A MODEL CHECKING METHOD FOR
PARTIALLY SYMMETRIC SYSTEMS

Serge Haddad', Jean-Michel I11ié? and Khalil Ajami?

(1) lab. Lamsade, Université Paris Dauphine, France, Serge. Haddad@lamsade.dauphine.fr
(2) lab. LIPG6, Université Paris VI, France, Jean-Michel.Ilie@lip6.fr, Khalil. Ajami@lip6.fr

Abstract A new method of model checking is proposed based on the existence of
symmetries in system. We show how to fully handle the partial sym-
metries of both properties and systems. Our method does not depend
on a particular formalism and a prior:i can be applied to any one. Well-
formed Petri Nets are used as an illustration.

Keywords: Verification and validation, Temporal logic, model-checking, symme-
tries, partial symmetries, Blichi automata, well-formed Petri nets.

1. INTRODUCTION

Model checking of temporal logic formulas over finite state systems is
now a widely used method of verification of protocols and distributed
algorithms. Such a technique has led to numerous tools (Holzmann,
1997,...). However the main drawback of this kind of verification is the
complexity factor depending on the size of the space of reachable states.
Thus different improvements have been proposed (and implemented in
tools). The partial order analysis exploits the independence of events of
the system in order to avoid explorations of equivalent paths in the state
graph (Godefroid and Wolper, 1994). Another fruitful research direction
is based on the symmetries of the system to be analysed. The main
idea is to build a quotient graph where nodes denote set of equivalent
reachable states. Then the reduced graph is shown to be equivalent to
the original one w.r.t. to some generic properties (Jensen, 1986,Chiola
et al., 1991).

However the modeller often needs to check particular properties re-
lated to the behaviour of its system. It is then necessary to adapt the
quotient graph building with the aim of verifying a temporal logic for-
mula. The key point is the characterisation of symmetries of a formula
and we now discuss the previous approaches to this problem. We limit

2

our presentation to the linear time logic (e.g. LTL). So let us briefly
recall its usual verification algorithm (Gerth et al., 1993):

m the negation of the formula is translated into a Bichi automaton,

m the synchronised product of the automaton and the state graph of
the system is built (product of compatible states and transitions),

m a path is searched within the synchronised product, such that it
ends by a loop containing a state associated with one of the ac-
ceptation states of the Biichi automaton. We call such a path, an
invalidating path.

The formula is true if and only if such an invalidating path does not
exist. Although the size of the automaton is exponentially larger than
the size of formula, it remains low compared to the number of states in
the system. This last parameter is the main complexity factor.

In a first approach (Clarke et al., 1996), one restricts the atomic propo-
sitions of the language to symmetric propositions. For instance, “In a
future state, all processes will be idle” or “If some process is waiting
for a resource, then some process will get it” are symmetric formulas.
In other words, a formula is symmetric if its atomic propositions are
invariant under any process identities permutation. For checking such
formulas, one substitutes a quotient state graph to the state graph and
one applies the above algorithm without any change. Unfortunately,
many usual formulas are not considered as symmetric. For instance, the
fairness formula “If some process is waiting for a resource, then it will
get it” is not considered as a symmetric formula.

The second approach (Emerson and Prasad Sistla, 1996), defines sym-
metric Biichi automata. An automaton is symmetric if, given a (accept-
ing) state and a process identities permutation, there is another (accept-
ing) state whose atomic propositions are obtained by the permutation
applied on the atomic propositions of the first state and for any successor
of one state, there is a successor of the other one for which the property is
again fulfilled (and this recursively). Starting from this automaton and
the model of the system, one directly builds a quotient synchronised
product. It is then shown that the existence of an invalidating path in
the original synchronised product and the quotient structure are equiv-
alent. The symmetric formulas of the previous method, and also new
temporal properties like the discussed fairness property are considered
as symmetric formulas.

A Model Checking Method forPartially Symmetric Systems 3

Anyway, this technique does not cover the case of partially symmetric
formulas which are considered as asymmetrical. Here is a partially sym-
metric formula: “If some process is waiting for a resource then it will
get it, provided none of the processes with higher identity will require the
resource in the future”. Therefore in (Ajami et al., 1998), the authors
have proposed a more refined definition of the quotient synchronised
product than the previous one:

= One computes an equivalence relation between states of the Buchi
automaton per item of the “symmetry group” of the model in such
a way that two states are equivalent whenever they induce the
same present and future w.r.t. the action of this item.

m A quotient synchronised graph is built by applying these equiva-
lence relations on the pairs (state of the model, state of the au-
tomaton).

