating domain.

By recurrence that holds in the following rounds.

-R2 :No process is blocked on a wait statement

Let us suppose that a process blocks on a wait state-

ment and let us take the earliest round and the earliest

point on that round where this blocking occurs. If it

is local consensus then all all correct simples processes

are participating. By the consensus (local detectors)

properties there can't be a blocking [2]. If it is an ex-

ternal waiting statement by a simple process, the wide

strong completness property ensures that the waiting

will stop. If it is an external waiting statement by a

coordinating process, the hypothesis of a majority of

correct domains guarantees the reception of at least a

majority of messages (by the hypotheses) and conse-

quently no blocking could occur.

The required properties are satis�ed. The Validity

property is veri�ed. All the estimates received by a

coordinating member are values proposed by domains

(thanks to the LocalConsensus procedure (line 0.6)).

It is obvious that each correct member in the environ-

ment decides at most once (line H.3()Integrity). The

proof of the Uniform Agreement is very close to the

one presented by Chandra and Toueg. In fact, no two

processes (resp. domains,if we consider a domain as a

macro-process) decide di�erently. It is a direct conse-

quence of result R1. The Termination condition relies

on the completeness property and on the result R2.

3.4 Discussion and implementations is-

sues

Let G be the number of domains, M the �xed (for

simplicity) number of members in each domain. In

the wide area network we have N = GM processes.

During a round, the number of long-distant exchanged

messages is divided by M when using our approach.

Furthermore, the advantage of our protocol is twofold :

1) It guarantees in a group context, a common knowl-

edge and states of action in any step of the global pro-

tocol; 2) It converges more quickly than the original

algorithm since each coordinating member waits only

d(G+1)e=2 messages instead of d(N +1)e=2 messages

before taking some decision.

For prototyping purpose, one have to focus on two

main implementation problems :the group communi-

cation and the implementation of detectors.

3.4.1 Domains and broadcast address

We have retained the Object Group Service (OGS))

running on the top of a CORBA

1

environment.

It provides a reliable support for group communi-

cation [4]. The object messaging service gives ba-

sic mechanisms for managing asynchronous point-to-

point messages. Thus, it overcomes the limitations of

the standard CORBA object invocations based on the

synchronous RPC-like mechanism. According to our

protocol, groups of objects have the role of domains

assuming that objects which belong to a group are lo-

cated on a LAN. Groups are distinguished by their

references like CORBA objects references. A group is

a set of a various number of objects; their location is

hidden from the entity that holds the reference and

may vary over the time.

3.4.2 Implementation issues of the combined

failure detectors

The Eventual weak accuracy property of class �S guar-

antees that there is a time after which a correct domain

will no longer be suspected by any correct domain.

This suits with Internet environment since it enables

to take into account the constraint of routing, the pol-

icy or means of the providers. In the other hand, the

class S of failure detector, with its Weak accuracy con-

dition, though stronger than the "eventual" version, is

quite adequate to LAN. In contrast to Internet, it is

frequent to have high data �ow in LAN and transit

delay is predictable. The uncertainty stems from the

potential servers' overloads. The combination of these

two failure detectors represents an equitable mixture

for real applications. It is conceivable to admit more

reliability inside LAN than between LANs.

Di�erent implementations of the unreliable failure de-

tector have been proposed. Some of them �t only

with LAN [13] or can't be used to solve the consen-

sus in asynchronous systems[7]. It has been demon-

strated that completeness property of the detector is

1

CORBA: Common Object Request Broker Architecture,

proposed by the Object Management Group(OMG) [?].

not di�cult to achieve while no algorithm can sat-

isfy eventual weak accuracy in asynchronous systems.

