MODELLING AND ANALYZING SYSTEMS
WITH RECURSIVE PETRI NETS

Serge Haddad

LAMSADE - UPRESA 7024, Université Paris IX, Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris ceder 16
Serge.Haddad®lamsade.dauphine.fr

Denis Poitrenaud

LIP6 - UMR 7606, Université Paris VI, Jussieu
4, Place Jussieu, 75252 Paris cedex 05
Denis.Poitrenaud@lip6.fr

Keywords: Recursive Petri nets, Modellization, analysis, expressive power

Abstract Recursive Petri nets (RPNs) have been introduced to model systems
with dynamic structure. In a previous work, we have shown that this
model is a strict extension of Petri nets, whereas reachability in RPNs
remains decidable. Here, we focus on its modelling features and on
some additional theoretical aspects. Three different kinds of discrete
event systems are modellized by RPNs in order to give an insight of
their capabilities to express various mechanisms. Decision procedures
for new properties like boundedness and finiteness are presented and
recursiveness of languages of RPNs is proved. At last, we compare RPNs
with two other models combining Petri nets and context-free grammars
features showing that these models can be simulated by RPNs.

Introduction

In the area of verification theory, a great attention has been paid on
infinite state systems where an essential topic is to find a compromise
between expressivity of the models and decidability of property verifica-
tion. Among such models, Petri nets present interesting characteristics.
On the one hand, Petri nets are now in widespread use for many differ-
ent practical purposes due to their great modelling capabilities [Jensen,
1987]. On the other hand, it has been shown that the reachability prob-
lem [Mayr, 1981] is decidable.

2 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

Recently a new extension of Petri nets, recursive Petri nets (RPNs),
have been proposed with the aim to combine Petri net and context-
free grammar behaviours [Haddad and Poitrenaud, 1999b]. Roughly
speaking, in recursive Petri nets some transitions emulate concurrent
procedure calls by initiating a new token game in the net. The return
mechanism is ensured by reachability conditions. In [Haddad and Poitre-
naud, 1999b], we have shown how to decide the reachability problem for
RPNs and we have studied the expressive power of RPNs proving that
RPNs strictly include the union of Petri nets and context-free grammars
w.r.t. the generated languages.

From a modelling point of view, RPNs have been successfully used for
specifying plans of agents in a multi-agent system [Seghrouchni and Had-
dad, 1996]. We complement this work with the modelling of three usual
mechanisms of discrete event systems : goal-oriented programming, fault
occurrences and interruptions..

We also define new decision procedures for important problems: bound-
edness, finiteness and recursivity of languages. Finally, we compare the
model of RPNs with two other models combining Petri nets and context-
free grammars features: net systems introduced by A. Kiehn [Kiehn,
1989] and process algebra nets (PANs) [Mayr, 1997]. We show that
RPNs include net systems and PANs. Complete proofs for the main
propositions are given in the technical report [Haddad and Poitrenaud,
1999a]

1. RECURSIVE PETRI NETS

A RPN has the same structure as an ordinary one except that the
transitions are partitioned into two categories: elementary transitions
and abstract transitions. Moreover, a starting marking is associated to
each abstract transition and a semi-linear set of final markings is defined.
The semantics of such a net may be informally explained as follows. In
an ordinary net, a thread plays the token game by firing a transition
and updating the current marking (its internal state). In a RPN there
is a dynamical tree of threads (denoting the fatherhood relation) where
each thread plays its own token game. The step of a RPN is thus a
step of one of its threads. If the thread fires an elementary transition,
then it updates its current marking using the ordinary firing rule. If
the thread fires an abstract transition, it consumes the input tokens of
the transition and generates a new child which begins its token game
with the starting marking of the transition. If the thread reaches a final
marking, it may terminate aborting its whole descent of threads and
producing (in the token game of its father) the output tokens of the

Modelling and Analyzing Systems with Recursive Petri Nets 3

abstract transition which gave birth to him. In case of the root thread,
one obtains an empty tree.