In case of a symmetric automaton, the quotient graph is identical to
the previous one, but the technique also reduces the complexity of the
verification in case of a partially symmetric automaton. In other words,
it generalises the previous techniques.

However none of the existing methods cover two important situations.
At first, they require the system to be symmetric. Many models do not
fulfill this requirement. In most cases, they are partially symmetric,
meaning that large parts of the specification is symmetric but some
critical modules are asymmetric. In (Haddad et al., 1995), a specific
algorithm is proposed for partially symmetric high-level Petri nets, but
it mainly deals with the reachability problem and it does not seem that
it can be extended to the model checking. In (Emerson and Trefler,
1999), asymmetric behaviour is allowed in “symmetric states” (left in-
variant by any process identities permutation). Unfortunately, this kind
of asymmetry is very restrictive.

The second situation which cannot be exploited by the previous meth-
ods concerns the formula. Actually, the two automaton-based techniques
assume that some symmetric relations hold on the structure of the au-
tomaton. However in automata of partially symmetric formula, most of
the states of the automaton are partially symmetric, but the automaton
is globally asymmetric (i.e. the equivalence relations between states are
almost reduced to the identity).

In the present work, we will show how to overcome these two prob-
lems. In the second section, a new method is presented which applies
on a symmetric system and any Buchi automaton. Each state of this

4

automaton is associated with the group of symmetries which left its set
of atomic propositions globally invariant. No supplementary condition
is required on the structure of the automaton. The method does not
depend on a specific formalism for the system and can be applied over
any model where symmetries can be syntactically checked. So in the
third section, we illustrate a possible implementation on well-formed
Petri nets for which symmetries have been intensively studied Chiola
et al., 1993. More importantly, we show how to apply our method on
asymmetric systems. The key point is that such systems are defined as
synchronised products of a symmetric model and an asymmetric Buchi
automaton. In our opinion, many protocols and algorithms can be rep-
resented with the help of this formalism. In the conclusion, we discuss
about combinations of techniques and experimentations.

2. PRINCIPLES OF OUR METHOD

2.1. VERIFICATION OF TRANSITION
SYSTEMS

In order to represent the general aspects of our method, we consider
it at a semantic level, in other terms we consider the transition system
that is generated from the syntactic model, e.g. a Petri net.

Definition 1 A (finite) transition system S = (Q, Qo, R, Prop,II) is
defined by : Q, a (finite) set of states; Qo, the set of initial states; R, a
transition between states R(q,q'), also denoted q — ¢'; Prop, the set of
atomic propositions; I1 an injective mapping from Q to 2P,

The requirements that II is injective ensures that each state is totally
characterised by the values of its atomic propositions. Since we focus on
the verification of state formulas, there is no label attached to arcs. Our
approach could be adapted easily to formulas expressing conditions on
state transitions. The final result (see proposition 8) holds for any finite
branching transition systems, i.e. the number of initial states is finite
and each reachable state has a finite number of successors.

One may express a linear time temporal logic formula with languages
like LTL (Pnueli, 1977) or p-calcul (Kozen, 1983). During the model
checking process, the considered formula can be translated in a Biichi
automaton (Vardi, 1996).

Definition 2 A Biichi automaton A = (B, By, R, Prop,I1, F) is defined
by : B, a finite set of states; By, the subset of B of the initial states; R,
a transition relation between states R(b,b'), also denoted b — b'; Prop,
the set of atomic propositions; I a mapping from B to 2F7°P; F, the
subset of B of the accepting states.

A Model Checking Method forPartially Symmetric Systems 5

The verification problem of a formula expressed by the Biichi au-
tomaton is usually reduced to the search of an infinite run within the
system : such a run {¢; };—o..0o With gy € Qp must correspond to an infi-
nite path {b;}i—o..co With by € By within the automaton. More precisely,
the atomic propositions labelling every state b; must also be present in
state ¢; : II(b;) C II(¢g;). In addition, an accepting state must occur
infinitely often in the considered path. This leads to the definition of
the following key concept, called the synchronised product.

