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Abstra
t A new method of model 
he
king is proposed based on the existen
e of

symmetries in system. We show how to fully handle the partial sym-

metries of both properties and systems. Our method does not depend

on a parti
ular formalism and a priori 
an be applied to any one. Well-

formed Petri Nets are used as an illustration.
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1. INTRODUCTION

Model 
he
king of temporal logi
 formulas over �nite state systems is

now a widely used method of veri�
ation of proto
ols and distributed

algorithms. Su
h a te
hnique has led to numerous tools (Holzmann,

1997,...). However the main drawba
k of this kind of veri�
ation is the


omplexity fa
tor depending on the size of the spa
e of rea
hable states.

Thus di�erent improvements have been proposed (and implemented in

tools). The partial order analysis exploits the independen
e of events of

the system in order to avoid explorations of equivalent paths in the state

graph (Godefroid and Wolper, 1994). Another fruitful resear
h dire
tion

is based on the symmetries of the system to be analysed. The main

idea is to build a quotient graph where nodes denote set of equivalent

rea
hable states. Then the redu
ed graph is shown to be equivalent to

the original one w.r.t. to some generi
 properties (Jensen, 1986,Chiola

et al., 1991).

However the modeller often needs to 
he
k parti
ular properties re-

lated to the behaviour of its system. It is then ne
essary to adapt the

quotient graph building with the aim of verifying a temporal logi
 for-

mula. The key point is the 
hara
terisation of symmetries of a formula

and we now dis
uss the previous approa
hes to this problem. We limit
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our presentation to the linear time logi
 (e.g. LTL). So let us brie
y

re
all its usual veri�
ation algorithm (Gerth et al., 1993):

the negation of the formula is translated into a B�u
hi automaton,

the syn
hronised produ
t of the automaton and the state graph of

the system is built (produ
t of 
ompatible states and transitions),

a path is sear
hed within the syn
hronised produ
t, su
h that it

ends by a loop 
ontaining a state asso
iated with one of the a
-


eptation states of the B�u
hi automaton. We 
all su
h a path, an

invalidating path.

The formula is true if and only if su
h an invalidating path does not

exist. Although the size of the automaton is exponentially larger than

the size of formula, it remains low 
ompared to the number of states in

the system. This last parameter is the main 
omplexity fa
tor.

In a �rst approa
h (Clarke et al., 1996), one restri
ts the atomi
 propo-

sitions of the language to symmetri
 propositions. For instan
e, \In a

future state, all pro
esses will be idle" or \If some pro
ess is waiting

for a resour
e, then some pro
ess will get it" are symmetri
 formulas.

In other words, a formula is symmetri
 if its atomi
 propositions are

invariant under any pro
ess identities permutation. For 
he
king su
h

formulas, one substitutes a quotient state graph to the state graph and

one applies the above algorithm without any 
hange. Unfortunately,

many usual formulas are not 
onsidered as symmetri
. For instan
e, the

fairness formula \If some pro
ess is waiting for a resour
e, then it will

get it" is not 
onsidered as a symmetri
 formula.

The se
ond approa
h (Emerson and Prasad Sistla, 1996), de�nes sym-

metri
 B�u
hi automata. An automaton is symmetri
 if, given a (a

ept-

ing) state and a pro
ess identities permutation, there is another (a

ept-

ing) state whose atomi
 propositions are obtained by the permutation

applied on the atomi
 propositions of the �rst state and for any su

essor

of one state, there is a su

essor of the other one for whi
h the property is

again ful�lled (and this re
ursively). Starting from this automaton and

the model of the system, one dire
tly builds a quotient syn
hronised

produ
t. It is then shown that the existen
e of an invalidating path in

the original syn
hronised produ
t and the quotient stru
ture are equiv-

alent. The symmetri
 formulas of the previous method, and also new

temporal properties like the dis
ussed fairness property are 
onsidered

as symmetri
 formulas.
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Anyway, this te
hnique does not 
over the 
ase of partially symmetri


formulas whi
h are 
onsidered as asymmetri
al. Here is a partially sym-

metri
 formula: \If some pro
ess is waiting for a resour
e then it will

get it, provided none of the pro
esses with higher identity will require the

resour
e in the future". Therefore in (Ajami et al., 1998), the authors

have proposed a more re�ned de�nition of the quotient syn
hronised

produ
t than the previous one:

One 
omputes an equivalen
e relation between states of the B�u
hi

automaton per item of the \symmetry group" of the model in su
h

a way that two states are equivalent whenever they indu
e the

same present and future w.r.t. the a
tion of this item.

A quotient syn
hronised graph is built by applying these equiva-

len
e relations on the pairs (state of the model, state of the au-

tomaton).

