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Abstract

This paper presents an original approach to model,

analyze, and design interactions in multi-agent sys-

tems. It combines two complementary paradigms:

observation in distributed systems and interaction in

multi-agent systems. The �rst paradigm is frequently

used to observe concurrent activities in distributed

systems through the causal dependency of events. The

second paradigm provides an interesting framework to

formalize complex interaction between agents. Our

approach is based on distributed observation of events

inherent to agents' interactions, which may explain re-

lationships within conversations, or group utterances

in order to improve agent's behavior.

Key words: causality, interaction, distributed obser-

vation, performatives, colored Petri nets.

1 The interaction issue

This paper proposes an approach to study agents'

interactions as essential components of the dynamic of

multi-agent systems. The bene�t we expect is to im-

prove individual behavior of the agents and naturally

the one of the multi-agent system. Our approach is

generic, i.e. independent of any communication lan-

guage, and combines two complementary paradigms:

distributed observation to capture the events under-

lying the interacting situations and the colored Petri

net (CPN) as an e�cient formalism to specify, model

and study several kind of communication protocols.

1.1 Interacting situations

In a multi-agent system, agents are often led

to communicate together in order to cooperate, to

achieve a common tasks and/or goals, to exchange

data, knowledge, and plans, etc. A common paradigm

for agents' communication is the message. A such

communication is the necessary mean of cooperation

and required a shared background of agents and skills

as complex as perception, learning, planning and rea-

soning. Face to the distributed problem solving, many

kinds of interaction appear and involve complex strate-

gies of cooperation in the sense that they are non-

deterministic, hard to be interpreted and sometimes

not completely reproducible nor predictable. The bal-

ance of the autonomy of agents, endowed with more

or less intelligent behavior and their convergence to-

wards a global goal may be considered as the most

signi�cant characterization of interaction. Many types

of interaction has been considered by researchers [3]

and analyzed through several components including

the nature of the goals, the access to resources, and

the skills of agents. Consequently, a �rst typology of

interacting situations may be identi�ed: autonomy, a

simple cooperation, congestion, coordinated coopera-

tion, individual or collective competition, individual

or collective con�ict, etc. Moreover, interacting situ-

ations may be analyzed through hierarchical point of

view. In fact, a complex interacting situation is com-

posed of several elementary situations. In other words,

macro-situations may be distinguished during the an-

alyze of the global activity of the agents when micro-

situations may be observed at the most �ne levels of

details.

1.2 Interaction languages in multi-agents

systems

To support inter-organizational interaction, com-

munication and cooperation in multi-agents systems,

many proposals towards standardization for formaliz-

ing the �ow of interaction between agents have been

made these last years. These frameworks intend to

develop a generic interaction language by specifying

messages and protocols for inter-agent communication

and cooperation. One of the major interests of inter-

action languages is to reduce the communication cost



by avoiding an exhaustive description of the ad hoc

messages and to o�er a large scale of protocols [8].

Such languages focus especially on how to describe

exhaustively the speech acts both from the syntactic

and semantic point of views that support a language

of knowledge representation. Nevertheless, the onto-

logical aspect and the resort to conventions may help

to ensure a coherent collective behavior of the overall

system even if the conversational aspect is not easy to

be guaranteed.

At the United States, a standard of communication

language has been developed. Hence, Knowledge Shar-

ing E�ort (KSE) outputs speci�cation for the Knowl-

edge Querying and Manipulation Language (KQML)

[6] and [9] and the Knowledge Interchange Format

(KIF), and speci�cations of ontologies. KQML pro-

poses an extensible set of performatives, which de�nes

the permissible operations that agents may attempt

on each other's knowledge and goal stores. KQML

is based on the speech act theory introduced at �rst

by Austin [Austin, 62] and developed later by Searle

[15]in order to allow cognitive agents to cooperate.

Based on the possibility to encode explicitly in the

messages themselves illocutionary acts in terms of

messages or "performatives" , it lies on the mental

states of the agents.

Nevertheless, KQML has recently been pointed out

that some perfomatives are ambiguous, while others

are not really performatives at all, and there are no

performatives that commit an agent to do something

[2]. An other criticism that can be made to KQML

is its de�ciency regarding to a clear semantics inde-

pendent of the agents' structure. In fact, KQML of-

fers possibilities for isolated communications when the

handling of complex interactions needs sophisticated

protocols. Consequently, the communication speci�ca-

tion through KQML imposes to agents to shape their

behavior according to an architecture that implement

and support a theory based on mental states [8, 2, 3].