Definition 3 Let S be a transition system and A a Bichi automa-
ton. The synchronised product between S and A is a graph Gr(S,A) =
(V,Vo,R), defined by : V = {(q,b) s.t. II(b) C Il(q)}, the set of
nodes; Vo = {(q,b) € V st. g € Qo ANb € By}, the set of initial
states; R, the transition relation between nodes, denoted —, and such
that (q,b) = (¢',b") iff ¢ = ¢ and b — V.

One standard model checking principle consists of a translation of
the negation of the formula in a Buchi automaton, the building of the
synchronised product, and the search of an ”invalidating” path within
the synchronised product.

Definition 4 Let S be a transition system and A a Bichi automaton
expressing the negation of formula f. Formula f is valid iff there is no
invalid path in Gr(S, A). An invalidating path of formula f is an infinite
path within the synchronised product Gr(S, A), starting from one initial
node and including infinitely often the subset of nodes {(q,b) s.t.b € F'}

If the system is finite, the verification procedure is reduced to the
search of an elementary path ending by a state yet visited, s.t. be-
tween the two occurrences, a state referring an accepting condition is
met. Many improvements to this method can be found in the literature,
among them there are the on-the-fly techniques which search for an in-
validating path simultaneously to the building of Gr(S, A) (Gerth et al.,
1993). All these techniques can be applied in the context of the quotient
synchronised product we develop in section 2.3.

2.2, SYMMETRIC TRANSITION SYSTEMS

In order to highlight all the developed concepts, we consider in this
section a model of a protocol where four processes, denoted by C' =
{u,v,w, z}, execute the same program. For sake of simplicity, we assume
that communications are instantaneous, so that the global system is
entirely defined by the local states of the processes. In the following,
the local state of any process, e.g. x, is symbolically represented by a

6

variable, e.g. [(z). The definition domain for [(z) is {idle, transmit,
wait, access}.

Because "symmetries” are usually handled by group theory, we now
recall some elementary notions of group (Lang, 1977).

Definition 5 Let G be a group, containing a neutral element id, which
operation is denoted by (o).

m Let E be a set, an action of G over E is a mapping from G X E to
E s.t. the image of (g,¢e), denoted by g.e, fulfills : Ve € Eid.e =

e V9,9 €G(geg)e=g.(d €

n The isotropy (sub)group Ge of an element e is defined by : G, =
{gst.ge=¢}

m Let H be a subgroup of G, the orbit H.e of e under H 1is defined
by : He={g.est.ge H}

m This action can be straightforwardly extended to the powerset of E
by : g.E' ={gest.ec E'}

Let us assume that E is the set of the atomic propositions of our
model. For instance, proposition [I(u) = idle] means that the local state
of process w is idle. If G is the group of permutations of C and if g
is the permutation which exchanges processes u and v, then g.[[(u) =
idle] = [l(v) = idle]. Let {[[(u) = idle],[l(v) = idle]} be a set of atomic
propositions, then the isotropy group of this subset is the subgroup of
permutations which let the subset {u,v} globally invariant.

We are now able to characterise what is a symmetric transition system.

Definition 6 Let S be a transition system and G be a group acting on
Prop.
S is said to be symmetric (w.r.t. G) iff :

m Fvery state has a “ symmetric 7 state w.r.t. any element of G :

Vg € Q,Vg € G, 3¢ € Q, TI(¢') = ¢g.11(q) The action of the group
on the states is extended, by denoting g.q, the unique ¢’ of the
former formula.

m The set of initial states is invariant under the action of G : G.Qp =

Qo-

m The action of G is congruent w.r.t. the transition relation : ¥q,q' €
Q,V9€G, g ¢ < g9— 94

Observe that all these conditions hold regarding our model of protocol,
by defining G as the group of process permutations.

A Model Checking Method forPartially Symmetric Systems 7

2.3. MODEL CHECKING OF SYMMETRIC
TRANSITION SYSTEM

As a state is associated with a subset of Prop in both the Biichi
automaton and the model, we will use the action of G on the powerset
of Prop. Let b be a state of Biichi automaton A, Gy will simply be
denoted Gy (although one cannot define an action of G on B). Observe
that Gy is strongly related to the symmetry degree of b independently
of the structure of the Biichi automaton.

