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Abstrat A new method of model heking is proposed based on the existene of

symmetries in system. We show how to fully handle the partial sym-

metries of both properties and systems. Our method does not depend

on a partiular formalism and a priori an be applied to any one. Well-

formed Petri Nets are used as an illustration.
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1. INTRODUCTION

Model heking of temporal logi formulas over �nite state systems is

now a widely used method of veri�ation of protools and distributed

algorithms. Suh a tehnique has led to numerous tools (Holzmann,

1997,...). However the main drawbak of this kind of veri�ation is the

omplexity fator depending on the size of the spae of reahable states.

Thus di�erent improvements have been proposed (and implemented in

tools). The partial order analysis exploits the independene of events of

the system in order to avoid explorations of equivalent paths in the state

graph (Godefroid and Wolper, 1994). Another fruitful researh diretion

is based on the symmetries of the system to be analysed. The main

idea is to build a quotient graph where nodes denote set of equivalent

reahable states. Then the redued graph is shown to be equivalent to

the original one w.r.t. to some generi properties (Jensen, 1986,Chiola

et al., 1991).

However the modeller often needs to hek partiular properties re-

lated to the behaviour of its system. It is then neessary to adapt the

quotient graph building with the aim of verifying a temporal logi for-

mula. The key point is the haraterisation of symmetries of a formula

and we now disuss the previous approahes to this problem. We limit
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our presentation to the linear time logi (e.g. LTL). So let us briey

reall its usual veri�ation algorithm (Gerth et al., 1993):

the negation of the formula is translated into a B�uhi automaton,

the synhronised produt of the automaton and the state graph of

the system is built (produt of ompatible states and transitions),

a path is searhed within the synhronised produt, suh that it

ends by a loop ontaining a state assoiated with one of the a-

eptation states of the B�uhi automaton. We all suh a path, an

invalidating path.

The formula is true if and only if suh an invalidating path does not

exist. Although the size of the automaton is exponentially larger than

the size of formula, it remains low ompared to the number of states in

the system. This last parameter is the main omplexity fator.

In a �rst approah (Clarke et al., 1996), one restrits the atomi propo-

sitions of the language to symmetri propositions. For instane, \In a

future state, all proesses will be idle" or \If some proess is waiting

for a resoure, then some proess will get it" are symmetri formulas.

In other words, a formula is symmetri if its atomi propositions are

invariant under any proess identities permutation. For heking suh

formulas, one substitutes a quotient state graph to the state graph and

one applies the above algorithm without any hange. Unfortunately,

many usual formulas are not onsidered as symmetri. For instane, the

fairness formula \If some proess is waiting for a resoure, then it will

get it" is not onsidered as a symmetri formula.

The seond approah (Emerson and Prasad Sistla, 1996), de�nes sym-

metri B�uhi automata. An automaton is symmetri if, given a (aept-

ing) state and a proess identities permutation, there is another (aept-

ing) state whose atomi propositions are obtained by the permutation

applied on the atomi propositions of the �rst state and for any suessor

of one state, there is a suessor of the other one for whih the property is

again ful�lled (and this reursively). Starting from this automaton and

the model of the system, one diretly builds a quotient synhronised

produt. It is then shown that the existene of an invalidating path in

the original synhronised produt and the quotient struture are equiv-

alent. The symmetri formulas of the previous method, and also new

temporal properties like the disussed fairness property are onsidered

as symmetri formulas.
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Anyway, this tehnique does not over the ase of partially symmetri

formulas whih are onsidered as asymmetrial. Here is a partially sym-

metri formula: \If some proess is waiting for a resoure then it will

get it, provided none of the proesses with higher identity will require the

resoure in the future". Therefore in (Ajami et al., 1998), the authors

have proposed a more re�ned de�nition of the quotient synhronised

produt than the previous one:

One omputes an equivalene relation between states of the B�uhi

automaton per item of the \symmetry group" of the model in suh

a way that two states are equivalent whenever they indue the

same present and future w.r.t. the ation of this item.

A quotient synhronised graph is built by applying these equiva-

lene relations on the pairs (state of the model, state of the au-

tomaton).

In ase of a symmetri automaton, the quotient graph is idential to

the previous one, but the tehnique also redues the omplexity of the

veri�ation in ase of a partially symmetri automaton. In other words,

it generalises the previous tehniques.