In [8], an interaction language has been proposed. It

introduces generic protocols of interaction devoted to

be instanciated depending on the social behaviors to

be implemented. The major interest of such language

consists in the fact that it encapsulates the application

level. It o�ers several protocols of communication as

well as the multi-agent language. Nevertheless, this

language raises the modeling problem. In fact, the

speci�cation of protocols by means of the �nite state

automaton induces some de�ciencies when we have to

study complex interactions.

More recently, the international collaboration of mem-

ber organizations, which are active companies and uni-

versities in the agent �eld within FIPA (Foundation

for Intelligent Physical Agents), proposes and speci-

�es some standards for the agent technology and espe-

cially, an agent communication language namely ACL

(Agent Communication Language) [5]. ACL is also

based on the speech act theory: the messages are con-

sidered as acts or communicative acts re�ecting the

act (action) expected by the speaker as result of his

sending message. ACL recovers the syntactical idea

of KQML which allows to build interactions enriched

by a powerful semantics of performatives and conse-

quently enables the expression of a set of high level

protocols and primitives to control the information ex-

change between agents. Although KQML and ACL of

FIPA are similar at the syntactical level), they sug-

gest substantially di�ering views on the issue of agent

communication.

1.3 Modeling Interactions

An interaction protocol aims to restrict the di�er-

ent interactions an agent can make with other agents

regarding the problems to solve. The speci�cation of

interaction protocols is non-trivial process. Several

formalisms have been introduced to model interaction

protocols. In particular, several models around on the

graph model. For instance, the model proposed in

[13] is a graph of prede�ned states where an agent

evolves according to the kind of recieved messages.

Other models like automata, graph or more speci�c

graphs the Dooly-graph [12] are used to describe the

conversations between agents. These models of rep-

resentation are very practical when they are used to

precise some conversational structures and especially

when they appear as isolated communications. The

problem to be faced with such formalisms, is their

poor capacity of computing (i.e. handling protocols)

or of the representation complex protocols. From one

hand, the �nite number of the graph states reduces

the capacity to represent real and complex protocols.

From the other hand, the most used formalisms take

in charge only sequential processes. Moreover, when

these formalisms (e.g. Dooly-graph) take into account

the temporal aspect, they assume the existence of a

global clock. Hence, these models are very limited

when it is useful to take into account the concur-

rency which is the key stone of multi-agent systems

since agents are often involved simultaneously in sev-

eral conversations or more generally in several inter-

actions.

From our point of view, it should be useful to for-

mally describe interactions by means of models that

are suitable to specify concurrent systems such as col-
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ored Petri nets (CPN) [7] which naturally represent

the concurrency and make easy the processing factor-

ization.

This paper is organized as follows: section 2 describes

our general framework as well as our hypothesis and

our aims namely the modeling and the analyzing of

interactions. Section 3 brie�y presents the paradigm

of distributed observation through the causality con-

cept and the technique we adopt (i.e. Vector clocks)

to carry out the causally graph. Section 4 details our

model of interaction following the steps developed in

our approach: 1) how to build the causally graph of in-

teractions, 2) modeling aspects of protocols by means

of CPN. Section 5 focuses on the recognition process,

which lead to extract interactions from causally graph.

Section 6 concludes and lights up our future work.

2 Approach

Agents that operate in a multi-agent system need

an e�cient strategy to handle their concurrent activi-

ties in a shared and dynamic environment. Searching

for an optimal interaction strategy is a hard problem

to be solved by an agent because it depends mostly on

the dynamic behavior of the other agents. One way

to deal with this problem is to endow the agents with

the ability to adapt their strategies according to their

experience.

Our approach is structured as follows: the �rst phase

corresponds to the distributed observation in order to

capture the traces of events underlying to interactions.

The second phase corresponds to the recognition pro-

cess of interactions based on a pattern matching mech-

anism applied to the causally graph. Let be remarked

that the �lters used to recognize the patterns of inter-

action are de�ned as CPN that model protocols ex-

tracted from ACL on studying and analyzing interac-

tions.