Let us consider different cases of G in the context of our example. If
this subgroup equals the group G, then the state is totally symmetric,
e.g. thisis the case for proposition set {[I(u) = idle], [l(v) = idle], [l(w) =
idle],[l(z) = idle]}. In contrast, whenever the isotropy group is re-
duced to the identity (denoted {id}), the state is totally asymmetric,
e.g. {[l(u) =1idle],[l(v) = transmit],[l(w) = wait], [I(z) = access]}. In
most cases, the isotropy group is not trivial (i.e. it differs from id and
G). Let us note that in the context of our model, the isotropy group
of processes implicitly corresponds to a partition of processes, namely
the group of permutations which left each set of the partition invariant.
For {[l(u) = idle], [l(v) = idle]}, the partition of C is {{u,v},{w,z}}.
According to a state of the Biichi automaton, we call such a partition
the local partition of the state.

Our aim is to build a quotient of the synchronised product over which
it is possible to search an invalidating path directly. In this “ quotient”
structure, each node is characterised by a triple (H,O,b), where H is a
subgroup of G, O C @, b € B. Moreover, the following two points must
hold:

(C1) Vg € O,TI(b) C TI(q)
(C2) HO =0

The intuitive idea is that the node (H,O,b) is an aggregation of a
set of nodes of the synchronised product, more precisely {(g,b)}4c0. As
we will see now, H is used in the definition in order to give a sound
definition of the successor relation.

The building of the quotient structure starts from the set of initial
nodes, defined as follows : (G, Gyo-qo,bo) with go € Qo , by € By and
II(by) C II(go). Observe that condition C2 is fulfilled trivially because
Gyo is a group, moreover condition C'1 is deduced from the definition of
Go-

Then, there remains to define the successor relation.
(Hg, 029, bs) is a successor of (Hy, 01, b1), denoted (Hy,O1,b1) — (Hg,O2,bs),

8

iff b, — by and dg; € O, dgo € @ s.t. g1 = g2 and H(bg) C H(q2).
Then Oy = (H1 N sz)-QZ and Hy C Goz.

Observe that both conditions C1 and C2 are fulfilled by the new
node. Effectively, from Oy C G,.q2, one deduces that: Vg, € Oy,3g €
Gy, s.t. ¢h = g.qa. So, II(be) = ¢.Il(b2) C ¢.Il(g2) = II(¢h). Moreover,
as Hy C G, then Hy.02 = Os.

In order to make the successor relation operational, one must specify
how the subgroup Hj is chosen. With regard to the successor relation, it
is interesting to maximise Ho, i.e. to choose Hy = G,, but this choice
might not be possible w.r.t. the syntactical aspects of the model. In
any case, Hy can be chosen as the subgroup (H; N Gy,). The following
lemma and proposition 1 show the validity of our construction.

Lemma 1 Let S be a symmetric transition system and A be a Bichi
automaton. Let Gr(S, A) be the corresponding synchronised product and
GRQ(S, A) the corresponding quotient structure.

m Let (Hy,01,b1) and (Hg,O2,b2) be two nodes of GRQ(S,A).
(H1,01,b1) = (H2,02,b3) = Vga € O, 31 € O1, (q1,b1) —
(q2ab2)

m Let (qo,b0) = (q1,01) = ... = (Gn,bp) — ... be a (infinite) path in
GT‘(S, A), then H(Ho,O(),bo) — (Hl,Ol,bl) — . (Hn,On,bn) —
.. a (infinite) path in GRQ(S, A) s.t. ¢; € O; (i € 1..n).

It is worth noting that the first point becomes false in the case where
one exchanges its consequence by the following one: “ Vq; € Oy, 32 €

Oz, (q1,61) = (g2,02)".

Proposition 1 For a symmetric finite branching transition system, there
is an invalidating path in the synchronised product if and only if there is
an invalidating path in the quotient structure.

3. APPLICATION TO THE WELL-FORMED
PETRI NETS

The well-formed Petri net model offers a global solution for the design,
verification and performance evaluation of distributed systems graphs.
A well-formed Petri net is a high level Petri net model. Its specific
syntax has made possible to define methods which take profit from the
symmetry relations existing in systems. One of the associated meth-
ods is the building of the symbolic reachability graph which is a highly
compact structure used to represent the state space. It can be used to

A Model Checking Method forPartially Symmetric Systems 9

Figure 1 Automaton of one process

analyse some standard properties of the Petri nets as well as to derive
an aggregated Markov chain in order to compute performance indices
(Chiola et al., 1993). We are interested in adapting this construction to
our method, but we do not fully describe neither the well-formed Petri
net definition nor the implementation of the symbolic reachability graph
building (see Chiola et al., 1991 for more details). Actually, we will fo-
cus on the representation of nodes and on the building of the successor
relation.