However none of the existing methods over two important situations.

At �rst, they require the system to be symmetri. Many models do not

ful�ll this requirement. In most ases, they are partially symmetri,

meaning that large parts of the spei�ation is symmetri but some

ritial modules are asymmetri. In (Haddad et al., 1995), a spei�

algorithm is proposed for partially symmetri high-level Petri nets, but

it mainly deals with the reahability problem and it does not seem that

it an be extended to the model heking. In (Emerson and Treer,

1999), asymmetri behaviour is allowed in \symmetri states" (left in-

variant by any proess identities permutation). Unfortunately, this kind

of asymmetry is very restritive.

The seond situation whih annot be exploited by the previous meth-

ods onerns the formula. Atually, the two automaton-based tehniques

assume that some symmetri relations hold on the struture of the au-

tomaton. However in automata of partially symmetri formula, most of

the states of the automaton are partially symmetri, but the automaton

is globally asymmetri (i.e. the equivalene relations between states are

almost redued to the identity).

In the present work, we will show how to overome these two prob-

lems. In the seond setion, a new method is presented whih applies

on a symmetri system and any B�uhi automaton. Eah state of this
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automaton is assoiated with the group of symmetries whih left its set

of atomi propositions globally invariant. No supplementary ondition

is required on the struture of the automaton. The method does not

depend on a spei� formalism for the system and an be applied over

any model where symmetries an be syntatially heked. So in the

third setion, we illustrate a possible implementation on well-formed

Petri nets for whih symmetries have been intensively studied Chiola

et al., 1993. More importantly, we show how to apply our method on

asymmetri systems. The key point is that suh systems are de�ned as

synhronised produts of a symmetri model and an asymmetri B�uhi

automaton. In our opinion, many protools and algorithms an be rep-

resented with the help of this formalism. In the onlusion, we disuss

about ombinations of tehniques and experimentations.

2. PRINCIPLES OF OUR METHOD

2.1. VERIFICATION OF TRANSITION

SYSTEMS

In order to represent the general aspets of our method, we onsider

it at a semanti level, in other terms we onsider the transition system

that is generated from the syntati model, e.g. a Petri net.

De�nition 1 A (�nite) transition system S = (Q;Q

0

; R; Prop;�) is

de�ned by : Q, a (�nite) set of states; Q

0

, the set of initial states; R, a

transition between states R(q; q

0

), also denoted q ! q

0

; Prop, the set of

atomi propositions; � an injetive mapping from Q to 2

Prop

.

The requirements that � is injetive ensures that eah state is totally

haraterised by the values of its atomi propositions. Sine we fous on

the veri�ation of state formulas, there is no label attahed to ars. Our

approah ould be adapted easily to formulas expressing onditions on

state transitions. The �nal result (see proposition 8) holds for any �nite

branhing transition systems, i.e. the number of initial states is �nite

and eah reahable state has a �nite number of suessors.

One may express a linear time temporal logi formula with languages

like LTL (Pnueli, 1977) or �-alul (Kozen, 1983). During the model

heking proess, the onsidered formula an be translated in a B�uhi

automaton (Vardi, 1996).

De�nition 2 A B�uhi automaton A = (B;B

0

; R; Prop;�; F ) is de�ned

by : B, a �nite set of states; B

0

, the subset of B of the initial states; R,

a transition relation between states R(b; b

0

), also denoted b ! b

0

; Prop,

the set of atomi propositions; � a mapping from B to 2

Prop

; F , the

subset of B of the aepting states.
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The veri�ation problem of a formula expressed by the B�uhi au-

tomaton is usually redued to the searh of an in�nite run within the

system : suh a run fq

i

g

i=0::1

with q

0

2 Q

0

must orrespond to an in�-

nite path fb

i

g

i=0::1

with b

0

2 B

0

within the automaton. More preisely,

the atomi propositions labelling every state b

i

must also be present in

state q

i

: �(b

i

) � �(q

i

). In addition, an aepting state must our

in�nitely often in the onsidered path. This leads to the de�nition of

the following key onept, alled the synhronised produt.