The third phase exploits the traces of interactions (ob-

tained by observation) in order to explain the behavior

of the agent regarding its interactions.

The phase four will not be detailed here. It is based

on a central agent, which learns and deduces a quali-

tative criteria for the improvement of the behavior of

the other agents.

Our Hypothesis:

� The multi-agent systems considered are composed

of a set of cognitive agents distributed on di�erent

sites and may be run concurrently.

� The agents have access to only their local memory

A
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Pattern matching
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Causally graph of

relevant events

(interactions events :

communicative acts or

performatives)
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agent interactions and

agents’ behavior

Modifying qualitative

criteria to improve agents’

future interactions

Interaction

Patterns library

Phase 1

Phase 2

Phase 3

Phase 4

Phase 0

Figure 1: A structured approach for multi-agent sys-

tem design

and exclusively communicate by asynchronous

messages.

� Each agent has a local strategy to solve its own

problems, can reason, etc.

� The observation is distributed in the sense that

each agent has a local module, which observes

and traces the events corresponding to the emis-

sions/receptions of the agent messages.

� The analyze is ensured o�-line by the central

agent which centralizes the traces of the other

agents.

� The learning process is also ensured by the central

agent.

3 Causal dependencies in multi-agent

interactions

Generally, at a given level of an application, only

few events are relevant to the observation process. For

example, in interaction protocol, only events accord-

ing to the protocol execution are relevant (e.g., send

and receive messages). An observer of a multi-agent

system may be any entity that attempts to watch the

system "live", while the computation is in progress, or

examine a post-mortem event log or trace. In all the

cases, it is necessary to inform the observer whenever
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interesting events occur.

In multi-agent systems, three types of event are in-

volved during a computation, namely, internal event,

message send event, and message receive event. An

internal event only a�ects locally the agent at which

it occurs and are linearly ordered by the order of their

occurrence. Moreover, send and receive events sig-

nify the �ow of information between agents and estab-

lish causal dependency from the sender agent to the

receiver agent. It follows that the execution of the

multi-agent application results in a set of distributed

events produced by the agents. The causal precedence

relation induces a partial order on the events of a dis-

tributed computation.

Thus, Causality (or the causal precedence relation)

among events is a powerful concept in reasoning, an-

alyzing, and drawing inferences about a computa-

tion. The knowledge of the causal precedence relation

among agents helps observing and studies variety of

interaction happened in multi-agent system execution.

3.1 A model of distributed executions

In our framework, we consider a distributed execu-

tion as composed of a set of n asynchronous agents

A

1

; A

2

; : : : ; A

n

that communicate by message passing

over a communication network [14]. In addition,

the agents do not share a global memory or global

clock. Agent execution and a message transfer are

asynchronous - a process may execute an event spon-

taneously and an agent sending message does not wait

for the delivery of the message to be complete.

At the most abstract level, execution of a multi-agent

system can be de�ned as a set of events. The events

happened at the same agent are naturally ordered.

Thus, there is a total order of events in a sequential

system. On the other hand, one of the major di�cul-

ties in distributed agents is that the relation between

events is only a partial order.

Leslie Lamport [10] recognized the importance of the

ordering relation between events in a distributed sys-

tem. He postulated that this relation (which he called

happened-before) is transitive and not re�exive. We

describe this relation in the next section.

Each agent A

i

generates an execution trace, which is

a �nite sequence of local atomic events. We denote

E the union of all events occurred in the multi-agent

execution. There are two kinds of event:

� interaction events, i.e., sending and receiving mes-

sages.

� internal events of the agents i.e., all events other

than sending and receiving events (updating in-

ternal state of the agent, executing local action

etc.).

3.2 Events causality in interactions

The concept of time in distributed systems may be

usefully used in many ways, especially for ordering

events. We say that event a happened before event

b if the physical time of the event a is less than the

time at which b is happened. In absence of precisely

synchronous clocks in distributed systems, the use of

logical clocks is useful for keeping information about

causality rather than physical time. Other aspect is

that many applications require identifying "cause and

e�ect" relationships in event occurrences. In any case

it is necessary to construct mechanisms that give in-

formation about causally precedes relation among the

events in the distributed execution.

This relation can be de�ned as:

� Locally precedes relation between events of a single

agent,

� Immediately precedes relation between coupled

events e and f of exchange messages if e is the

send of the message and f is the receive event of

the same message.

