
Chapter 10

Stochastic well formed Petri nets

Serge Haddad , Patrice Moreaux1

1. Introduction

Introducing high level Petri nets allows us to cope with the complexity of
systems during the design phase. However, the lack of structure of expressions
and arc or transition guard functions make using this concision impractical, or
even impossible, for verification purposes. To overcome this drawback, several
subclasses of high level nets have been proposed, among them the well formed
Petri Net [CHI 93a]. Its numerous verification possibilities made possible a lot
of system studies. One of the reasons of this theoretical success is the explicit
symmetry derived from the syntax of the domains and the color functions.

Since we have the same modeling needs for stochastic systems, research
works have focused on:

• bringing to the fore technics taking advantage of possible symmetries of
the stochastic process;

• how to express constraints on the stochastic high level model leading to
symmetries in the process.

Markov chain aggregation technique [KEM 60] is perfectly suited to the first
goal. This method aims at substituting macro-states to states of the Markov
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chain where each visit to a macro-state corresponds to a subset of states. To
get a Markov chain of macro-states, it is necessary that the visit of two given
states of one macro-state determines in the same way the future of the macro-
process. If these hypotheses are met, and if the process is ergodic, then the
macro-process stationary probability of a macro-state is the sum of the initial
process stationary probabilities of its states. Moreover, similar hypothesis on
the past of the process imply equiprobabilities of states inside a macro-state.
In this case, the macro-process is a sufficiently complete abstraction to get the
stationary distribution of the process. We present the Markovian aggregation
in the section two.

Therefore, several attempts to exploit the aggregation technic have been
proposed for high level nets. The first approach [ZÉN 85] starts from the
reduced reachability graph of a colored net by the Jensen method [HUB 84].
However, there is no guaranty that the macro-process is a Markov chain. In
the second approach [LIN 88], the macro-process is necessarily a Markov chain
but no algorithm is provided for building the macro-process. A last, more
achieved approach [CHI 88] groups states according to a partition deduced
from a supposed symmetry and then refines the partitions until aggregation
conditions are satisfied. Unfortunately, this technic requires to build the whole
reachability graph.

In the third section, we show how to add a stochastic semantics to well
formed Petri nets such that aggregation conditions are met for symbolic mark-
ings. We detail a model of a multiprocessor system with stochastic well formed
Petri nets. This model is representative of kinds of applications for which this
technic provides solutions to the combinatorial exploding of the Markov chain.

In the last section, we present the main ideas about the proof of the validity
of aggregation. Moreover, we show how to directly compute the parameters of
the macro-process from the symbolic graph. The multiprocessor model illus-
trates the complexity savings provided by the symbolic graph.

Figure 1 presents the principle of the approach. In the best case, an a
posteriori aggregation requires an explicit (net) unfolding or an implicit one
when generating the state graph, and the underlying Markov chain. Beside,
the direct solving of this chain is often impossible due to its size. In contrast, the
symbolic graph allows for the a priori build of the aggregated chain. Moreover,
the aggregates -the symbolic markings- may be interpreted for the modelling
point of view and are usually sufficient to get significant performance indices.
Al last, the steady state probability of each state may be computed from the
aggregated solution and from the symbolic graph.

Other theoretical developments for stochastic well formed nets enlarge the
applicability of this model. In the next chapter, the Markovian aggregation
is combined with tensor decomposition which reduces accordingly the size of
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Figure 1: General stochastic colored net / well formed stochastic net

the built graphs. [FRA 93] proposes a bounding method for color domains
made of static subclasses with same qualitative behavior but with different
quantitative parameters. This method avoids partitioning the domain during
the computation of the symbolic graph which reduces its size. In the same way,
a stochastic simulation using symbolic markings is much faster. Indeed, the
number of successors of a symbolic marking is significantly lower than the one of
an ordinary marking [CHI 93b]. Most of these methods have been implemented
in the GreatSPN tool [CHI 95].