3.1. PRESENTATION OF THE
WELL-FORMED PETRI NET MODEL

Description of the system and properties to verify. The
system which is described here consists of n processes { P; };—1.,, accessing
to a critical section. Like in the former model, we consider that the
processes run the same critical section access protocol. They are now
synchronised by shared variables.

This protocol is described for a process P; in Figure 1. Initially, the
process is idle (local state Re) then it may ask for an access to the critical
section (local state De). Before accessing this section (local state Sc)
the process follows a sequel of two local states : Transmitting (7'r) and
Waiting (At). We now detail the state transitions : (1) A requesting
process can be in state T'r if there is no process in waiting state. The
scheduler considers as privileged all the processes in state De. This is
represented in the figure by a bold arc. (2) A process changes from state
Tr to At without specific condition. (3) To enter the critical section,
there must be no process in this section, but also no process in state T'r.

We aim at demonstrating that the system is (weakly) fair : Every
process which asks for the critical section will obtain it in a finite time.
Intuitively, this property holds due to the conditions which ensures that
requests are treated wave after wave. A wave starts from the moment
when there is a requesting process and is completed as soon as one
process enters the waiting state.

Hence, a wave contains all the processes in state T'r and At, and these
processes will enter the critical section without specific order. Due to

10

C(Re)=C(De)=C(Tr)=C(At)=C(Sc)=C(Vg);
by (true))
oo : NED
ty Co \ t3 " 12, N n,n-l
De h by
X
« X Tr X X vt X
S Vg by
t Mu

D

Figure 3 Biichi automaton of —f
Figure 2 Modelling of the symmetri-
cal behaviour of the system

the privilege of the change from De to T'r, a requesting process belongs
either to the current wave or to the following one. This ensures the
fairness property.

In a second stage, the system is modified so that within a wave, the
executions of the critical section are ordered according to a priority re-
lation, induced by the identity number of processes. Actually, The first
system is symmetric, while the second is not.

With respect to this new specification, the two expected properties
are the followings :

s Every requesting process will finally obtain the access

m The processes in state Tr or At will be served according to the
order induced by the specified priority relation.

In contrast, the strong fairness property “A requesting process will be
served before every process in state idle” is false.

Formal modelling for the System and its properties.

€o

(T
Poomit
Y — ¥

G

< B !6%@»

Co

Figure 4 control automaton w.r.t. a priority relation

A Model Checking Method forPartially Symmetric Systems 11

In order to represent our system, we proceed in two stages : a sym-
metric system is specified first in terms of the well-formed Petri nets of
Figure 2, then the runs which do not preserve the priority relation are
prohibited by means of the additional automaton of Figure 4, namely
control automaton. Actually, the system formally corresponds to the
synchronised product of the well-formed Petri net and the control au-
tomaton.

In a well-formed Petri net, a colour domain is attached to each place
and transition. Each token in a place is typed by a colour of the place
colour domain. Each colour of a transition indicates a different way to
fire the transition, hence, the labels of the arcs are no more integers but
colour functions which denote for each firing the quantities of tokens to
be consumed and produced per each colour. In well-formed Petri nets,
the colour functions are written under a specific syntax which allows
one to exploit the system symmetries. Function S represents a constant
function, called a diffusion. Function S is a sum of tokens s.t. there is one
token per colour of the domain, e.g. one for each process. Function X
represents the colour which is used to instantiate the firing of a transition
in the net.

In addition, a priority number is associated with each transition of
the well-formed Petri nets. Thus, among the transitions that are enabled
from the current marking of the net, only the ones which have the highest
priorities can be fired.