De�nition 3 Let S be a transition system and A a B�uhi automa-

ton. The synhronised produt between S and A is a graph Gr(S;A) =

(V; V

0

; R), de�ned by : V = f(q; b) s.t. �(b) � �(q)g, the set of

nodes; V

0

= f(q; b) 2 V s.t. q 2 Q

0

^ b 2 B

0

g, the set of initial

states; R, the transition relation between nodes, denoted !, and suh

that (q; b)! (q

0

; b

0

) i� q ! q

0

and b! b

0

.

One standard model heking priniple onsists of a translation of

the negation of the formula in a B�uhi automaton, the building of the

synhronised produt, and the searh of an "invalidating" path within

the synhronised produt.

De�nition 4 Let S be a transition system and A a B�uhi automaton

expressing the negation of formula f . Formula f is valid i� there is no

invalid path in Gr(S;A). An invalidating path of formula f is an in�nite

path within the synhronised produt Gr(S;A), starting from one initial

node and inluding in�nitely often the subset of nodes f(q; b) s:t: b 2 Fg

If the system is �nite, the veri�ation proedure is redued to the

searh of an elementary path ending by a state yet visited, s.t. be-

tween the two ourrenes, a state referring an aepting ondition is

met. Many improvements to this method an be found in the literature,

among them there are the on-the-y tehniques whih searh for an in-

validating path simultaneously to the building of Gr(S;A) (Gerth et al.,

1993). All these tehniques an be applied in the ontext of the quotient

synhronised produt we develop in setion 2.3.

2.2. SYMMETRIC TRANSITION SYSTEMS

In order to highlight all the developed onepts, we onsider in this

setion a model of a protool where four proesses, denoted by C =

fu; v; w; xg, exeute the same program. For sake of simpliity, we assume

that ommuniations are instantaneous, so that the global system is

entirely de�ned by the loal states of the proesses. In the following,

the loal state of any proess, e.g. x, is symbolially represented by a
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variable, e.g. l(x). The de�nition domain for l(x) is fidle, transmit,

wait, aessg.

Beause "symmetries" are usually handled by group theory, we now

reall some elementary notions of group (Lang, 1977).

De�nition 5 Let G be a group, ontaining a neutral element id, whih

operation is denoted by (�).

Let E be a set, an ation of G over E is a mapping from G�E to

E s.t. the image of (g; e), denoted by g:e, ful�lls : 8e 2 E id:e =

e 8g; g

0

2 G (g � g

0

):e = g:(g

0

:e)

The isotropy (sub)group G

e

of an element e is de�ned by : G

e

=

fg s:t: g:e = eg

Let H be a subgroup of G, the orbit H:e of e under H is de�ned

by : H:e = fg:e s:t: g 2 Hg

This ation an be straightforwardly extended to the powerset of E

by : g:E

0

= fg:e s:t: e 2 E

0

g

Let us assume that E is the set of the atomi propositions of our

model. For instane, proposition [l(u) = idle℄ means that the loal state

of proess u is idle. If G is the group of permutations of C and if g

is the permutation whih exhanges proesses u and v, then g:[l(u) =

idle℄ = [l(v) = idle℄. Let f[l(u) = idle℄; [l(v) = idle℄g be a set of atomi

propositions, then the isotropy group of this subset is the subgroup of

permutations whih let the subset fu; vg globally invariant.

We are now able to haraterise what is a symmetri transition system.

De�nition 6 Let S be a transition system and G be a group ating on

Prop.

S is said to be symmetri (w.r.t. G) i� :

Every state has a \ symmetri " state w.r.t. any element of G :

8q 2 Q;8g 2 G; 9q

0

2 Q; �(q

0

) = g:�(q) The ation of the group

on the states is extended, by denoting g:q, the unique q

0

of the

former formula.

The set of initial states is invariant under the ation of G : G:Q

0

=

Q

0

.

The ation of G is ongruent w.r.t. the transition relation : 8q; q

0

2

Q; 8g 2 G; q ! q

0

, g:q ! g:q

0

Observe that all these onditions hold regarding our model of protool,

by de�ning G as the group of proess permutations.
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2.3. MODEL CHECKING OF SYMMETRIC

TRANSITION SYSTEM

As a state is assoiated with a subset of Prop in both the B�uhi

automaton and the model, we will use the ation of G on the powerset

of Prop. Let b be a state of B�uhi automaton A, G

�(b)

will simply be

denoted G

b

(although one annot de�ne an ation of G on B). Observe

that G

b

is strongly related to the symmetry degree of b independently

of the struture of the B�uhi automaton.