Definition 1 (Recursive Petri nets) A recursive Petri net is defined
by a tuple N = (P, T,W—, W+, Q,T) where

P s a finite set of places, T is a finite set of transitions.

A transition of T can be either elementary or abstract. The sets
of elementary and abstract are respectively denoted by Ty and Ty
(with T = To W Ty, where W denotes the disjoint union).

m W~ and W are the pre and post flow functions defined from PxT
to IN.

n Q is a labeling function which associates to each abstract transition
an ordinary marking (i.e. an element of INT) called the starting
marking of t.

T is an effectively semilinear set of final markings (any usual syn-
tax can be accepted for its specification,).

Definition 2 (Extended marking) An extended marking ¢r of a re-
cursive Petri net N = (P, T,W~,W*,Q,7T) is a labeled tree tr = (V, M,
E, A) where

m V is the set of vertices, M is a mapping V — IN¥,
m FECV XV isthe set of edges and A is a mapping E — Ty.

A marked recursive Petri net (N, trg) is a recursive Petri net N associ-
ated to an initial extended marking trg.

We denote by vy(tr) the root node of the extended marking ¢r. The
empty tree is denoted by L. Any ordinary marking m can be seen as
an extended marking, denoted by [m], consisting of a single node. For
a vertex v of an extended marking, we denote by pred(v) its (unique)
predecessor in the tree (defined only if v is different from the root) and
by Succ(v) the set of its direct and indirect successors including v (Vv €
V, Succ(v) = {v' € V | (v,v") € E*} where E* denotes the reflexive and
transitive closure of E). An elementary step of a RPN may be either
a firing of a transition or a closing of a subtree (called a cut step and
denoted by 7).

Definition 3 A transition t is enabled in a vertex v of an extended
marking tr (denoted by tr 2%) if Vp € P,M(v)(p) > W~ (p,t) and a cut
step is enabled in v (denoted by tr %) if M(v) € T

4 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

Definition 4 The firing of an enabled elementary step t from a vertex v
of an extended marking tr = (V, M, E, A) leads to the extended marking

tr' = (V! M', E', A" (denoted by trﬂ)tr') depending on the type of t.

m teTy
-V =V ,E =E ,Vee E,A(e) = A(e), Yo' € V' \ {v},
M'(v') = M(v")

— Vp € P,M'(v)(p) = M(v)(p) = W~ (p,t) + W (p, 1)
€Ty, (V' is a fresh identifier absent in V')

-V =vu{}, B =EU{(v,v)}, Ve € E,A'(e) = A(e) ,
Al((v,0") =t

— V" € V\{u}, M/(0") = M(s"), ¥p € P, M'(0)(p) = M(0)(p)—
W= (p, 1)

- M'(v') = Q(t)

m =T

— V' =V\Succ(v) , EE=En(V'xV'),Vee E', A'(e) = A(e)
- W' e V'\ {pred(v)}, M'(v') = M(v')
— Vp € P, M(pred(v))(p) = M(pred(v))(p)+ W™ (p, A(pred(v),v))

Let us notice that if v is the root of the tree then the firing of T
leads to to empty tree L.

At first sight, associating the same net to all the abstract transitions
may seem restrictive and artificial from a modelling point of view. Nev-
ertheless, it easy to simulate with RPNs the activation of different nets
depending on the abstract transitions. Using only one net greatly sim-
plify notations and proofs.

Natural condition for the termination of a thread are almost express-
ible by an effectively semilinear set of markings. For instance, one can
express deadlock of a net, transition enabling, submarking reachabil-
ity, ... As the effectiveness of representation is preserved under union,
intersection and complementation, we will not fix some particular rep-
resentation of the semilinear sets.

2. MODELLING

The three behaviors that we model with RPNs are difficult or even
impossible to specify with typical models such like Petri nets or process
algebra.