That holds also in our case. Although, Guerraoui and

Schiper proved that it is su�cient if a failure detec-

tor satis�es this property "long enough" [8]. Di�erent

kind of implementations of failure detectors are con-

sidered :1)general implementations where each process

send periodically a I_m_alive (resp. Are_you_alive)

message when the expected process needs to inform

(resp. to inquire after) the processes with which it

communicates. And 2) implementations adapted to

consensus algorithm where failure detectors' messages

are only sent in relevant steps of the algorithm. The

�rst model is more general but it is costly in terms of

messages exchanged. The last one has the advantage

to reduce network usage in terms of long-distant mes-

sages. Since the detectors are based on time-out mech-

anism there is a trade-o� between latency (short time-

outs to detect rapidly a failure) and accuracy (long

timeouts to avoid incorrect suspicions).

4 Conclusion

We have presented a mecanism which can be viewed

as a building block for fault-tolerant distributed sys-

tems involving groups and where a group agreement

is required. It relies on a new failure detector class we

have de�ned and called S � S. This detector class is

a combination of two classes of Chandra and Toueg's

unreliable failure detector named S and �S that we

have customized to WAN requirements. The new pro-

tocol involves subsets of participants instead of indi-

vidual participants. The new approach is hierarchi-

cal and allows a better adaptation of the combined

failure detectors parameters (such as timeouts) to the

topology of the network and reduces the number of

messages exchanged in the system between LANs as

pointed out in[4]. Furthermore, it takes into account

real characteristics of WAN and LAN environments by

considering weaker detectors' hypothesis for LANs and

stronger ones for WANs. In addition, it provides �ex-

ibility since the domains are anonymous and the local

networks may be di�erent. The protocol works with

only a minimum knowledge about the domains and

the local consensus can be implemented di�erently.

Acknowledgements

Work supported in part by the Franco-Moroccan

Integrated Action under contract 97/074/SI/R1

References

[1] O. Babaoglu and A. Schiper. On group commu-

nication in large-scale distributed systems. OS

review, JACM, 29(1):62�67, Jan. 1995.

[2] T. D. Chandra and Sam Toueg. Unreliable failure

detectors for reliable distributed systems. JACM,

43(2):225�267, 1996.

[3] D. Dolev, N. A. Lynch, S.S. Pinter, E.W. Stark,

and W.E. Weil. Reaching aproximate agreement

in the presence of faults. Journal of ACM.,

33(3):499�516, July 1986.

[4] P. Felber. The CORBA Object Group Service.

PhD thesis, EPF, Lausanne-Suisse, 1998.

[5] C. Fetzer and F. Cristian. On the possibility of

consensus in asynchronous systems. In Proc. of

the Int. Symp. on F-T systems, Dec. 1995.

[6] Michael J. Fisher, Nancy A. Lynch, and

Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. JACM.,

32(2):374�382, April 1985.

[7] V. K. Garg and J. R. Mitchell. Implementable

failure detectors in asynchronous systems. Tech-

nical report, May 1998. TR-PDS-1998-004.

[8] R. Guerraoui and A. Schiper. Consensus : the

big misunderstanding. In Proc. of the IEEE Int.

Workshop- FTDCS'97, Tunis, Oct. 1997.

[9] S. Haddad, F. K. Nguilla, and A. El-Fallah S.

A consensus protocol for wide area networks. In

Proc.of DAPSYS'98, Budapest, Sept. 1998.

[10] F. Nguilla Kooh. Hierarchical approach for solv-

ing agreement problems in wide distributed sys-

tems. In Proc. of IASTED Int. Conf. PDCN'98,

Brisbane-Australia, 1998.

[11] L. Lamport and M. Pease R. Shostak. The byzan-

tine generals problem. ACM Trans. Program.

lang. Syst., 4(3):52�78, July 1982.

[12] M. Pease, R. Shostak, and L. Lamport. Reach-

ing agreement in the presence of faults. JACM.,

27(2):228�234, April 1980.

[13] N. Sergent. Soft real-time analysis of asyn-

chronous agreement algorithms using petri nets.

PhD thesis, EPF, Lausanne-Suisse, 1998.