Let us onsider di�erent ases of G

b

in the ontext of our example. If

this subgroup equals the group G, then the state is totally symmetri,

e.g. this is the ase for proposition set f[l(u) = idle℄; [l(v) = idle℄; [l(w) =

idle℄; [l(x) = idle℄g. In ontrast, whenever the isotropy group is re-

dued to the identity (denoted fidg), the state is totally asymmetri,

e.g. f[l(u) = idle℄; [l(v) = transmit℄; [l(w) = wait℄; [l(x) = aess℄g. In

most ases, the isotropy group is not trivial (i.e. it di�ers from id and

G). Let us note that in the ontext of our model, the isotropy group

of proesses impliitly orresponds to a partition of proesses, namely

the group of permutations whih left eah set of the partition invariant.

For f[l(u) = idle℄; [l(v) = idle℄g, the partition of C is ffu; vg; fw; xgg.

Aording to a state of the B�uhi automaton, we all suh a partition

the loal partition of the state.

Our aim is to build a quotient of the synhronised produt over whih

it is possible to searh an invalidating path diretly. In this \ quotient"

struture, eah node is haraterised by a triple (H;O; b), where H is a

subgroup of G, O � Q, b 2 B. Moreover, the following two points must

hold:

(C1) 8q 2 O;�(b) � �(q)

(C2) H:O = O

The intuitive idea is that the node (H;O; b) is an aggregation of a

set of nodes of the synhronised produt, more preisely f(q; b)g

q2O

. As

we will see now, H is used in the de�nition in order to give a sound

de�nition of the suessor relation.

The building of the quotient struture starts from the set of initial

nodes, de�ned as follows : (G

b0

; G

b0

:q

0

; b

0

) with q

0

2 Q

0

, b

0

2 B

0

and

�(b

0

) � �(q

0

). Observe that ondition C2 is ful�lled trivially beause

G

b0

is a group, moreover ondition C1 is dedued from the de�nition of

G

b0

.

Then, there remains to de�ne the suessor relation.

(H

2

; O

2

; b

2

) is a suessor of (H

1

; O

1

; b

1

), denoted (H

1

; O

1

; b

1

)! (H

2

; O

2

; b

2

),
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i� b

1

! b

2

and 9q

1

2 O

1

; 9q

2

2 Q s.t. q

1

! q

2

and �(b

2

) � �(q

2

).

Then O

2

= (H

1

\G

b

2

):q

2

and H

2

� G

O

2

.

Observe that both onditions C1 and C2 are ful�lled by the new

node. E�etively, from O

2

� G

b

2

:q

2

, one dedues that: 8q

0

2

2 O

2

;9g 2

G

b

2

s:t: q

0

2

= g:q

2

. So, �(b

2

) = g:�(b

2

) � g:�(q

2

) = �(q

0

2

). Moreover,

as H

2

� G

O

2

then H

2

:O

2

= O

2

.

In order to make the suessor relation operational, one must speify

how the subgroup H

2

is hosen. With regard to the suessor relation, it

is interesting to maximise H

2

, i.e. to hoose H

2

= G

O

2

, but this hoie

might not be possible w.r.t. the syntatial aspets of the model. In

any ase, H

2

an be hosen as the subgroup (H

1

\G

b

2

). The following

lemma and proposition 1 show the validity of our onstrution.

Lemma 1 Let S be a symmetri transition system and A be a B�uhi

automaton. Let Gr(S;A) be the orresponding synhronised produt and

GRQ(S;A) the orresponding quotient struture.

Let (H

1

; O

1

; b

1

) and (H

2

; O

2

; b

2

) be two nodes of GRQ(S,A).

(H

1

; O

1

; b

1

) ! (H

2

; O

2

; b

2

) ) 8q

2

2 O

2

; 9q

1

2 O

1

; (q

1

; b

1

) !

(q

2

; b

2

)

Let (q

0

; b

0

) ! (q

1

; b

1

) ! ::: ! (q

n

; b

n

) ! ::: be a (in�nite) path in

Gr(S;A), then 9(H

0

; O

0

; b

0

)! (H

1

; O

1

; b

1

)! :::! (H

n

; O

n

; b

n

)!