Modelling and Analyzing Systems with Recursive Petri Nets)

|1.1 |1.2 P
= =l t,
G1 G,

Y ={m[m(G) +m(G,) + m(G3) >0}

Figure 1 a concurrent goal oriented program

Modelling of goal-oriented programs

With the development of artificial intelligence, new programming para-
digms have been introduced with associated languages (e.g. Prolog).
The execution of such a program consists in successive applications of
rules until some predicate is satisfied. This kind of programming is qual-
ified as goal-oriented. On the other hand, parallel architectures have led
to concurrent programming. Goal-oriented and concurrent programming
have been merged in such a way that several processes can be executed
concurrently in order to satisfy a same goal. As soon as the goal is
satisfied by one process, all of them terminate.

The RPN shown in figure 1 models a concurrent goal-oriented pro-
gram. We represent an abstract transition by a double border rectangle
and its initial marking is indicated in a frame. The goal of the program
is achieved when the RPN reaches the extended marking L from the
initial marking consisting in a single node labeled by I; 1 4+ ;2. From
this initial state, both abstract transitions ¢ ; and #; 5 are enabled and
their firings lead to the creation of two independent threads. As soon
as one of these threads is completed, the place G is marked at the root
level and then a cut step is firable at this level (see the definition of Y)
and leads to 1. The first thread executes a simple sequential program
represented by the elementary transition ¢2. The second one chooses
either to execute also a simple program (the elementary transition ¢31)
or to make a recursive call (the abstract transition t35).

A firing sequence of this RPN is presented in the figure 2. The thread
in which the following step is fired is represented in black. One can
notice that each firing of abstract transition leads to the creation of a
new node in the tree whereas the firing of the last cut step prunes the
complete tree.

Let us remark that the first thread may achieve its program while
the second one is at any level of recursion. In other words, the state L
can be reached from an infinite number of states. More generally the
transition system associated to a RPN may have some nodes with an
infinite in-degree. This capability is not shared by Petri nets or process

6 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

I + I t 11 I t 12

11 12 = 12 = /@
) t / t t &i
11 11 12
I, , Iy
t

§4)

1 g 32

T G T
- 1 -

t t t 3

12 11 12
2 G, o A,
32 32
| |
3

Figure 2 a firing sequence

Psart pfauItO Pinit
= >
tsan trepair toount Y {m | m(pfault) O}
Prepair ()

poount

repair

Figure 3 a basic fault-tolerant system

algebras. Consequently, such models cannot directly represent this kind
of systems.

Modelling of faults
In order to analyze fault-tolerant systems, the engineer starts from a
nominal system and then introduces the faulting behavior as well as the
repairing mechanisms. We limit ourselves to an elementary system. The
nominal system periodically records some measure of the environment
(elementary transition ¢,). The number of measures is stored in place
Peount- Lhe complete system is obtained by adding the left part of the
figure 3. The behavior of the RPN can be described as follows. Initially
and in all the crash states, the extended marking consists in a single
node. A token in the place ppepqir indicates that one is repairing the
system while a token in pgy¢ indicates that the system is ready. When
the abstract transition ¢, is fired the correct behavior is ”played” by
the new thread. If this thread dies by a cut step, a crash state is reached.
As the place pyqy; is always marked in the correct system and from the
very definition of Y, the occurrence of a fault is always possible. With
additional places and modifying Y, we could model more complex fault
occurrences (e.g. conditioned by software execution).

The RPN switches between states with a single vertex and states with
a root and a leaf. However, the number of reachable markings in the leaf

Modelling and Analyzing Systems with Recursive Petri Nets 7

pintl ° pup . . pintz

t) ts
intl == ¥l \ 2Lt
pup + pmz t, \ t pend
D’O/ _ _
Y={m[m(p_,)=1}

Figure 4 an interruption mechanism

is infinite (the place peount is unbounded). Once again, the associated
transition system has a node with an infinite in-degree.