In the well-formed Petri net of Figure 2, the local states of the pro-
cesses are represented by means of the corresponding places. The set
C = {(1)),(2)), (3)} is the colour domain of processes. It is the domain
of all the places (except Mwu) and the domain of all transitions of the
net. The marking of place Re by the (constant) diffusion function cor-
responds to the fact that, initially, all processes are idle. Three more
places allow one to implement the protocol mechanism : (1) Place Mu
is used to specify the control of accesses to the critical section; initially,
it is set to an (uncoloured) token and prohibits the firing of transition
t4, whenever place Sc is marked. (2-3) Places V¢ and Co (initially set
to S) are used to specify the wave mechanism. Vg prohibits the firing
of transition ¢y, whenever one of the At or Sc places is marked. Place
Co prohibits the firing of transition ¢4 whenever place T'r is not empty.
At last, t9 is a transition the firing of which is privileged with respect to
the others transition, so that the expected behaviour of the scheduler is
obtained by the following priority relation : Vt # to, Pri(ty) > Pri(t).

The specification of the well-formed Petri net is completed by the
control automaton A. given in Figure 4. The first state of A, specifies
that there is no process currently in the critical section, and that there is

12

no request for that. The three states at the left side specify the different
cases where a process must be privileged, provided the critical section is
empty. Moreover, the three processes in the right side determine which
processes is in the critical section. The arcs from left to right ensure the
priority mechanism. The others follow the behaviour of the net.

The semantic of the system is defined by the synchronised product
between the control automaton and the reachability graph of the net.

In order to illustrate our method, we wish evaluate the following
strong fairness property : “A requesting process will be served before
every idle process”. The corresponding LTL formula is the following (
Pnueli, 1977) : f = A jerG[(De; A Rej) = X (Sc;US¢;)]

The Biichi automaton A-; partially represented by Figure 3 models
the possible runs of the system for which the negation of property f
holds. For sake of simplicity, only one branch (i,7) is represented. In
this elementary case, the structure of the automaton is immediately
deduced from the formula to invalidate. With the help of the first state
of the automaton, one waits to the moment when (De; A Re;) holds,
which will cause the invalidation of the property. Then, the next states
of the automaton ensures that process j will enter the critical section
before i. The last state represents the remaining part of the infinite run,
without meaning according to the considered property.

We highlight now (for this kind of specification) that the checking
of a formula on an asymmetric system can be reduced to the checking
of an asymmetric formula on a symmetric system. The search of a
path must be computed through the synchronised product of the three
structures : the reachability graph of the well-formed Petri net, the
control automaton and the automaton of the negation of the formula.
However, the synchronised product is a commutative and associative
operation. It is thus possible to perform the synchronised product of
the two automata, A, and A_y, in order to obtain a new one, then to
apply our construction on this new automaton and the well-formed Petri
net (a symmetric model).

On can check that the following path in the synchronised product in-
validates the desired formula :

(1m0, (co, b0)) L2 (1, (co, 01))"2X%) (ma, (co, b2))" "2 (m3, (o, b2)) 22

(ma, (0, 52)) B (ms, (c3,b2)) S Y (mg, (3, 52))" R (my, (c4, b3))

Each node (m,(c,b)) of such a sequence corresponds respectively to
one marking of the net and one pair obtained by a state of the Biichi
automaton and a state of the control automaton. Observe that, the

A Model Checking Method forPartially Symmetric Systems 13
label of an arc represents some firing in the net. For instance, tﬂ)
corresponds to the firing of transition ¢; with respect to process (1).

3.2. BUILDING OF THE SYMBOLIC
SYNCHRONISED PRODUCT

The symbolic synchronised product is a representation of the quo-
tient synchronised product. We call them symbolic due to the analogy
with the symbolic reachability graph representation (Chiola et al., 1991).
Its major peculiarity is that objects are never more represented explic-
itly, but are viewed under a symbolic form. For instance, one can say
symbolically that two processes require the same resource, instead of
saying that processes 1 and 2 require resource 1. From such a symbolic
representation, a symbolic firing rule can be defined which allows one
to compute the symbolic reachability graph, automatically and directly
from the object specification within the well-formed net.