In 
ase of a symmetri
 automaton, the quotient graph is identi
al to

the previous one, but the te
hnique also redu
es the 
omplexity of the

veri�
ation in 
ase of a partially symmetri
 automaton. In other words,

it generalises the previous te
hniques.

However none of the existing methods 
over two important situations.

At �rst, they require the system to be symmetri
. Many models do not

ful�ll this requirement. In most 
ases, they are partially symmetri
,

meaning that large parts of the spe
i�
ation is symmetri
 but some


riti
al modules are asymmetri
. In (Haddad et al., 1995), a spe
i�


algorithm is proposed for partially symmetri
 high-level Petri nets, but

it mainly deals with the rea
hability problem and it does not seem that

it 
an be extended to the model 
he
king. In (Emerson and Tre
er,

1999), asymmetri
 behaviour is allowed in \symmetri
 states" (left in-

variant by any pro
ess identities permutation). Unfortunately, this kind

of asymmetry is very restri
tive.

The se
ond situation whi
h 
annot be exploited by the previous meth-

ods 
on
erns the formula. A
tually, the two automaton-based te
hniques

assume that some symmetri
 relations hold on the stru
ture of the au-

tomaton. However in automata of partially symmetri
 formula, most of

the states of the automaton are partially symmetri
, but the automaton

is globally asymmetri
 (i.e. the equivalen
e relations between states are

almost redu
ed to the identity).

In the present work, we will show how to over
ome these two prob-

lems. In the se
ond se
tion, a new method is presented whi
h applies

on a symmetri
 system and any B�u
hi automaton. Ea
h state of this
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automaton is asso
iated with the group of symmetries whi
h left its set

of atomi
 propositions globally invariant. No supplementary 
ondition

is required on the stru
ture of the automaton. The method does not

depend on a spe
i�
 formalism for the system and 
an be applied over

any model where symmetries 
an be synta
ti
ally 
he
ked. So in the

third se
tion, we illustrate a possible implementation on well-formed

Petri nets for whi
h symmetries have been intensively studied Chiola

et al., 1993. More importantly, we show how to apply our method on

asymmetri
 systems. The key point is that su
h systems are de�ned as

syn
hronised produ
ts of a symmetri
 model and an asymmetri
 B�u
hi

automaton. In our opinion, many proto
ols and algorithms 
an be rep-

resented with the help of this formalism. In the 
on
lusion, we dis
uss

about 
ombinations of te
hniques and experimentations.

2. PRINCIPLES OF OUR METHOD

2.1. VERIFICATION OF TRANSITION

SYSTEMS

In order to represent the general aspe
ts of our method, we 
onsider

it at a semanti
 level, in other terms we 
onsider the transition system

that is generated from the synta
ti
 model, e.g. a Petri net.

De�nition 1 A (�nite) transition system S = (Q;Q

0

; R; Prop;�) is

de�ned by : Q, a (�nite) set of states; Q

0

, the set of initial states; R, a

transition between states R(q; q

0

), also denoted q ! q

0

; Prop, the set of

atomi
 propositions; � an inje
tive mapping from Q to 2

Prop

.

The requirements that � is inje
tive ensures that ea
h state is totally


hara
terised by the values of its atomi
 propositions. Sin
e we fo
us on

the veri�
ation of state formulas, there is no label atta
hed to ar
s. Our

approa
h 
ould be adapted easily to formulas expressing 
onditions on

state transitions. The �nal result (see proposition 8) holds for any �nite

bran
hing transition systems, i.e. the number of initial states is �nite

and ea
h rea
hable state has a �nite number of su

essors.

One may express a linear time temporal logi
 formula with languages

like LTL (Pnueli, 1977) or �-
al
ul (Kozen, 1983). During the model


he
king pro
ess, the 
onsidered formula 
an be translated in a B�u
hi

automaton (Vardi, 1996).

De�nition 2 A B�u
hi automaton A = (B;B

0

; R; Prop;�; F ) is de�ned

by : B, a �nite set of states; B

0

, the subset of B of the initial states; R,

a transition relation between states R(b; b

0

), also denoted b ! b

0

; Prop,

the set of atomi
 propositions; � a mapping from B to 2

Prop

; F , the

subset of B of the a

epting states.
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The veri�
ation problem of a formula expressed by the B�u
hi au-

tomaton is usually redu
ed to the sear
h of an in�nite run within the

system : su
h a run fq

i

g

i=0::1

with q

0

2 Q

0

must 
orrespond to an in�-

nite path fb

i

g

i=0::1

with b

0

2 B

0

within the automaton. More pre
isely,

the atomi
 propositions labelling every state b

i

must also be present in

state q

i

: �(b

i

) � �(q

i

). In addition, an a

epting state must o

ur

in�nitely often in the 
onsidered path. This leads to the de�nition of

the following key 
on
ept, 
alled the syn
hronised produ
t.