::: a (in�nite) path in GRQ(S;A) s.t. q

i

2 O

i

(i 2 1::n).

It is worth noting that the �rst point beomes false in the ase where

one exhanges its onsequene by the following one: \ 8q

1

2 O

1

;9q

2

2

O

2

; (q

1

; b

1

)! (q

2

; b

2

)".

Proposition 1 For a symmetri �nite branhing transition system, there

is an invalidating path in the synhronised produt if and only if there is

an invalidating path in the quotient struture.

3. APPLICATION TO THE WELL-FORMED

PETRI NETS

The well-formed Petri net model o�ers a global solution for the design,

veri�ation and performane evaluation of distributed systems graphs.

A well-formed Petri net is a high level Petri net model. Its spei�

syntax has made possible to de�ne methods whih take pro�t from the

symmetry relations existing in systems. One of the assoiated meth-

ods is the building of the symboli reahability graph whih is a highly

ompat struture used to represent the state spae. It an be used to
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Dei Tr i At i SciRei ∧
j    I∈

At j

Sc∧
j    I∈ j ,

p
i

{ }
i=1

n

∧
j    I∈

Tr j

Figure 1 Automaton of one proess

analyse some standard properties of the Petri nets as well as to derive

an aggregated Markov hain in order to ompute performane indies

( Chiola et al., 1993). We are interested in adapting this onstrution to

our method, but we do not fully desribe neither the well-formed Petri

net de�nition nor the implementation of the symboli reahability graph

building (see Chiola et al., 1991 for more details). Atually, we will fo-

us on the representation of nodes and on the building of the suessor

relation.

3.1. PRESENTATION OF THE

WELL-FORMED PETRI NET MODEL

Desription of the system and properties to verify. The

system whih is desribed here onsists of n proesses fP

i

g

i=1::n

aessing

to a ritial setion. Like in the former model, we onsider that the

proesses run the same ritial setion aess protool. They are now

synhronised by shared variables.

This protool is desribed for a proess P

i

in Figure 1. Initially, the

proess is idle (loal state Re) then it may ask for an aess to the ritial

setion (loal state De). Before aessing this setion (loal state S)

the proess follows a sequel of two loal states : Transmitting (Tr) and

Waiting (At). We now detail the state transitions : (1) A requesting

proess an be in state Tr if there is no proess in waiting state. The

sheduler onsiders as privileged all the proesses in state De. This is

represented in the �gure by a bold ar. (2) A proess hanges from state

Tr to At without spei� ondition. (3) To enter the ritial setion,

there must be no proess in this setion, but also no proess in state Tr.

We aim at demonstrating that the system is (weakly) fair : Every

proess whih asks for the ritial setion will obtain it in a �nite time.

Intuitively, this property holds due to the onditions whih ensures that

requests are treated wave after wave. A wave starts from the moment

when there is a requesting proess and is ompleted as soon as one

proess enters the waiting state.

Hene, a wave ontains all the proesses in state Tr and At, and these

proesses will enter the ritial setion without spei� order. Due to
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S
S

S

C(Re)=C(De)=C(Tr)=C(At)=C(Sc)=C(Vg);

C(Mu)= ε;

S

Vg

Mu

Re

De

Tr At

Co
S

X

X

X X X X X

X

X

X

t1

t2 t4

t 5

t3

Sc

Figure 2 Modelling of the symmetri-

al behaviour of the system

true

b1

b2

b 3

b0

De  , Rei j

Sc  , Sci j

Sc j

true
b t

1,2 n, n-1

Figure 3 B�uhi automaton of :f

the privilege of the hange from De to Tr, a requesting proess belongs

either to the urrent wave or to the following one. This ensures the

fairness property.

In a seond stage, the system is modi�ed so that within a wave, the

exeutions of the ritial setion are ordered aording to a priority re-

lation, indued by the identity number of proesses. Atually, The �rst

system is symmetri, while the seond is not.

With respet to this new spei�ation, the two expeted properties

are the followings :

Every requesting proess will �nally obtain the aess

The proesses in state Tr or At will be served aording to the

order indued by the spei�ed priority relation.