Now, the causally precedes relation denoted by "! "

can be de�ned as the transitive closure of the union of

locally precedes and immediately precedes relations.

If e

1

! e

2

, then event e

2

is directly or transitively

dependent on event e

1

. if not (e

1

! e

2

) and not

(e

2

! e

1

), then events e

1

and e

2

are said to be con-

current and are denoted e

1

ke

2

. Clearly, for any two

events e

1

and e

2

in a distributed execution, e

1

! e

2

or e

2

! "e

1

, or e

1

ke

2

.

To illustrate the concept of causality, the �gure 2.

shows the time diagram of a distributed execution (in-

teraction) involving three agents. A horizontal line

represents the progress of the agents; a dot indicates

an event; a slant arrow indicates a message transfer.

The examples we present below are inspired from com-

munication language ACL of FIPA since it o�ers a

clear and rich semantic of communication acts and it

supports a set of signi�cant interaction protocols (c.f.

Appendix 2)

Example 1 : FIPA-Request-When protocol

[5]

The FIPA-request-when protocol is simply an expres-

sion of the full-intended meaning of the request-when

action. The requesting agent uses the request-when
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Agent B

Agent A

Request-when

 (action, precondition)

Agree Inform-done (action)

Precondition True ?

Request-when

(action, precondition)

Agree

Inform-done (action)

(a)

(b)

reception B1

Reception A1 Reception A2

indirect dependence

causality

Figure 2: a) The time diagram of FIPA-Request-when

protocol execution (with acceptation) ; b) Causally

precedes graph related to the performatives

action to seek from the requested agent that it per-

forms some action in the future once a given precon-

dition becomes true. If the requested agent under-

stands the request and does not refuse, it will wait

until the precondition occurs then perform the action,

after which it will notify the requester that the ac-

tion has been performed. Note that this protocol is

somewhat redundant in the case that the action re-

quested involves notifying the requesting agent any-

way. If it subsequently becomes impossible for the

requested agent to perform the action, it will send a

refuse request to the original requestor.

This example illustrates the causally precedes rela-

tion between observable events through the execution

of FIPA-request-when protocol. The entire events of

an agent are totally ordered (e.g., at agent B: Agree

! Inform-done (action)). The send messages event

precedes causally their reception events (e.g., Request-

when (action, precondition) ! Receive B

1

). Thus we

can deduce the causal order between any couple of

events by transitivity. (e.g. Request-when (action,

precondition) ! Inform-done (action) ).

3.3 Causally precedes graph

A causally precedes graph is a very intuitive way of

visualizing computation and communications in multi-

agent systems. It is powerful and can be analyzed

for properties that re�ect errors in agent's interac-

tions. Causal order can be represented with an ori-

ented graph G = (X;U ) denoted causal dependency

graph where:

� X is the set of nodes representing the events in

the graph,

� U 2 X�X is the set of oriented edges in the form

(x; y) which indicates that x precedes causally y.

Thus, the graph G associated with the partial order

relation "!" in the domain E is de�ned as follow:

8x; y 2 E : x! y , (x; y) 2 U

This graph inherits from the partial order relation

the properties of non-re�exivity, transitivity, and anti-

symmetry. These three properties induct an a-cyclic

graph. We note that this graph is a complete graph of

the causality relation and it can be reduced to a min-

imal graph by eliminating the edges associated with

the closer transitive relation of "!".

3.4 Logical Clock to capture interaction

causality

In multi-agent system, progress is made in spurts

and interaction between agents occurs in spurts and

exhibits concurrency; consequently, it turns out that

multi-agent execution and causality relation between

events can be accurately captured by logical clocks

rather then physical clocks which are not precisely

synchronized in distributed systems. In a system of

logical clocks, every agent has a logical clock that is

advanced using a set of rules. To each event is assigned

a timestamp and the causality relation between events

can be generally inferred from their timestamps.

Depending on the level of information required, many

logical clocks are implemented intending to obey the

fundamental monotonic property; that is, if an event

a causally a�ect an event b, then the timestamp of a

is smaller than the timestamp of b.

In order to know exactly the causally precedes relation

between events, we use the vector clocks developed in-

dependently by [4] and [11]. The main interest of this

implementation is that it satis�es an isomorphism be-

tween the set of the partially ordered events produced
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by the distributed computation and their timestamps.