De�nition 3 Let S be a transition system and A a B�u
hi automa-

ton. The syn
hronised produ
t between S and A is a graph Gr(S;A) =

(V; V

0

; R), de�ned by : V = f(q; b) s.t. �(b) � �(q)g, the set of

nodes; V

0

= f(q; b) 2 V s.t. q 2 Q

0

^ b 2 B

0

g, the set of initial

states; R, the transition relation between nodes, denoted !, and su
h

that (q; b)! (q

0

; b

0

) i� q ! q

0

and b! b

0

.

One standard model 
he
king prin
iple 
onsists of a translation of

the negation of the formula in a B�u
hi automaton, the building of the

syn
hronised produ
t, and the sear
h of an "invalidating" path within

the syn
hronised produ
t.

De�nition 4 Let S be a transition system and A a B�u
hi automaton

expressing the negation of formula f . Formula f is valid i� there is no

invalid path in Gr(S;A). An invalidating path of formula f is an in�nite

path within the syn
hronised produ
t Gr(S;A), starting from one initial

node and in
luding in�nitely often the subset of nodes f(q; b) s:t: b 2 Fg

If the system is �nite, the veri�
ation pro
edure is redu
ed to the

sear
h of an elementary path ending by a state yet visited, s.t. be-

tween the two o

urren
es, a state referring an a

epting 
ondition is

met. Many improvements to this method 
an be found in the literature,

among them there are the on-the-
y te
hniques whi
h sear
h for an in-

validating path simultaneously to the building of Gr(S;A) (Gerth et al.,

1993). All these te
hniques 
an be applied in the 
ontext of the quotient

syn
hronised produ
t we develop in se
tion 2.3.

2.2. SYMMETRIC TRANSITION SYSTEMS

In order to highlight all the developed 
on
epts, we 
onsider in this

se
tion a model of a proto
ol where four pro
esses, denoted by C =

fu; v; w; xg, exe
ute the same program. For sake of simpli
ity, we assume

that 
ommuni
ations are instantaneous, so that the global system is

entirely de�ned by the lo
al states of the pro
esses. In the following,

the lo
al state of any pro
ess, e.g. x, is symboli
ally represented by a
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variable, e.g. l(x). The de�nition domain for l(x) is fidle, transmit,

wait, a

essg.

Be
ause "symmetries" are usually handled by group theory, we now

re
all some elementary notions of group (Lang, 1977).

De�nition 5 Let G be a group, 
ontaining a neutral element id, whi
h

operation is denoted by (�).

Let E be a set, an a
tion of G over E is a mapping from G�E to

E s.t. the image of (g; e), denoted by g:e, ful�lls : 8e 2 E id:e =

e 8g; g

0

2 G (g � g

0

):e = g:(g

0

:e)

The isotropy (sub)group G

e

of an element e is de�ned by : G

e

=

fg s:t: g:e = eg

Let H be a subgroup of G, the orbit H:e of e under H is de�ned

by : H:e = fg:e s:t: g 2 Hg

This a
tion 
an be straightforwardly extended to the powerset of E

by : g:E

0

= fg:e s:t: e 2 E

0

g

Let us assume that E is the set of the atomi
 propositions of our

model. For instan
e, proposition [l(u) = idle℄ means that the lo
al state

of pro
ess u is idle. If G is the group of permutations of C and if g

is the permutation whi
h ex
hanges pro
esses u and v, then g:[l(u) =

idle℄ = [l(v) = idle℄. Let f[l(u) = idle℄; [l(v) = idle℄g be a set of atomi


propositions, then the isotropy group of this subset is the subgroup of

permutations whi
h let the subset fu; vg globally invariant.

We are now able to 
hara
terise what is a symmetri
 transition system.

De�nition 6 Let S be a transition system and G be a group a
ting on

Prop.

S is said to be symmetri
 (w.r.t. G) i� :

Every state has a \ symmetri
 " state w.r.t. any element of G :

8q 2 Q;8g 2 G; 9q

0

2 Q; �(q

0

) = g:�(q) The a
tion of the group

on the states is extended, by denoting g:q, the unique q

0

of the

former formula.

The set of initial states is invariant under the a
tion of G : G:Q

0

=

Q

0

.

The a
tion of G is 
ongruent w.r.t. the transition relation : 8q; q

0

2

Q; 8g 2 G; q ! q

0

, g:q ! g:q

0

Observe that all these 
onditions hold regarding our model of proto
ol,

by de�ning G as the group of pro
ess permutations.
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2.3. MODEL CHECKING OF SYMMETRIC

TRANSITION SYSTEM

As a state is asso
iated with a subset of Prop in both the B�u
hi

automaton and the model, we will use the a
tion of G on the powerset

of Prop. Let b be a state of B�u
hi automaton A, G

�(b)

will simply be

denoted G

b

(although one 
annot de�ne an a
tion of G on B). Observe

that G

b

is strongly related to the symmetry degree of b independently

of the stru
ture of the B�u
hi automaton.