In ontrast, the strong fairness property \A requesting proess will be

served before every proess in state idle" is false.

Formal modelling for the System and its properties.

1At   , At   , At2 3
Mu

At   , At2 3
Mu

   At3
Mu

   Sc

   Sc2

   Sc3

c2

c4

c6

1

c1

c3

c 5

1At   , At   , At2 3
Mu

c0

Figure 4 ontrol automaton w.r.t. a priority relation
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In order to represent our system, we proeed in two stages : a sym-

metri system is spei�ed �rst in terms of the well-formed Petri nets of

Figure 2, then the runs whih do not preserve the priority relation are

prohibited by means of the additional automaton of Figure 4, namely

ontrol automaton. Atually, the system formally orresponds to the

synhronised produt of the well-formed Petri net and the ontrol au-

tomaton.

In a well-formed Petri net, a olour domain is attahed to eah plae

and transition. Eah token in a plae is typed by a olour of the plae

olour domain. Eah olour of a transition indiates a di�erent way to

�re the transition, hene, the labels of the ars are no more integers but

olour funtions whih denote for eah �ring the quantities of tokens to

be onsumed and produed per eah olour. In well-formed Petri nets,

the olour funtions are written under a spei� syntax whih allows

one to exploit the system symmetries. Funtion S represents a onstant

funtion, alled a di�usion. Funtion S is a sum of tokens s.t. there is one

token per olour of the domain, e.g. one for eah proess. Funtion X

represents the olour whih is used to instantiate the �ring of a transition

in the net.

In addition, a priority number is assoiated with eah transition of

the well-formed Petri nets. Thus, among the transitions that are enabled

from the urrent marking of the net, only the ones whih have the highest

priorities an be �red.

In the well-formed Petri net of Figure 2, the loal states of the pro-

esses are represented by means of the orresponding plaes. The set

C = fh1i); h2i); h3ig is the olour domain of proesses. It is the domain

of all the plaes (exept Mu) and the domain of all transitions of the

net. The marking of plae Re by the (onstant) di�usion funtion or-

responds to the fat that, initially, all proesses are idle. Three more

plaes allow one to implement the protool mehanism : (1) Plae Mu

is used to speify the ontrol of aesses to the ritial setion; initially,

it is set to an (unoloured) token and prohibits the �ring of transition

t

4

, whenever plae S is marked. (2-3) Plaes V g and Co (initially set

to S) are used to speify the wave mehanism. V g prohibits the �ring

of transition t

2

, whenever one of the At or S plaes is marked. Plae

Co prohibits the �ring of transition t

4

whenever plae Tr is not empty.

At last, t

2

is a transition the �ring of whih is privileged with respet to

the others transition, so that the expeted behaviour of the sheduler is

obtained by the following priority relation : 8t 6= t

2

, Pri(t

2

) > Pri(t).

The spei�ation of the well-formed Petri net is ompleted by the

ontrol automaton A



given in Figure 4. The �rst state of A



spei�es

that there is no proess urrently in the ritial setion, and that there is
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no request for that. The three states at the left side speify the di�erent

ases where a proess must be privileged, provided the ritial setion is

empty. Moreover, the three proesses in the right side determine whih

proesses is in the ritial setion. The ars from left to right ensure the

priority mehanism. The others follow the behaviour of the net.

The semanti of the system is de�ned by the synhronised produt

between the ontrol automaton and the reahability graph of the net.

In order to illustrate our method, we wish evaluate the following

strong fairness property : \A requesting proess will be served before

every idle proess". The orresponding LTL formula is the following (

Pnueli, 1977) : f = ^

i;j2I

G[(De

i

^Re

j

)) X(S

j

US

i

)℄

The B�uhi automaton A

:f

partially represented by Figure 3 models

the possible runs of the system for whih the negation of property f

holds. For sake of simpliity, only one branh (i; j) is represented. In

this elementary ase, the struture of the automaton is immediately

dedued from the formula to invalidate. With the help of the �rst state

of the automaton, one waits to the moment when (De

i

^ Re

j

) holds,

whih will ause the invalidation of the property. Then, the next states

of the automaton ensures that proess j will enter the ritial setion

before i. The last state represents the remaining part of the in�nite run,

without meaning aording to the onsidered property.