2. Markovian aggregation

All aggregation technics substitute to a complex system, a easier system
supposed to reflect the original system with regard to some criteria. In the
performance evaluation area, this criterion is most often the fact that a syn-
thetis of the stationary indices of the original system may be computed from
the stationary indices of the reduced system. In the previous chapter, we saw
how to approximate the stationary throughput of a stochastic marked graph
(SMG) from the iterative evaluation of of reduced SMG. In this case, aggrega-
tion lies in the model which generates the stochastic process. Conversely, we
can look for aggregation conditions of the stochastic process leading to exact
results. Let us look at the figure 2. On the left, we have an excerpt of a discrete
time Markov chain (DTMC). States are grouped in two subsets Ek = {ek

1 , e
k
2}

and Eh = {eh
1 , eh

2 , eh
3}. We note that:

Pr(Xn+1 ∈ Eh |Xn = ek
1) = Pr(Xn+1 ∈ Eh |Xn = ek

2) =
5

6
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In other words, the probability for the process to reach Eh knowing it is in the
subset of states Ek does not depend of the specific visited state.
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Figure 2: Markovian aggregation

Intuitively, if the partition satisfies this property for transitions between any
pair of subsets, the aggregated process will be also a Markov chain. A formal
expression of this fact is given in the following definition 1 and proposition 2.

Definition 1 A discrete or continuous Markov chain {Yt}t∈R+ may be aggre-

gated with respect to the partition (Ek)k=1,...,K , iff the process {Y
(a)
t }t∈R+ with

state space Ẽ = {Ek | k = 1, . . . , K}, defined by:

∀t ≥ 0, Y
(a)
t = Ek iff Yt ∈ Ek

is a Markov chain.

Proposition 2 (Strong aggregation condition [KEM 60]) A chain
may be aggregated whatever its initial distribution iff ∀h, k ∈ {1, . . . , K},
∀e, e′ ∈ Ek,

∑

eh∈Eh

pe,eh
=
∑

eh∈Eh

pe′,eh

def
= p̃k,h (discrete time) [1]

∑

eh∈Eh

qe,eh
=
∑

eh∈Eh

qe′,eh

def
= q̃k,h (continuous time)

The transition probabilities matrix (resp. the generator of the aggregated chain)

is then P̃ = [p̃k,h] for a discrete time Markov chain (resp. Q̃ = [q̃k,h] for a
continuous time Markov chain).

The definition itself of the aggregated process allows us to give the relationship
between the stationary distributions.
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Proposition 3 Let {Yt}t∈R+ be a chain satisfying the aggregation condition

and {Y
(a)
t }t∈R+ its aggregated chain. If {Yt} is ergodic and has a stationary

distribution π, then {Y
(a)
t } is ergodic and has a stationary distribution π

(a)

satisfying:

π
(a)[Ek] =

∑

e∈Ek

π[e]

In the general case, we have K �
∑

k |E
k| so that the computation com-

plexity of the steady-state probabilities is significantly reduced for P̃ (resp. Q̃)
with respect to P (resp. Q).

It is unusual that the aggregated stationary distribution allows us to recog-
nize the stationary distribution of the initial chain. However, this is the case if
the process satisfies a condition about its past similar to the aggregation con-
dition. We present the result in the framework of discrete time Markov chains
(DTMC), but it also applies for continuous time Markov chains (CTMC).

Proposition 4 (Equiprobability of ordinary markings) Let us given a
discrete ergodic Markov chain satisfying the aggregation condition and let π

(a)

be the stationary distribution of the aggregated chain. If ∀h, k ∈ {1, . . . , K},
∀e, e′ ∈ Eh: ∑

ek∈Ek

pek,e =
∑

ek∈Ek

pek,e′
def
= p̃

(in)
k,h [2]

then, the chain admits a stationary distribution π[e] = π
(a)[Eh]
|Eh|

where |Eh|

means the cardinality of Eh.

Proof
Let us recall that p̃k,h =

∑
eh∈Eh pe,eh

for all e ∈ Ek.

Let us first prove that |Eh|p̃
(in)
k,h = |Ek|p̃k,h. The total flow from Ek to Eh

is F (k, h) =
∑

e∈Ek

∑
e′∈Eh pe,e′ . Then, we have: F (k, h) =

∑
e∈Ek p̃k,h =

|Ek|p̃k,h and F (k, h) =
∑

e′∈Eh p̃
(in)
k,h = |Eh|p̃

(in)
k,h .

We have, for every e ∈ Eh,

K∑

k=1

∑

e′∈Ek

π[e′]pe′,e =

K∑

k=1

π
(a)[Ek]

|Ek|

∑

e′∈Ek

pe′,e =

K∑

k=1

π
(a)[Ek]

|Ek|
p̃
(in)
k,h =

1

|Eh|

K∑

k=1

π
(a)[Ek]p̃k,h =

π
(a)[Eh]

|Eh|
= π[e]

♦
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3. Presentation of stochastic well formed Petri nets

We refer the reader to chapter 7 for the definition of well formed (colored)
Petri nets and we concentrate on introducing a stochastic semantics in the
model.