Recall that relation "!" induces a partial order, if

two events x and y have timestamps v

x

and v

y

, re-

spectively, then:

x! y , v

x

< v

y

xky , not (v

x

< v

y

) andnot (v

y

< v

x

)

This equivalence provides a very powerful, useful, and

interesting property of vector clocks.

4 Interaction Model

Many details of the behavior of agent-based sys-

tems cannot be predicted analytically, but must be

observed. A causally precedes graph of the interac-

tions that emerge can provide the basis of a number

of quantitative measures that are relevant to the sys-

tem strategies. Similarly, useful measures and mean-

ingful aspects of the dynamic of the conversations can

be derived from the causally graph (e.g. deriving from

the lengths of various paths reply cycles and series of

performatives).

4.1 Distributed Observation of multi-

agent interactions

The point of interactions is that a conversation, can

be explored both from the perspective of the performa-

tives it contains (usefully distinguished as events) and

states through which it passes. The performatives'

causally graph representation provides us to deduct

causally relation between interaction instances.

At run-time, an agent may be involved in several pro-

tocol instances. In order to record the state of every in-

stance of a protocol, to which the agent is committed,

the agent must record all the necessary data regarding

to the protocol as well as the events' timestamps. In

the following sections, we consider only complex inter-

actions since the elementary ones may be viewed as

trivial cases of interactions. The next example shows

how to build the causally graph from a communication

protocol namely the FIPA contract-net.

Example 2. FIPA-Contract-Net Protocol [5]

This section presents a version of the widely used Con-

tract Net Protocol, originally developed by Smith and

Davis [16]. FIPA-Contract-Net is a minor modi�ca-

tion of the original contract net protocol in that it

adds rejection and con�rmation communicative acts.

In the contract net protocol, one agent takes the role

of manager. The manager wishes to have some task

performed by one or more other agents, and further

wishes to optimize a function that characterizes the

task. This characteristic is commonly expressed as the

price, in some domain speci�c way, but could also be

soonest time to completion, fair distribution of tasks,

etc. The manager solicits proposals from other agents

by issuing a call for proposals, which speci�es the task

and any conditions the manager is placing upon the

execution of the task. Agents receiving the call for

proposals are viewed as potential contractors, and are

able to generate proposals to perform the task as pro-

pose acts. The contractor's proposal includes the pre-

conditions that the contractor is setting out for the

task, which may be the price, time when the task will

be done, etc. Alternatively, the contractor may refuse

to propose. Once the manager receives back replies

from all of the contractors, it evaluates the proposals

and makes its choice of which agents will perform the

task. One, several, or no agents may be chosen. The

agents of the selected proposal(s) will be sent an ac-

ceptance message, the others will receive a notice of

rejection. The proposals are assumed to be binding

on the contractor, so that once the manager accepts

the proposal the contractor acquires a commitment to

perform the task. Once the contractor has completed

the task, it sends a completion message to the man-

ager.

Note that the protocol requires the manager to know

when it has received all replies. In the case that a

contractor fails to reply with either a propose or a

refuse, the manager may potentially be left waiting

inde�nitely. To guard against this, the cfp includes

a deadline by which replies should be received by the

manager. Proposals received after the deadline are

automatically rejected, with the given reason that the

proposal was late.

Figure 3. illustrates the causally relation performed

in one possible execution of the protocol. It is con-

structed by using vectors clocks (timestamps) of Fidge

and Mattern associated to the performatives occur-

rence. The table on bellow presents timestamps as-

sociated to the events of FIPA-Contract-Net protocol

execution illustrated in �gure 3.a (cf. Appendix 1).