Let us 
onsider di�erent 
ases of G

b

in the 
ontext of our example. If

this subgroup equals the group G, then the state is totally symmetri
,

e.g. this is the 
ase for proposition set f[l(u) = idle℄; [l(v) = idle℄; [l(w) =

idle℄; [l(x) = idle℄g. In 
ontrast, whenever the isotropy group is re-

du
ed to the identity (denoted fidg), the state is totally asymmetri
,

e.g. f[l(u) = idle℄; [l(v) = transmit℄; [l(w) = wait℄; [l(x) = a

ess℄g. In

most 
ases, the isotropy group is not trivial (i.e. it di�ers from id and

G). Let us note that in the 
ontext of our model, the isotropy group

of pro
esses impli
itly 
orresponds to a partition of pro
esses, namely

the group of permutations whi
h left ea
h set of the partition invariant.

For f[l(u) = idle℄; [l(v) = idle℄g, the partition of C is ffu; vg; fw; xgg.

A

ording to a state of the B�u
hi automaton, we 
all su
h a partition

the lo
al partition of the state.

Our aim is to build a quotient of the syn
hronised produ
t over whi
h

it is possible to sear
h an invalidating path dire
tly. In this \ quotient"

stru
ture, ea
h node is 
hara
terised by a triple (H;O; b), where H is a

subgroup of G, O � Q, b 2 B. Moreover, the following two points must

hold:

(C1) 8q 2 O;�(b) � �(q)

(C2) H:O = O

The intuitive idea is that the node (H;O; b) is an aggregation of a

set of nodes of the syn
hronised produ
t, more pre
isely f(q; b)g

q2O

. As

we will see now, H is used in the de�nition in order to give a sound

de�nition of the su

essor relation.

The building of the quotient stru
ture starts from the set of initial

nodes, de�ned as follows : (G

b0

; G

b0

:q

0

; b

0

) with q

0

2 Q

0

, b

0

2 B

0

and

�(b

0

) � �(q

0

). Observe that 
ondition C2 is ful�lled trivially be
ause

G

b0

is a group, moreover 
ondition C1 is dedu
ed from the de�nition of

G

b0

.

Then, there remains to de�ne the su

essor relation.

(H

2

; O

2

; b

2

) is a su

essor of (H

1

; O

1

; b

1

), denoted (H

1

; O

1

; b

1

)! (H

2

; O

2

; b

2

),
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i� b

1

! b

2

and 9q

1

2 O

1

; 9q

2

2 Q s.t. q

1

! q

2

and �(b

2

) � �(q

2

).

Then O

2

= (H

1

\G

b

2

):q

2

and H

2

� G

O

2

.

Observe that both 
onditions C1 and C2 are ful�lled by the new

node. E�e
tively, from O

2

� G

b

2

:q

2

, one dedu
es that: 8q

0

2

2 O

2

;9g 2

G

b

2

s:t: q

0

2

= g:q

2

. So, �(b

2

) = g:�(b

2

) � g:�(q

2

) = �(q

0

2

). Moreover,

as H

2

� G

O

2

then H

2

:O

2

= O

2

.

In order to make the su

essor relation operational, one must spe
ify

how the subgroup H

2

is 
hosen. With regard to the su

essor relation, it

is interesting to maximise H

2

, i.e. to 
hoose H

2

= G

O

2

, but this 
hoi
e

might not be possible w.r.t. the synta
ti
al aspe
ts of the model. In

any 
ase, H

2


an be 
hosen as the subgroup (H

1

\G

b

2

). The following

lemma and proposition 1 show the validity of our 
onstru
tion.

Lemma 1 Let S be a symmetri
 transition system and A be a B�u
hi

automaton. Let Gr(S;A) be the 
orresponding syn
hronised produ
t and

GRQ(S;A) the 
orresponding quotient stru
ture.

Let (H

1

; O

1

; b

1

) and (H

2

; O

2

; b

2

) be two nodes of GRQ(S,A).

(H

1

; O

1

; b

1

) ! (H

2

; O

2

; b

2

) ) 8q

2

2 O

2

; 9q

1

2 O

1

; (q

1

; b

1

) !

(q

2

; b

2

)

Let (q

0

; b

0

) ! (q

1

; b

1

) ! ::: ! (q

n

; b

n

) ! ::: be a (in�nite) path in

Gr(S;A), then 9(H

0

; O

0

; b

0

)! (H

1

; O

1

; b

1

)! :::! (H

n

; O

n

; b

n

)!

::: a (in�nite) path in GRQ(S;A) s.t. q

i

2 O

i

(i 2 1::n).