S

R

tcX1

X2
<X1 ,X2>

C(R)={a,b}

C(S)={u,v,w}

F

Figure 3: Transition and firing rates

Our approach is illustrated by the example in figure 3 showing a transition
t of a well formed Petri net. This transition models a synchronization between
requests (place R) of different kinds (a et b) and servers (place S) belonging to
three categories (u, v et w).

3.1. The stochastic process of a well formed Petri net

Introducing a stochastic semantics for well formed Petri net aims to:

• be consistent with the stochastic semantics for Petri nets given in chapter
9;

• allow the user to specify it at the well formed net level;

• keep symmetries such that the symbolic reachability graph could be used
for quantitative evaluation.

The easiest way is to define the stochastic semantics as the one of the un-
folded (stochastic) Petri net. This is sufficient to ensure a coherent definition
of a stochastic extension of well formed Petri nets. Among the various stochas-
tic models of Petri nets, we choose the GSPN model which represents a right
tradeoff between expressiveness and analysis potential.

Let us examine the three policies to be defined. Obviously, the choice policy
will be the shortest sampled delay one if no immediate transition is enabled and
a probabilistic selection conditioned on the weights of the enabled immediate



Stochastic Well-formed Petri nets 7

transitions otherwise. A transition could, a priori, have immediate and expo-
nential firing instances. However, the interpretation of the transition in the
modeled system would be difficult and it is easy to replace it two transitions:
an immediate one and an exponential one. So, we are led to define the kind of
a transition rather than the kind of a firing instance of a transition.

The choice about the memory policy does not care here since we only use
exponential and immediate distributions.

We remind the reader that GSPN allows us to specify dependencies of
stochastic parameters with respect to the current marking. It is then easy
to simulate an infinite-server policy with a single-server policy, knowing that
the minimum of k exponential random variables with rate λ is an exponential
random variable with rate k.λ. So, the problem is reduced to study what kinds
of functional dependencies we would like to introduce in stochastic well formed
Petri nets.

Let w[t](r, s, m) be the rate of the firing instance of t for the color couple
(r, s) in a marking m. For an immediate transition, this expression is its weight
among the probabilistic choices. Let us assume that we have the following
values:

w[t](a, u, m) = (m[S](a) + m[S](b)).λ w[t](b, u, m) = (m[S](a) + m[S](b)).λ

w[t](a, v, m) = (m[S](a) + m[S](b)).λ w[t](b, v, m) = (m[S](a) + m[S](b)).λ

w[t](a, w, m) = λ , w[t](b, w, m) = λ

We first notice that each service (u, v, w) does not depend on the number
of servers for a given color (m[S](s)); Only one instance of server is required
to be served and two u servers (for instance) do not speed up the service.
In contrast, servers u et v are sensitive to the number of requests since their
rates are proportional to this number. (infinite-server policy) whereas w is a
constant(single-server policy). At last, the request type does not impact how
it is processed by the servers (from the quantitative point of view).

In brief, a and b have qualitative and quantitative equivalent behaviors.
u,v,w have a qualitative equivalent behavior but w has a specific quantitative
behavior. This means that C(R) may comprise only on e static subclass while
C(S) must comprise two static subclasses {u, v} et {w}. If the subclasses
are defined before the stochastic semantics, then functional dependencies have
only to depend on static subclasses. We will formalize this point in the next
paragraph.

A last note about the example: as specified, the choice of the server for
processing a request depends on the processing time known only at the end of
the processing! A better modelling would be to introduce choice (immediate)
transitions before the service transition.
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3.2. Definition of stochastic well formed Petri nets

To formalize the restriction on functional dependencies, we introduce the
notion of static subclass domain corresponding to a color domain and the image
of a color in the associated domain. This will allow us to define firing rates
only based on projections of the firing instance and on the current marking on
the static subclasses.

Definition 5 Let C(r) =
∏n

i=1 Cei

i by the color domain of a node r. Let

C̃i = {Ci,q | 1 ≤ q ≤ si} be the set of static subclasses of Ci. The static
subclass domain of r is

C̃(r) =

n∏

i=1

ei∏

j=1

C̃i =

n∏

i=1

C̃ei

i

For c ∈ C(r), c̃ ∈ C̃(r) is the tuple of static subclasses to which each c
j
i belongs:

c̃ = (Ci,qi,j
)ei
n with, ∀i, j, c

j
i ∈ Ci,qi,j

Hence, C̃(r) is the set of all possible static subclass tuples of a node. The next
definition extends this transformation to markings.