We highlight now (for this kind of spei�ation) that the heking

of a formula on an asymmetri system an be redued to the heking

of an asymmetri formula on a symmetri system. The searh of a

path must be omputed through the synhronised produt of the three

strutures : the reahability graph of the well-formed Petri net, the

ontrol automaton and the automaton of the negation of the formula.

However, the synhronised produt is a ommutative and assoiative

operation. It is thus possible to perform the synhronised produt of

the two automata, A



and A

:f

, in order to obtain a new one, then to

apply our onstrution on this new automaton and the well-formed Petri

net (a symmetri model).

On an hek that the following path in the synhronised produt in-

validates the desired formula :

(m

0

; (

0

; b

0

))

t

1

(h1i)

�!

(m

1

; (

0

; b

1

))

t

2

(h1i)

�!

(m

2

; (

0

; b

2

))

t

1

(h2i)

�!

(m

3

; (

0

; b

2

))

t

2

(h2i)

�!

(m

4

; (

0

; b

2

))

t

3

(h2i)

�!

(m

5

; (

3

; b

2

))

t

3

(h1i)

�!

(m

6

; (

3

; b

2

))

t

4

(h2i)

�!

(m

7

; (

4

; b

3

))

Eah node (m,(,b)) of suh a sequene orresponds respetively to

one marking of the net and one pair obtained by a state of the B�uhi

automaton and a state of the ontrol automaton. Observe that, the
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label of an ar represents some �ring in the net. For instane,

t

1

(h1i)

�!

orresponds to the �ring of transition t

1

with respet to proess h1i.

3.2. BUILDING OF THE SYMBOLIC

SYNCHRONISED PRODUCT

The symboli synhronised produt is a representation of the quo-

tient synhronised produt. We all them symboli due to the analogy

with the symboli reahability graph representation (Chiola et al., 1991).

Its major peuliarity is that objets are never more represented expli-

itly, but are viewed under a symboli form. For instane, one an say

symbolially that two proesses require the same resoure, instead of

saying that proesses 1 and 2 require resoure 1. From suh a symboli

representation, a symboli �ring rule an be de�ned whih allows one

to ompute the symboli reahability graph, automatially and diretly

from the objet spei�ation within the well-formed net.

Computation of loal partitions of olours. Before omputing

the quotient synhronised produt, one must ompute and represent the

isotropy group of eah state of the automaton. The most easy way to

proeed onsists in deteting the olours whih marks the same propo-

sitions in the states. These olours are gathered in subsets and these

subsets form a partition, named loal partition. The isotropy group is

impliitly de�ned as the group of permutations whih left eah set of

the partition globally invariant. Let us give three examples : (1) For a

state where the atomi propositions are fAt

1

; At

2

; At

3

g, the partition is

omposed by a unique singleton fh1i; h2i; h3ig (i.e. all the permutations

are admissible). (2) For a state where the atomi propositions are fAt

2

g,

the partition is omposed of a singleton fh2ig and a set omposed of the

remaining olours, here fh1i; h3ig (the permutations must left h2i invari-

ant). (3) For a state where the atomi propositions are fAt

2

; At

3

g, the

partition is omposed of three elements, fh1ig; fh2ig; fh3ig. The isotropy

group is redued to the identity permutation.

States of the symboli synhronised produt. Let us reall

that we want to represent triples (H,O,(b,)), suh that O is subset

of markings whih is unhanged under the ation of the subgroup H

(O = H:o, 8o 2 O). The subgroup H will be impliitly represented by

a loal partition, whih may di�er from the partition attahed to the

state of the automaton (H may be di�erent from G

b

). The subset of

markings will be represented in a symboli way : the olour domain

is partitioned in abstrat subsets, alled dynami sublasses (i.e. the
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omposition is not known). However for eah subset, the ardinality

and the referene to a loal partition is preserved. The markings of the

net are now symboli sine their tokens are no more olour but dynami

sublasses. Symboli markings are denoted like

b

m.