It is worth noting that the �rst point be
omes false in the 
ase where

one ex
hanges its 
onsequen
e by the following one: \ 8q

1

2 O

1

;9q

2

2

O

2

; (q

1

; b

1

)! (q

2

; b

2

)".

Proposition 1 For a symmetri
 �nite bran
hing transition system, there

is an invalidating path in the syn
hronised produ
t if and only if there is

an invalidating path in the quotient stru
ture.

3. APPLICATION TO THE WELL-FORMED

PETRI NETS

The well-formed Petri net model o�ers a global solution for the design,

veri�
ation and performan
e evaluation of distributed systems graphs.

A well-formed Petri net is a high level Petri net model. Its spe
i�


syntax has made possible to de�ne methods whi
h take pro�t from the

symmetry relations existing in systems. One of the asso
iated meth-

ods is the building of the symboli
 rea
hability graph whi
h is a highly


ompa
t stru
ture used to represent the state spa
e. It 
an be used to
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Dei Tr i At i SciRei ∧
j    I∈

At j

Sc∧
j    I∈ j ,

p
i

{ }
i=1

n

∧
j    I∈

Tr j

Figure 1 Automaton of one pro
ess

analyse some standard properties of the Petri nets as well as to derive

an aggregated Markov 
hain in order to 
ompute performan
e indi
es

( Chiola et al., 1993). We are interested in adapting this 
onstru
tion to

our method, but we do not fully des
ribe neither the well-formed Petri

net de�nition nor the implementation of the symboli
 rea
hability graph

building (see Chiola et al., 1991 for more details). A
tually, we will fo-


us on the representation of nodes and on the building of the su

essor

relation.

3.1. PRESENTATION OF THE

WELL-FORMED PETRI NET MODEL

Des
ription of the system and properties to verify. The

system whi
h is des
ribed here 
onsists of n pro
esses fP

i

g

i=1::n

a

essing

to a 
riti
al se
tion. Like in the former model, we 
onsider that the

pro
esses run the same 
riti
al se
tion a

ess proto
ol. They are now

syn
hronised by shared variables.

This proto
ol is des
ribed for a pro
ess P

i

in Figure 1. Initially, the

pro
ess is idle (lo
al state Re) then it may ask for an a

ess to the 
riti
al

se
tion (lo
al state De). Before a

essing this se
tion (lo
al state S
)

the pro
ess follows a sequel of two lo
al states : Transmitting (Tr) and

Waiting (At). We now detail the state transitions : (1) A requesting

pro
ess 
an be in state Tr if there is no pro
ess in waiting state. The

s
heduler 
onsiders as privileged all the pro
esses in state De. This is

represented in the �gure by a bold ar
. (2) A pro
ess 
hanges from state

Tr to At without spe
i�
 
ondition. (3) To enter the 
riti
al se
tion,

there must be no pro
ess in this se
tion, but also no pro
ess in state Tr.

We aim at demonstrating that the system is (weakly) fair : Every

pro
ess whi
h asks for the 
riti
al se
tion will obtain it in a �nite time.

Intuitively, this property holds due to the 
onditions whi
h ensures that

requests are treated wave after wave. A wave starts from the moment

when there is a requesting pro
ess and is 
ompleted as soon as one

pro
ess enters the waiting state.

Hen
e, a wave 
ontains all the pro
esses in state Tr and At, and these

pro
esses will enter the 
riti
al se
tion without spe
i�
 order. Due to
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S
S

S

C(Re)=C(De)=C(Tr)=C(At)=C(Sc)=C(Vg);

C(Mu)= ε;

S

Vg

Mu

Re

De

Tr At

Co
S

X

X

X X X X X

X

X

X

t1

t2 t4

t 5

t3

Sc

Figure 2 Modelling of the symmetri-


al behaviour of the system

true

b1

b2

b 3

b0

De  , Rei j

Sc  , Sci j

Sc j

true
b t

1,2 n, n-1

Figure 3 B�u
hi automaton of :f

the privilege of the 
hange from De to Tr, a requesting pro
ess belongs

either to the 
urrent wave or to the following one. This ensures the

fairness property.

In a se
ond stage, the system is modi�ed so that within a wave, the

exe
utions of the 
riti
al se
tion are ordered a

ording to a priority re-

lation, indu
ed by the identity number of pro
esses. A
tually, The �rst

system is symmetri
, while the se
ond is not.

With respe
t to this new spe
i�
ation, the two expe
ted properties

are the followings :

Every requesting pro
ess will �nally obtain the a

ess

The pro
esses in state Tr or At will be served a

ording to the

order indu
ed by the spe
i�ed priority relation.

In 
ontrast, the strong fairness property \A requesting pro
ess will be

served before every pro
ess in state idle" is false.