Event e

2

b

(performative Propose of agent B) precedes

causally e

5

a

(performative Accept-Proposal of agent A)

because their timestamps respectively are comparable

(i.e. (1,2,0,0) � (5,2,2,2)). If there is no compari-

son between two vector timestamps then the events

associated are concurrent (i.e. independent). We

�nd this with performatives Propose, Refuse and Not-

understood.
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A: Cfp (action,

preconditions1)

A: Accept

proposal (proposal)

B: Propose

(precondition2)

C: Refuse

(reason)

D: Not-understood

B: Propose

(precondition2)

Agent  A

Agent  B

Cfp (action, preconditions1)

Propose

(preconditions2)

Refuse (reason)

Deadline for proposals

Agent C

Agent D
Not-understood

Accept-proposal

(proposal)

Inform-done

(action)

ea
1

eb
1

ec
1

ed 
1

ea
2

ea
3

ea
4 ea

5 ea
6

eb
2

eb
4

eb
3

ec
2

ed 
2

(a)

(b)

Figure 3: (a) A possible execution of FIPA-Contract-

Net protocol ; (b) Causally graph inherent to perfor-

matives of FIPA-Contract-Net protocol

Agent

A

Agent

B

Agent

C

Agent

D

e

1

a

(1;0;0;0) e

1

b

(1;1;0; 0) e

1

c

(1;0;1;0) e

1

d

(1;0;0; 1)

e

2

a

(2;2;0;0) e

2

b

(1;2;0; 0) e

2

c

(1;0;2;0) e

2

d

(1;0;0; 2)

e

3

a

(3;2;0;2) e

3

b

(5;3;2; 2) - -

e

4

a

(4;2;2;2) e

4

b

(5;4;2; 2) - -

e

5

a

(5;2;2;2) - - -

e

6

a

(6;4;2;2) - - -

4.2 Validation of interaction protocols

A computational speci�cation of complex interac-

tions is the description of a combination of exchang-

ing performatives. As we deal with the validation of

this combination, we focus on the formalization of the

agents' interactions. So we identify some interaction

patterns, i.e. protocols of interactions commonly used

in multi-agents systems. Hence, we use a formalism

that enables validation and veri�cation activities. We

choose the Colored Petri nets formalism (CPN) since

it is well suited to modeling agent's interactions. It

is also richer than others generally used to formalize

multi-agent's interaction since its provides veri�cation

techniques.

We consider interaction protocols [1] as a basic ones

from which complex and high-level interactions can be

built. For this, we identify interaction protocols and

specify them with CPN formalism enabling to prove

their quality and o�ering an external view of their ex-

ecution.

4.3 Designing interactions with Colored

Petri Nets

Colored Petri Nets (CPN) is a graphical oriented

formalism for design, speci�cation, simulation and ver-

i�cation of concurrent systems. It is in particular well

suited for systems where communication, synchroniza-

tion and resource sharing are important. Typical ex-

amples of application areas are communication pro-

tocols, distributed systems, imbedded systems, auto-

mated production systems and work�ow analysis.

Colored Petri Nets have got their name because they

allow the use of tokens that carry data values and can

be distinguished from each other- in contrast to the

tokens of low-level Petri nets, which by convention are

drown as black. The circles are called places. They

describe the states of the interaction. The rectangles

are called transitions. They describe the actions. The

arc expressions describe how the state of the CP-net

changes when the transitions are �red. Each place

contains a set of markers called tokens carrying a data
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< Y, a > < Y, a >

< Y, a >

< Y, a >

< X, R >

[R=agree]•Y

< Y, p >

< X >

A: Request-when

(a, precondition)

B: Reception

B: Processing of

the request aA: Reception de

Proposal

demande
< X >

< X >

< X >

< Y, n >

Failure:

Response = n

B: Inform (done)

Success

Failure:

(Precondition = False)

B: Refuse

[Precond = False].Y

[Precond = True].Y

< Y >

< Y >

< X >

< Y >

¾ X, Y: represents the identity function.

¾ a: request (action, precondition).

¾ R: response  ∈ { P, N }

¾ p: positive response (agree)

¾ n: negative response (Refuse , Not-understood )

¾ [ condition ] • X:  predicate to be evaluated by agent X

¾  : terminal transition of the protocol.

< X >

B: Evaluation of the

precondition

Figure 4: The CPN model of FIPA-Request-when pro-

tocol

value, which belongs to a given type. To be �red,

a transition must have su�cient tokens on its input

places, and these tokens must take values that match

the arc expressions.

The following examples illustrate the CPN modeling of

two interaction protocols. The �rst expresses a sim-

ple interaction between two agents while the second

involves several agents.