Modelling of interruptions

Let us suppose that we have specify a one level execution system and that
we want to add an interruption mechanism. In the RPN of the figure 4,
the cycle p, t, p’, t' represents this first level. The place p;,;1 controls
this execution. When the abstract transition #;,: is fired this execution
is interrupt and a second level modellized by a token in p,, and p;n is
activated. The same construction applies again on this component net
making possible a recursive interruption process. We should have bound
the number of interruption levels with additional places. In comparison
the same modelling with Petri net is rather difficult as it requires to keep
each context of suspended process.

3. ANALYSIS

As stated in the introduction, the Petri net model appears as a limit
model for the decidability of properties for infinite systems. Indeed,
slight extensions give it the Turing machine expressive power. The sur-
prising fact with RPN model is that most of the properties decidable
in PN remains decidable for it while its expressive power is much larger
than the PN one.

Decidability results

The reachability problem consists to determine if a given state is reach-
able from another one. This problem has been demonstrated to be de-
cidable for PN (see [Mayr, 1981]).

Proposition 5 ([Haddad and Poitrenaud, 1999b]) The reachabil-
ity problem is decidable for RPNs.

8 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

The decision procedure presented in [Haddad and Poitrenaud, 1999b)]
reduces the problem to some applications of the decision procedure for
the ordinary Petri nets.

The boundedness property ensures that there is a bound for any place
of any reachable extended marking and the finiteness property states
that the number of reachable extended markings is finite. In Petri nets,
these two properties are equivalent and decidable. In RPNs, the equiv-
alence does not hold but decidability remains for both properties. An-
other important property is the capability to decide if a given word
belongs to the language generated by the system. Such a language is
said to be recursive and this characteristic is a key point for the veri-
fication of safety properties. We demonstrate that this problem is also
decidable for RPNs.

Proposition 6 ([Haddad and Poitrenaud, 1999a]) The problems of
boundedness and finiteness are decidable for RPNs and the language of
a labeled RPN 1is recursive.

The decision procedures for boundedness and finiteness consists to
some applications of the reachability procedure for the ordinary Petri
nets. Unlike the situation in Petri nets, the recursivity of the languages
can not be proved using the reachability procedure for RPNs.

Expressiveness results

It has been demonstrated in [Haddad and Poitrenaud, 1999b] that RPNs
combine features of Petri nets and context-free grammars. It is interest-
ing to compare RPNs with similar models.

In her thesis, A. Kiehn has introduced a model called net systems
[Kiehn, 1989]. Net systems are a set of Petri nets with special transitions
denoted caller transitions which start a new Petri net. A call to a Petri
net may return if this net reach a final marking. All the nets are required
to be safe and the constraints associated to the final marking ensure
that a net may not return if it has engaged calls. It is straightforward
to simulate a net system by a RPN. Moreover as the languages of Petri
nets are not included in the languages of net systems, the family of net
system languages is strictly included in the family of RPN languages.

Process Algebra Nets (PANs), introduced by R. Mayr [Mayr, 1997,
are a model of process algebra having the sequential composition as well
as the parallel one. The left term of any rule of a PAN may use only
the parallel composition of variables whereas the right side is a general
term. This model includes Petri nets and context-free grammars. We
demonstrate that RPNs also include PANs.

Modelling and Analyzing Systems with Recursive Petri Nets 9

Proposition 7 ([Haddad and Poitrenaud, 1999a])

m The union of context-free and Petri net languages is strictly in-
cluded in the family of RPN languages,

m the family of net system languages is strictly included in the family
of RPN languages,

m the family of PAN languages is included in the family of RPN
languages.

Whereas we do not know whether the inclusion of the PAN languages
by the RPN ones is strict, we emphasize that the main difference between
RPNs and the two other models is the ability to prune subtrees from the
extended marking. This mechanism is indispensable for the modelling
of plans in multi-agents systems [Seghrouchni and Haddad, 1996].