Formal modelling for the System and its properties.

1At   , At   , At2 3
Mu

At   , At2 3
Mu

   At3
Mu

   Sc

   Sc2

   Sc3

c2

c4

c6

1

c1

c3

c 5

1At   , At   , At2 3
Mu

c0

Figure 4 
ontrol automaton w.r.t. a priority relation
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In order to represent our system, we pro
eed in two stages : a sym-

metri
 system is spe
i�ed �rst in terms of the well-formed Petri nets of

Figure 2, then the runs whi
h do not preserve the priority relation are

prohibited by means of the additional automaton of Figure 4, namely


ontrol automaton. A
tually, the system formally 
orresponds to the

syn
hronised produ
t of the well-formed Petri net and the 
ontrol au-

tomaton.

In a well-formed Petri net, a 
olour domain is atta
hed to ea
h pla
e

and transition. Ea
h token in a pla
e is typed by a 
olour of the pla
e


olour domain. Ea
h 
olour of a transition indi
ates a di�erent way to

�re the transition, hen
e, the labels of the ar
s are no more integers but


olour fun
tions whi
h denote for ea
h �ring the quantities of tokens to

be 
onsumed and produ
ed per ea
h 
olour. In well-formed Petri nets,

the 
olour fun
tions are written under a spe
i�
 syntax whi
h allows

one to exploit the system symmetries. Fun
tion S represents a 
onstant

fun
tion, 
alled a di�usion. Fun
tion S is a sum of tokens s.t. there is one

token per 
olour of the domain, e.g. one for ea
h pro
ess. Fun
tion X

represents the 
olour whi
h is used to instantiate the �ring of a transition

in the net.

In addition, a priority number is asso
iated with ea
h transition of

the well-formed Petri nets. Thus, among the transitions that are enabled

from the 
urrent marking of the net, only the ones whi
h have the highest

priorities 
an be �red.

In the well-formed Petri net of Figure 2, the lo
al states of the pro-


esses are represented by means of the 
orresponding pla
es. The set

C = fh1i); h2i); h3ig is the 
olour domain of pro
esses. It is the domain

of all the pla
es (ex
ept Mu) and the domain of all transitions of the

net. The marking of pla
e Re by the (
onstant) di�usion fun
tion 
or-

responds to the fa
t that, initially, all pro
esses are idle. Three more

pla
es allow one to implement the proto
ol me
hanism : (1) Pla
e Mu

is used to spe
ify the 
ontrol of a

esses to the 
riti
al se
tion; initially,

it is set to an (un
oloured) token and prohibits the �ring of transition

t

4

, whenever pla
e S
 is marked. (2-3) Pla
es V g and Co (initially set

to S) are used to spe
ify the wave me
hanism. V g prohibits the �ring

of transition t

2

, whenever one of the At or S
 pla
es is marked. Pla
e

Co prohibits the �ring of transition t

4

whenever pla
e Tr is not empty.

At last, t

2

is a transition the �ring of whi
h is privileged with respe
t to

the others transition, so that the expe
ted behaviour of the s
heduler is

obtained by the following priority relation : 8t 6= t

2

, Pri(t

2

) > Pri(t).

The spe
i�
ation of the well-formed Petri net is 
ompleted by the


ontrol automaton A




given in Figure 4. The �rst state of A




spe
i�es

that there is no pro
ess 
urrently in the 
riti
al se
tion, and that there is
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no request for that. The three states at the left side spe
ify the di�erent


ases where a pro
ess must be privileged, provided the 
riti
al se
tion is

empty. Moreover, the three pro
esses in the right side determine whi
h

pro
esses is in the 
riti
al se
tion. The ar
s from left to right ensure the

priority me
hanism. The others follow the behaviour of the net.

The semanti
 of the system is de�ned by the syn
hronised produ
t

between the 
ontrol automaton and the rea
hability graph of the net.

In order to illustrate our method, we wish evaluate the following

strong fairness property : \A requesting pro
ess will be served before

every idle pro
ess". The 
orresponding LTL formula is the following (

Pnueli, 1977) : f = ^

i;j2I

G[(De

i

^Re

j

)) X(S


j

US


i

)℄

The B�u
hi automaton A

:f

partially represented by Figure 3 models

the possible runs of the system for whi
h the negation of property f

holds. For sake of simpli
ity, only one bran
h (i; j) is represented. In

this elementary 
ase, the stru
ture of the automaton is immediately

dedu
ed from the formula to invalidate. With the help of the �rst state

of the automaton, one waits to the moment when (De

i

^ Re

j

) holds,

whi
h will 
ause the invalidation of the property. Then, the next states

of the automaton ensures that pro
ess j will enter the 
riti
al se
tion

before i. The last state represents the remaining part of the in�nite run,

without meaning a

ording to the 
onsidered property.