Computation of local partitions of colours. Before computing
the quotient synchronised product, one must compute and represent the
isotropy group of each state of the automaton. The most easy way to
proceed consists in detecting the colours which marks the same propo-
sitions in the states. These colours are gathered in subsets and these
subsets form a partition, named local partition. The isotropy group is
implicitly defined as the group of permutations which left each set of
the partition globally invariant. Let us give three examples : (1) For a
state where the atomic propositions are {Aty, Ats, At3}, the partition is
composed by a unique singleton {(1), (2), (3)} (i.e. all the permutations
are admissible). (2) For a state where the atomic propositions are {Ats},
the partition is composed of a singleton {(2)} and a set composed of the
remaining colours, here {(1), (3)} (the permutations must left (2) invari-
ant). (3) For a state where the atomic propositions are {Aty, At3}, the
partition is composed of three elements, {(1)},{(2)},{(3)}. The isotropy
group is reduced to the identity permutation.

States of the symbolic synchronised product. Let us recall
that we want to represent triples (H,O,(b,c)), such that O is subset
of markings which is unchanged under the action of the subgroup H
(O = H.o, Yo € O). The subgroup H will be implicitly represented by
a local partition, which may differ from the partition attached to the
state of the automaton (H may be different from Gj). The subset of
markings will be represented in a symbolic way : the colour domain
is partitioned in abstract subsets, called dynamic subclasses (i.e. the

14

composition is not known). However for each subset, the cardinality
and the reference to a local partition is preserved. The markings of the
net are now symbolic since their tokens are no more colour but dynamic
subclasses. Symbolic markings are denoted like m.

In our example, there is one initial symbolic node, such that :
(Mo, (bo, co)) where myg is a symbolic marking of the net such that :

m 7y is defined from a unique local partition {(1), (2), (3)} composed
of a unique dynamic subclass (denoted Z; s.t. | Z; |=3),

n Mgy = (Z1.Re+ Z1.Co+ Z1.Vg) + Mu, meaning that there is one
token of each process in places Re, Co and V¢ and that there is
one uncoloured token in place Mu.

The atomic propositions of by and ¢y ({At;}i—1.3, Mu) are satisfied by
myo. Observe that mg is a symbolic representation for both subgroup H
of permutations and subset O of markings.

Symbolic firing in the quotient synchronised product. In or-
der to build a successor of a node (Hy, Og, (bg, cp)) within the symbolic
synchronised product, a successor of the current state in the automa-
ton is selected. For instance from (b, cp), one can choose state (by,cp)
as a possible successor. Then a new local partition is computed, by
intersecting the local partition of the state currently considered within
the symbolic synchronised product and the local partition of the state
newly considered within the automaton. This is equivalent to consider
the group Ho NGy, c)-

For state (my, (bo,cp)), the local partition in the symbolic synchro-
nised product is given by {(1),(2), (3)} and the one of the state within
the automaton is given by {(1)},{(2)},{(3)}. Hence, a decomposition

=

identical to colours is obtained. Let m'y be the symbolic representation
my after the above decomposition:

n Vi€ {1,2,3} Z; is the unique dynamic subclass of {(i)}

» m/y = (Z1.Re + Z».Re + Z3.Re) + (Z1.Co + Z5.Co + Z3.Co) +
(Zl.Vg + Z2.Vg+ Z3.Vg) + Mu

Then, a symbolic firing is performed in the net which is similar to
the ordinary one (see Chiola et al., 1991 for more details). For instance,
the firing of ¢ (Z;) leads to symbolic marking T/r;’l = (Z1.De + Zy.Re +
Zg.RB) + (Zl.CO + Z5.Co+ ch'o)/—\l— (Zl.Vg + Zy.Vg+ Z3.Vg) + Mu.

Additionally, one must verify that m’; satisfies the atomic properties of
(b1,c1) = ({Ati}iz1.3, Mu, Dey, Rey).

A Model Checking Method forPartially Symmetric Systems 15

The last stage consists in grouping some local partitions which con-
tain a single dynamic subclass, provided the distributions of the con-
cerned dynamic subclasses over the places are the same. Actually, this
does not modifies the set of ordinary markings associated with the sym-
bolic marking and this means that the group of admissible permutations
HoNGp, c,) is extended. For instance in m/y, sets {(2)} and {(3)} can be
grouped yielding symbolic marking m; : Z; is the unique dynamic sub-
class of {(1)} and Z is the unique dynamic subclass of {(2), (3)}; more-
over, ’ffbl = (Zl.D€+ ZQ.RG) + (Zl.CO—l— ZQ.CO) + (Zl.Vg—i- Zg.Vg) + Mu.