Example 1: FIPA-Request-When Protocol

The CPN of the �gure 4. models the FIPA-request-

when protocol (cf. example 1. �3.2) and describes the

states according to the interaction of the agents A and

B. The two agents executes their own part of the pro-

tocol designed by their own tokens. We distinguish

three possible executions while attending �nal transi-

tions: a success, a failure when an not-understanding

or a refuse message is generated by the receiver or a

failure while the necessary preconditions are not sat-

is�ed.

Example 2 : FIPA-Contract-Net Protocol

This example illustrates the e�ective interest of CPN

for modeling interactions which involve several agents'

participation. This protocol (c.f. example 2. �4.1)

allows an agent (manager) to choose an other agent

(i.e. contractor) which will achieve an action. Mainly,

manager sends a broadcast message request for an ac-

tion (a) execution. The potentially contractor agents

send their responses (R) which can be positive (p) or

negative (n). We assume that the manager accepts

the �rst positive response and rejects others whatever

< S-X, a > < Y, a >

< Y, a >

< Y, a >

< Y, R >

[R=p]•Y

< Y, p >

Cfp Call for proposals

(a, precondition1)

Reception of

the cfp

Processing

the request

< Y, n >

Reception of the

1st Proposal

< Y, n >

< S-1, n >

< X >

< X >

< X>

< X>
< X>

< X >< X >

< X >

< X >

< X >

< X >
< X >

< X >

< Y, p >

Reception of n

Reject-proposal: others

proposals except the

first

Accept-proposal

Failure: Cancel by

manager

Failure: All negative

responses

Success

< X >

< X >

< X > < X >

< X >< X >

< X >

< X >

Cancel

Reception all other

Proposals

T1

T2

T3

T4

Inform

¾ S : represents all agents involved in the protocol.

¾ X, Y : represents identity function.

¾ a : request for execution the action a.

¾ R : response  ∈ { p, n }

¾ p : positive response (Propose - precondition2)

¾ n : negative response (Refuse , Not-understood)

¾ [condition]•X :  predicate to be evaluated by X

Figure 5: The CPN model of FIPA-Contract-Net pro-

tocol

their type. Notes that the manager can also abort the

engaged negotiation by a cancel performative. We dis-

tinguish through the CPN many possible executions:

� All the contractors refuse to give a proposal )

protocol failure ( transition T

1

)

� At least one positive proposal (p) is generated:

� If the manager cancels (cancel) the protocol

during ) protocol failure (transition T

3

)

� If the proposal is the �rst positive received

by the manager then it accepts the proposal

(accept-proposal) ) protocol success (transi-

tion T

2

)

� For each other proposals, the manager sends

reject messages (reject-proposal) according

to the transition T

4

.

The CPN above synthesizes the set of the observed

events of the protocol and the causally relation be-

tween them through places and transitions.
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5 Pattern Matching

Our aim is to represent two aspects in our model.

The �rst expresses serial and concurrence events to

be observed, i.e., the interaction states achieved by

agents. The second aspect describes the causally

precedence that exists among communicative acts oc-

curred during computation.

Causally graph is built in two phases: the �rst one

captures event's causality by considering performative

events and thus constructing the causally graph in-

cluding performatives events, while the second brings

out interaction protocols by recognizing them using

an algorithm which is not developed here. Thus we

can moreover exploit this to construct an abstrac-

tion graph which represents the interactions' causally

graph. The recognition of interactions is provided by

pattern matching (or �ltering) with CPN protocols li-

brary (c.f. �gure 1.).

Example : Figure 6 shows how to built and to extract

two interaction patterns by using the causally graph.

The Request-When and Query-if interactions present

a case of independent causally interactions where we

can not de�ne order between them.

6 Conclusion and future work

In this paper, we have proposed an approach based

on distributed observation and a formalmethod for de-

signing interaction protocols in multi-agent systems.

It provides a very powerful, useful, and interesting

property observation way to analyze and explain in-

teractions progress. The concept of causality be-

tween events is fundamental to design and analyze dis-

tributed computation.

Represented through partial order, the causality may

be implemented using the timestamps tools. When ap-

plied to the communication events, causality enables

to emphasize the correlation between both elementary

and complex interactions in order to recognize and

evaluate the interacting situations. This paper also

proposes an original approach for modeling, study and

analyze interactions by means of colored Petri nets.

This formalism is suitable for concurrent activities and

it o�ers several formal tools to study the dynamic of

complex systems. In addition, our approach is generic

and may be applied to a large scale of communication

protocols and languages.