We highlight now (for this kind of spe
i�
ation) that the 
he
king

of a formula on an asymmetri
 system 
an be redu
ed to the 
he
king

of an asymmetri
 formula on a symmetri
 system. The sear
h of a

path must be 
omputed through the syn
hronised produ
t of the three

stru
tures : the rea
hability graph of the well-formed Petri net, the


ontrol automaton and the automaton of the negation of the formula.

However, the syn
hronised produ
t is a 
ommutative and asso
iative

operation. It is thus possible to perform the syn
hronised produ
t of

the two automata, A




and A

:f

, in order to obtain a new one, then to

apply our 
onstru
tion on this new automaton and the well-formed Petri

net (a symmetri
 model).

On 
an 
he
k that the following path in the syn
hronised produ
t in-

validates the desired formula :

(m

0

; (


0

; b

0

))

t

1

(h1i)

�!

(m

1

; (


0

; b

1

))

t

2

(h1i)

�!

(m

2

; (


0

; b

2

))

t

1

(h2i)

�!

(m

3

; (


0

; b

2

))

t

2

(h2i)

�!

(m

4

; (


0

; b

2

))

t

3

(h2i)

�!

(m

5

; (


3

; b

2

))

t

3

(h1i)

�!

(m

6

; (


3

; b

2

))

t

4

(h2i)

�!

(m

7

; (


4

; b

3

))

Ea
h node (m,(
,b)) of su
h a sequen
e 
orresponds respe
tively to

one marking of the net and one pair obtained by a state of the B�u
hi

automaton and a state of the 
ontrol automaton. Observe that, the
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label of an ar
 represents some �ring in the net. For instan
e,

t

1

(h1i)

�!


orresponds to the �ring of transition t

1

with respe
t to pro
ess h1i.

3.2. BUILDING OF THE SYMBOLIC

SYNCHRONISED PRODUCT

The symboli
 syn
hronised produ
t is a representation of the quo-

tient syn
hronised produ
t. We 
all them symboli
 due to the analogy

with the symboli
 rea
hability graph representation (Chiola et al., 1991).

Its major pe
uliarity is that obje
ts are never more represented expli
-

itly, but are viewed under a symboli
 form. For instan
e, one 
an say

symboli
ally that two pro
esses require the same resour
e, instead of

saying that pro
esses 1 and 2 require resour
e 1. From su
h a symboli


representation, a symboli
 �ring rule 
an be de�ned whi
h allows one

to 
ompute the symboli
 rea
hability graph, automati
ally and dire
tly

from the obje
t spe
i�
ation within the well-formed net.

Computation of lo
al partitions of 
olours. Before 
omputing

the quotient syn
hronised produ
t, one must 
ompute and represent the

isotropy group of ea
h state of the automaton. The most easy way to

pro
eed 
onsists in dete
ting the 
olours whi
h marks the same propo-

sitions in the states. These 
olours are gathered in subsets and these

subsets form a partition, named lo
al partition. The isotropy group is

impli
itly de�ned as the group of permutations whi
h left ea
h set of

the partition globally invariant. Let us give three examples : (1) For a

state where the atomi
 propositions are fAt

1

; At

2

; At

3

g, the partition is


omposed by a unique singleton fh1i; h2i; h3ig (i.e. all the permutations

are admissible). (2) For a state where the atomi
 propositions are fAt

2

g,

the partition is 
omposed of a singleton fh2ig and a set 
omposed of the

remaining 
olours, here fh1i; h3ig (the permutations must left h2i invari-

ant). (3) For a state where the atomi
 propositions are fAt

2

; At

3

g, the

partition is 
omposed of three elements, fh1ig; fh2ig; fh3ig. The isotropy

group is redu
ed to the identity permutation.

States of the symboli
 syn
hronised produ
t. Let us re
all

that we want to represent triples (H,O,(b,
)), su
h that O is subset

of markings whi
h is un
hanged under the a
tion of the subgroup H

(O = H:o, 8o 2 O). The subgroup H will be impli
itly represented by

a lo
al partition, whi
h may di�er from the partition atta
hed to the

state of the automaton (H may be di�erent from G

b

). The subset of

markings will be represented in a symboli
 way : the 
olour domain

is partitioned in abstra
t subsets, 
alled dynami
 sub
lasses (i.e. the
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omposition is not known). However for ea
h subset, the 
ardinality

and the referen
e to a lo
al partition is preserved. The markings of the

net are now symboli
 sin
e their tokens are no more 
olour but dynami


sub
lasses. Symboli
 markings are denoted like

b

m.