Definition 6 (Static partition of a marking) The static partition

of a marking m is m̃ ∈
∏

p∈P Bag(C̃(p)) with:

∀p ∈ P, ∀c̃ ∈ C̃(p), m̃[p](c̃) =
∑

c′, c̃′=c̃

m[p](c′)

m̃[p](c̃) gives the number of tokens of m[p] components of which are in the same
static subclasses as c.

We are now in position to give the formal definition of a stochastic well formed
Petri net.

Definition 7 (Stochastic Well formed Petri net (SWN)) A stochastic well formed Petri net
(SWN) (SWN) is a pair

(S,w) where S = (P, T,Pré,Post, Inh,pri, Cl, C, Φ) is a well formed Petri
net and w a vector of functions defined on T such that:

w[t] : C̃(t) ×


∏

p∈P

Bag(C̃(p))


 −→ IR+
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If pri[t] > 0, t is immediate and w[t][c̃, m̃] represents the weight of t. The
firing probability of t(c) in m is:

w[t][c̃, m̃]∑

(t′,c′)

w[t′][c̃′, m̃]
avec pri[t′] = pri[t] et m[t′(c′)〉

If pri[t] = 0, t is timed and w[t][c̃, m̃] represents the mean firing rate of any
instance of t(c) enabled in m.

3.3. Modelling a multiprocessor system

P 1 P M 1 C M 1

P B LB

. . .
P n P M n C M n

P B LB

G B

Figure 4: A multiprocessor system with private and common memories

In this section, we present a detailed example of a multiprocessor system
modeled with stochastic well formed Petri net. Interests of this example are
threefold:

• it provides an overview of the modelling process with stochastic well
formed Petri nets;

• it allows for comparing sizes of the symbolic graph and the reachability
graphs;

• it was used in a study to find a stochastic Petri net the reachability graph
of which would be an aggregated version of the initial graph. This analysis
is rather difficult and would probably not be generally applicable to more
complex modelling; with the symbolic graph, the modeler gets the same
reduction ratio effortlessly!

The multiprocessor architecture analysed in this example [Ajm 84, DUT 89,
DUT 91] is shown in figure 4. Each processor pi owns a local memory made
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up of two parts, a private memory (PMi) and a common memory (CMi). The
private memory may only be acceded by its processor through its private bus
(PBi). The common memory may be reached by all processors of the system.
The processor pi reaches the common memory (CMi) through its private bus
and its local bus (LBi). Other processors access this memory through the
global bus (GB) and through the local bus.

Access conflicts arise when using either GB or local buses (and common
memories). A processor is suspended when it tries to get an already used
resource. We assume that external accesses to common memories have priority
against local accesses and cause their preemption. We can describe the global
behavior of the system as follows: processors alternate between duty periods
involving only private memory accesses (so called CPU burst), and duty periods
with common memories accesses. To simplify the exposition, we assume that
the system is made up of n identical processors.

To build the SWN model, it is interesting to enumerate the possible states
of a processor:

• ACTIVE the processor works with its private memory;

• LOCAL the processor works with its common memory;

• DISTANT the processor works with another common memory;

• WAITING the processor waits for the global bus;

• BLOCKED the processor waits for accessing its common memory.

The behavior of this system is described by the SWN (figure 5). There
is only on color class, the class P of processors (sets pi, PMi, CMi). X et Y

denote processor variables.

Places represent the states of the processors. Run holds one token per pro-
cessor in state ACTIVE (hence the S term, which corresponds to one token
for each color). In the same way, ExtMemAcc and Queue represent respec-
tively states DISTANT and WAIT . The place OwnMemAcc represents either
state LOCAL, or state BLOCKED depending on whether there is or not a token
with same color in the place Mem. A probabilistic choice between private,
local or external accesses is modeled by the immediate transitions in conflict
ReqPrivMem , BeginOwnAcc et ReqExtAcc.

In this last case, the variable Y represents the choice of a common external
memory (6= X). At last, the place ExtBus represents the availability of the
global bus.