In our example, there is one initial symboli node, suh that :

(

b

m

0

; (b

0

; 

0

)) where

b

m

0

is a symboli marking of the net suh that :

b

m

0

is de�ned from a unique loal partition fh1i; h2i; h3ig omposed

of a unique dynami sublass (denoted Z

1

s.t. j Z

1

j= 3),

b

m

0

= (Z

1

:Re+ Z

1

:Co+ Z

1

:V g) +Mu, meaning that there is one

token of eah proess in plaes Re, Co and V g and that there is

one unoloured token in plae Mu.

The atomi propositions of b

0

and 

0

(fAt

i

g

i=1::3

;Mu) are satis�ed by

b

m

0

. Observe that

b

m

0

is a symboli representation for both subgroup H

of permutations and subset O of markings.

Symboli �ring in the quotient synhronised produt. In or-

der to build a suessor of a node (H

0

; O

0

; (b

0

; 

0

)) within the symboli

synhronised produt, a suessor of the urrent state in the automa-

ton is seleted. For instane from (b

0

; 

0

), one an hoose state (b

1

; 

0

)

as a possible suessor. Then a new loal partition is omputed, by

interseting the loal partition of the state urrently onsidered within

the symboli synhronised produt and the loal partition of the state

newly onsidered within the automaton. This is equivalent to onsider

the group H

0

\G

(b

1

;

0

)

.

For state (

b

m

0

; (b

0

; 

0

)), the loal partition in the symboli synhro-

nised produt is given by fh1i; h2i; h3ig and the one of the state within

the automaton is given by fh1ig; fh2ig; fh3ig. Hene, a deomposition

idential to olours is obtained. Let



m

0

0

be the symboli representation

b

m

0

after the above deomposition:

8i 2 f1; 2; 3g Z

i

is the unique dynami sublass of fhiig



m

0

0

= (Z

1

:Re + Z

2

:Re + Z

3

:Re) + (Z

1

:Co + Z

2

:Co + Z

3

:Co) +

(Z

1

:V g + Z

2

:V g + Z

3

:V g) +Mu

Then, a symboli �ring is performed in the net whih is similar to

the ordinary one (see Chiola et al., 1991 for more details). For instane,

the �ring of t

1

(Z

1

) leads to symboli marking



m

0

1

= (Z

1

:De+ Z

2

:Re+

Z

3

:Re) + (Z

1

:Co+ Z

2

:Co+ Z

3

:Co) + (Z

1

:V g + Z

2

:V g + Z

3

:V g) +Mu.

Additionally, one must verify that



m

0

1

satis�es the atomi properties of

(b

1

; 

1

) : (fAt

i

g

i=1::3

;Mu;De

1

; Re

2

).
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The last stage onsists in grouping some loal partitions whih on-

tain a single dynami sublass, provided the distributions of the on-

erned dynami sublasses over the plaes are the same. Atually, this

does not modi�es the set of ordinary markings assoiated with the sym-

boli marking and this means that the group of admissible permutations

H

0

\G

(b

1

;

0

)

is extended. For instane in



m

0

1

, sets fh2ig and fh3ig an be

grouped yielding symboli marking

b

m

1

: Z

1

is the unique dynami sub-

lass of fh1ig and Z

2

is the unique dynami sublass of fh2i; h3ig; more-

over,

b

m

1

= (Z

1

:De+Z

2

:Re)+(Z

1

:Co+Z

2

:Co)+(Z

1

:V g+Z

2

:V g)+Mu.

4. CONCLUSION

Complexity redution of the veri�ation by use of the symmetries is

now well established. However most of the proposed tehniques do not

handle (or in a limited way) the partially symmetri systems. In this

work we have proposed an eÆient way to deal with asymmetri models

and/or formulas. Our method does not depend on a partiular formalism

and a priori an be applied to any one. Here we have illustrated the

method on well-formed Petri nets in order to larify the priniples based

on ations of groups on transition systems.

This work needs to be ompleted in two ways. At �rst, it must be

integrated in a tool. So the implementation of the presented work is

under progress. We have hosen to develop our method in the GreatSPN

tool (Chiola et al., 1997) as symmetries are already exploited for well-

formed Petri nets. To this implementation, must sueed a stage of

evaluation in order to haraterise systems for whih our algorithm is

eÆient.

Moreover, we plan to ombine our method with the global analysis of

symmetries of the automaton as done in (Ajami et al., 1998). At last,

we investigate the way to extend this method to performane evaluation

of stohasti well-formed Petri nets.
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