In our example, there is one initial symboli
 node, su
h that :

(

b

m

0

; (b

0

; 


0

)) where

b

m

0

is a symboli
 marking of the net su
h that :

b

m

0

is de�ned from a unique lo
al partition fh1i; h2i; h3ig 
omposed

of a unique dynami
 sub
lass (denoted Z

1

s.t. j Z

1

j= 3),

b

m

0

= (Z

1

:Re+ Z

1

:Co+ Z

1

:V g) +Mu, meaning that there is one

token of ea
h pro
ess in pla
es Re, Co and V g and that there is

one un
oloured token in pla
e Mu.

The atomi
 propositions of b

0

and 


0

(fAt

i

g

i=1::3

;Mu) are satis�ed by

b

m

0

. Observe that

b

m

0

is a symboli
 representation for both subgroup H

of permutations and subset O of markings.

Symboli
 �ring in the quotient syn
hronised produ
t. In or-

der to build a su

essor of a node (H

0

; O

0

; (b

0

; 


0

)) within the symboli


syn
hronised produ
t, a su

essor of the 
urrent state in the automa-

ton is sele
ted. For instan
e from (b

0

; 


0

), one 
an 
hoose state (b

1

; 


0

)

as a possible su

essor. Then a new lo
al partition is 
omputed, by

interse
ting the lo
al partition of the state 
urrently 
onsidered within

the symboli
 syn
hronised produ
t and the lo
al partition of the state

newly 
onsidered within the automaton. This is equivalent to 
onsider

the group H

0

\G

(b

1

;


0

)

.

For state (

b

m

0

; (b

0

; 


0

)), the lo
al partition in the symboli
 syn
hro-

nised produ
t is given by fh1i; h2i; h3ig and the one of the state within

the automaton is given by fh1ig; fh2ig; fh3ig. Hen
e, a de
omposition

identi
al to 
olours is obtained. Let




m

0

0

be the symboli
 representation

b

m

0

after the above de
omposition:

8i 2 f1; 2; 3g Z

i

is the unique dynami
 sub
lass of fhiig




m

0

0

= (Z

1

:Re + Z

2

:Re + Z

3

:Re) + (Z

1

:Co + Z

2

:Co + Z

3

:Co) +

(Z

1

:V g + Z

2

:V g + Z

3

:V g) +Mu

Then, a symboli
 �ring is performed in the net whi
h is similar to

the ordinary one (see Chiola et al., 1991 for more details). For instan
e,

the �ring of t

1

(Z

1

) leads to symboli
 marking




m

0

1

= (Z

1

:De+ Z

2

:Re+

Z

3

:Re) + (Z

1

:Co+ Z

2

:Co+ Z

3

:Co) + (Z

1

:V g + Z

2

:V g + Z

3

:V g) +Mu.

Additionally, one must verify that




m

0

1

satis�es the atomi
 properties of

(b

1

; 


1

) : (fAt

i

g

i=1::3

;Mu;De

1

; Re

2

).
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The last stage 
onsists in grouping some lo
al partitions whi
h 
on-

tain a single dynami
 sub
lass, provided the distributions of the 
on-


erned dynami
 sub
lasses over the pla
es are the same. A
tually, this

does not modi�es the set of ordinary markings asso
iated with the sym-

boli
 marking and this means that the group of admissible permutations

H

0

\G

(b

1

;


0

)

is extended. For instan
e in




m

0

1

, sets fh2ig and fh3ig 
an be

grouped yielding symboli
 marking

b

m

1

: Z

1

is the unique dynami
 sub-


lass of fh1ig and Z

2

is the unique dynami
 sub
lass of fh2i; h3ig; more-

over,

b

m

1

= (Z

1

:De+Z

2

:Re)+(Z

1

:Co+Z

2

:Co)+(Z

1

:V g+Z

2

:V g)+Mu.

4. CONCLUSION

Complexity redu
tion of the veri�
ation by use of the symmetries is

now well established. However most of the proposed te
hniques do not

handle (or in a limited way) the partially symmetri
 systems. In this

work we have proposed an eÆ
ient way to deal with asymmetri
 models

and/or formulas. Our method does not depend on a parti
ular formalism

and a priori 
an be applied to any one. Here we have illustrated the

method on well-formed Petri nets in order to 
larify the prin
iples based

on a
tions of groups on transition systems.

This work needs to be 
ompleted in two ways. At �rst, it must be

integrated in a tool. So the implementation of the presented work is

under progress. We have 
hosen to develop our method in the GreatSPN

tool (Chiola et al., 1997) as symmetries are already exploited for well-

formed Petri nets. To this implementation, must su

eed a stage of

evaluation in order to 
hara
terise systems for whi
h our algorithm is

eÆ
ient.

Moreover, we plan to 
ombine our method with the global analysis of

symmetries of the automaton as done in (Ajami et al., 1998). At last,

we investigate the way to extend this method to performan
e evaluation

of sto
hasti
 well-formed Petri nets.
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