In �ne, the analyze of multi-agent system interactions

and in particular the observation of the process of con-

current execution allows not only the detection of the

Interaction Query-if

Agent B

Agent A

Request-when

 (action, precondition)

Agree Inform Done (action)

A : Request-when

(action, precondition)

B : Agree

B : Inform Done

(action)

(a)

(b)

Agent C
Inform

(not(proposition))

Query-if (proposition)

A :Query-if

(proposition)

C : Inform

(not(proposition))

Precond. = True

Interaction Request-when

Figure 6: (a) Phase 1:Time-space diagram of two

concurrent interactions FIPA-Request-when et FIPA-

query-if; (b) Phase 2: Associated causally precedes

graph.
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success/failure situations but also to explain the rea-

sons of such situations. In fact, the explanation lies

on the causally graph and allows the backtracking if

necessary.

Our future work, intend to use the result of the dis-

tributed observation and consequently the evaluation

that it provides regarding to a set of interactions. The

main idea is the following: the learner agent recov-

ers these results, generates a qualitative criteria to be

communicated to agents in order to enrich their social

knowledge and to improve their future interactions.
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Appendix 1 : Vector clocks

The partial order between observed events is recon-

structed through timing information associated with

each event captured the observer. However, in the sys-

tem of vector clocks, the time domain is represented

by a set of n-dimensional non-negative integer vectors.
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Each process P

i

maintains a vector V

i

[1::n] where V

i

[i]

is the local logical clock of Pi and describes the logical

time progress at process P

i

. V

i

[j] represents process

P

i

's latest knowledge of process P

j

local time.

Each process P

i

executes the following algorithm:

Data :

V

i

[1::n] vector of integers ;

Initialisation :

8j 2 1::n : V

i

[j] := 0 ;

Rule for an internal event x produced by P

i

:

V

i

[i] := V

i

[i] + 1 ;

Rule for a send event ( message from P

i

to P

k

) :

V

i

[1::n] is included in the message ;

Rule for a receive event ( message from P

k

to P

i

in-

cluding V

k

):

8j 2 1::n : Do

If V

i

[j] < V

k

[j] then V

i

[j] := V

k

[j] ;

This algorithm is described by the initial condi-

tions and the actions taken for each event and satis�es

the following property : for any two events x and y ,

x! y , timestamp(x) < timestamp(y)

The following three relation are de�ned to compare

two vector timestamps, v

x

and v

y

:

v

x

� v

y

, 8i : v

x

[i] � v

y

[i]

v

x

< v

y

, v

x

$v

y

and 9i : v

x

[i ] < v

y

[i ]

v

x

k v

y

, not (v

x

< v

y

) and not (v

y

< v

x

)

An example is given in Figure 7.

Appendix 2: FIPA Interactions proto-

cols [5]

This section details graphically a number the FIPA

protocols speci�cation used in the paper.

Protocol Description Notation

The following notation is used to describe the stan-

dard interaction protocols in a convenient manner:

� Boxes with double edges represent communicative

actions.

� White boxes represent actions performed by ini-

tiator.

� Shaded boxes are performed by the other partic-

ipant(s) in the protocol.

� Italic text with no box represents a comment.

a b
c

d e f

g h

0 0 1 0 0 2 2 1 3

0 1 0 0 2 0 2 3 1

1 1 0 2 1 0

f c

b

ad

eg

h

(a )

(b )

Figure 7: (a) A sample execution of the vector clock

algorithm; (b) Associated causally precedes relation

response of message type

and message content

as performed by recipient

A com m ent

another response of type

and content

as performed by recipient

CA of message type

and message content

as performed by init iator

Figure 8: Example of graphical description of proto-

cols

not-understood refuse

reason

failure

reason

in form

Done(action )

in form

(iota x (resu lt action ) x)

agree

request

action

Figure 9: - FIPA-Request Protocol

11



not-understood fa ilure
reason

re fuse
reason

in form

query or
query-ref

Figure 10: - FIPA-query Protocol

not-understood refuse

reason

precondition

is true

failure

reason

inform

Done(action)

can proceed?

refuse

reason

cannot proceed

agree

request-w hen

action

precondit ion

Figure 11: - FIPA-request-when Protocol
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