4. CONCLUSION

Complexity reduction of the verification by use of the symmetries is
now well established. However most of the proposed techniques do not
handle (or in a limited way) the partially symmetric systems. In this
work we have proposed an efficient way to deal with asymmetric models
and/or formulas. Our method does not depend on a particular formalism
and a priori can be applied to any one. Here we have illustrated the
method on well-formed Petri nets in order to clarify the principles based
on actions of groups on transition systems.

This work needs to be completed in two ways. At first, it must be
integrated in a tool. So the implementation of the presented work is
under progress. We have chosen to develop our method in the GreatSPN
tool (Chiola et al., 1997) as symmetries are already exploited for well-
formed Petri nets. To this implementation, must succeed a stage of
evaluation in order to characterise systems for which our algorithm is
efficient.

Moreover, we plan to combine our method with the global analysis of
symmetries of the automaton as done in (Ajami et al., 1998). At last,
we investigate the way to extend this method to performance evaluation
of stochastic well-formed Petri nets.

References

Ajami, K., Haddad, S., and Ilié, J.-M. (1998). Exploiting Symmetry in
Linear Temporal Model Checking : One Step Beyond. In Proc. of
Tools and Algorithms for the Construction and Analysis of Systems
TACAS’98, part of Theory and practice of Software ETAPS’98, vol-
ume 1384 of LNCS, pages 52-67, Lisbon - Portugal. Springer Verlag.

Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S. (1991). On
Well-Formed Coloured Nets and Their Symbolic Reachability Graph.
In Jensen, K. and Rozenberg, G., editors, High-Level Petri Nets. The-
ory and Application, pages 373-396. Springer Verlag.

16

Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S. (1993).
Stochastic Well-Formed Colored Nets and Symmetric Modeling Ap-
plications. IEEE Transactions on Computers, 42(11):1343-1360.

Chiola, G., Franceshinis, G., Gaeta, R., and Ribaudo, M. (1997). Great-
SPN1.7: GRaphical Editor and Analyzer for Timed and Stochastic
Petri Nets. Performance Evaluation, North Holland Journal, 24.

Clarke, E., Enders, R., Filkorn, T., and Jha, S. (1996). Exploiting Sym-
metry in Temporal Logic Model Chacking. Formal Methods and Sys-
tem Design, 9:77-104.

Emerson, E. and Prasad Sistla, A. (1996). Symmetry and Model Check-
ing. Formal Methods and System Design, 9:307-309.

Emerson, E. A. and Trefler, R. J. (1999). From Asymmetry to Full Sym-
metry: New Techniques For Symmetry Reduction in Model Checking.
In Proc of CHARME’99, Lecture Notes in Computer Science, pages
142-156, Bad Herrenalb - Germany. Springer Verlag.

Gerth, R., Peled, D., Vardi, M., and Wolper, P. (1993). Simple On-the-fly
Automatic Verification of Linear Temporal Logic. In Proc. Int Conf.
on Protocol Specification Testing and Verification.

Godefroid, P. and Wolper, P. (1994). A Partial Approach to Model
Checking. Information and Computation, 110(2):305-326.

Haddad, S., 1lié, J., Taghelit, M., and Zouari, B. (1995). Symbolic Reach-
ability Graph and Partial Symmetries. In Proc. of the 16" Intern.
Conference on Application and Theory of Petri Nets, volume 935 of
LNCS, pages 238-257, Turin, Italy. Springer Verlag.

Holzmann, G. J. (1997). The Spin Model Checker. IEEE Transaction on
Software Engineering, 23(5):279-295.

Jensen, K. (1986). Coloured Petri Nets. In Brauer, W., Reisig, W., and
Rozenberg, G., editors, Petri Nets: Central Model and their Proper-
ties, Advances in Petri Nets, Part 1, volume 254 of Lecture Notes in
Computer Science, pages 248-299, Bad Hounnef, Germany. Springer
Verlag.

Kozen, D. (1983). Results on the propositional mu-calculus. Theoretical
Computer Science, 27:333-354.

Lang, S. (1977). Algebra. 7th printing. Addison Wesley.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the
18th IEEE Symposium on Foundations of Computer Science, pages
46-57.

Vardi, M. (1996). An Automata-theoretic Approach to Linear Temporal
Logic. Lecture Notes in Computer Science, 1043:238-266.