This inclusion has an important consequence. Indeed, in [Bouajjani
and Habermehl, 1996] it has been demonstrated that a PA-process (a
much less expressive model than PAN) and a finite automaton together
can simulate a 2-counter machine. We can conclude that the model
checking of linear time temporal logic on action is undecidable for RPNs
whereas this problem is decidable for Petri nets [Esparza, 1997].

However, one can notice that PANs as well as Process Rewrite Systems
(a more expressive model) can not represent a transition system with an
infinite in-degree.

4. CONCLUSION

In this work, we have deepened the analysis of recursive Petri nets.
Their modelling capabilities have been illustrated on various mechanisms
used in discrete event systems. Moreover some of them cannot be model-
lized neither by Petri nets nor by process algebra. We have also studied
theoretical features of recursive Petri nets which complement the ones
studied in [Haddad and Poitrenaud, 1999b] about reachability and ex-
pressivity. We have shown how to decide boundedness, finiteness of a
RPN and we have proved that the languages of RPNs are recursive. At
last, we have shown that RPNs include some previous models combining
Petri nets and context-free grammars for which the reachability remains
decidable. As a consequence, the general model checking for recursive
Petri nets becomes undecidable even for a restricted temporal logic.

We plan to extend our studies in two different ways. On the one
hand we want to add new features for recursive Petri nets and exam-
ine whether the main properties of RPNs remain decidable. We are
interested to introduce some context when a thread is initiated (e.g. the

10 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

starting marking could depend from the depth in the tree). On the other
hand, we are looking for an intermediate model between RPN and PN
for which model checking remains decidable.

References

[Bouajjani and Habermehl, 1996] Bouajjani, A. and Habermehl, P.
(1996). Constrained properties, semilinear systems and Petri nets. In
Montanari, U. and Sassone, V., editors, Proceedings of CONCUR’96,
volume 1119 of LNCS. Springer Verlag.

[Esparza, 1997] Esparza, J. (1997). Decidability of model checking for
infinite-state concurrent systems. Acta Informatica, 34:85-107.

[Haddad and Poitrenaud, 1999a] Haddad, S. and Poitrenaud, D.
(1999a). Decidability and undecidability results for recursive Petri
nets. Technical Report 019, LIP6, Paris VI University, Paris, France.

[Haddad and Poitrenaud, 1999b] Haddad, S. and Poitrenaud, D.
(1999b). Theoretical aspects of recursive Petri nets. In Proc. 20th
Int. Conf. on Applications and Theory of Petri nets, volume 1639
of Lecture Notes in Computer Science, pages 228-247, Williamsburg,
VA, USA. Springer Verlag.

[Jensen, 1987] Jensen, K. (1987). Coloured Petri nets. In Brawer, W.,
Reisig, W., and Rozenberg, G., editors, Advances on Petri Nets 86
- Part I, volume 254 of LNCS, pages 248-299. Springer Verlag, Bad
Honnef, West Germany.

[Kiehn, 1989] Kiehn, A. (1989). Petri nets systems and their closure
properties. In Advances in Petri Nets 1989, volume 424 of Lecture
Notes in Computer Science, pages 306-328. Springer Verlag.

[Mayr, 1981] Mayr, E. (1981). An algorithm for the general Petri net
reachability problem. In Proc. 13th Annual Symposium on Theory of
Computing, pages 238-246.

[Mayr, 1997] Mayr, R. (1997). Combining Petri nets and PA-processes.
In Theoretical Aspects of Computer Software (TACS’97), volume 1281
of Lecture Notes in Computer Science, pages 547-561, Sendai, Japan.
Springer Verlag.

[Seghrouchni and Haddad, 1996] Seghrouchni, A. E. F. and Haddad, S.
(1996). A recursive model for distributed planning. In Second Inter-
national Conference on Multi-Agent Systems, Kyoto, Japon.