Even if this net is correct and easily understood, it is not for sure the
most compact one. For instance, the three conflicting immediate transitions
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Figure 5: Initial stochastic well formed Petri net of the multiprocessor system

S

S

Act ive

Beg inOwnAcc EndOwnAcc

ReqExtAcc Queue BeginExtAcc EndExtAcc

ExtBus

Ex tMemAcc

M e m

O w n M e m A c c

X

X

<X,Y>
Y

Y
<X,Y>

[X <> Y]

X

X
X X

XX

X X

Figure 6: Simplified stochastic well formed Petri net of the multiprocessor
system
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may by pre-agglomerated with the exponential transition MemReq applying a
reduction rule which preserves the qualitative and quantitative behavior of the
net [HAD 89]. Moreover, the exponential transition resulting from the fusion of
MemReq and ReqPrivMem may be discarded since its firing does not modify the
state of the system. Finally, the external memory choice may be delayed until
firing of the transition BeginExtAcc. This transformation is justified because
the marking of the place Mem holds all the processors when the place ExtBus

is marked. This domain reduction of the place Queue leads to a significant
reduction of the state space.

Applying all the simplifications, we finally get the net of figure 6 with six
places:

• Active holds tokens of processors in state ACTIVE ;

• Queue holds tokens of processors in state WAITING;

• ExtMemAcc holds pairs (processor, common memory) representing cur-
rent external accesses. With only one global bus, there is at most one
token in this place.

• OwnMemAcc holds tokens of processors in state LOCAL or in state BLOCKED ,
the last ones being distinguished by no corresponding token in the place
Mem .

• Mem holds common memories not used by an external processor.

• ExtBus with neutral domain, holds a token when GB is available.

Let us now have a look at the stochastic parameters. The transition BeginExtAcc

is immediate since bus arbitration and bus release durations are negligible.
Moreover, we assume that CPU burst an common memory accesses time are
independent random variables with exponential distributions. The external
memory choice is equi-distributed (probability 1

n−1 ) as the resolution of con-
flicting global bus accesses. This leads to weight 1 for all instances of the
immediate transition BeginExtAcc. Quantitative parameters of our model are:
n, the number of processors, 1

λ
, the mean time of a CPU burst period (λ is

the rate of the transition EndOwnAcc) and 1
µ

the mean common memory ac-
cess time (µ is the rate of the transition EndExtAcc). An important auxiliary
parameter ρ = λ

µ
represents the load ratio of the system.

4. From the symbolic graph to Markovian aggregation

Since we deal with a semi-Markovian process and we want to apply the
aggregation technic (valid for Markov chains) we proceed in two steps.
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• We focus on the embedded chain at changing state times, as defined in
chapter 9. We prove that this chain may be aggregated and that its
aggregated version is isomorphic to the symbolic graph.

• Then we prove that sojourn times in a symbolic marking do not depend
on the ordinary marking which concludes the proof.

For the computation of the parameters of the aggregated chain, we use
formulae on cardinalities of the symbolic arcs and of the symbolic markings.
Same formulae provide sojourn times.

4.1. Verification of the aggregation condition

We denote by P the state transition matrix of the embedded Markov chain
of the semi-Markovian process associated to the SWN.

Theorem 8 (Aggregated Markov chain of a SWN) Let C be the embed-
ded
Markov chain of a stochastic well formed Petri net. The symbolic markings
partition of the state space satisfies the the aggregation condition.

Proof

By definition, pm,m′ =

∑
t(c),m[t(c)〉m′ w[t](c,m)∑

t(c),m[t(c)〉
w[t](c,m)

is the jump probability from m

to m′.

Let m̂ and m̂′ be two symbolic markings. We have to show that:

∀m1, m2 ∈ m̂,
∑

m′∈m̂′

pm1,m′ =
∑

m′∈m̂′

pm2,m′

Let us first show that, for an admissible permutation s and for two markings
m1 ∈ m̂, m′ ∈ m̂′, pm1,m′ = ps.m1,s.m′ (s.m stands for the image of m by s).

We know that

• in a well formed Petri net, m1[t(c) > m′ iff s.m1[t(s.c) > s.m′;

• w[t](c, m1) depends only on the static subclasses composing c and on the
static subclasses to which dynamic subclasses of m1 belong. Since static
subclasses are invariant through admissible permutation,

w[t](c, m1) = w[t](s.c, s.m1)
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Equities below are then valid since summation indexes are interrelated with
s and because interrelated summation terms are equal.

pm1,m′ =

∑
t(c),m1[t(c)〉m′ w[t](c, m1)∑

t(c),m1[t(c)〉
w[t](c, m1)

=

∑
t(s.c),s.m1[t(s.c)〉s.m′ w[t](s.c, s.m1)∑

t(s.c),s.m1[t(s.c)〉 w[t](s.c, s.m1)
= ps.m1,s.m′

Let m1, m2 ∈ m̂. By definition, there is an admissible permutation s such
that m2 = s.m1. Applying the previous result, we get:

∑

m′∈m̂′

pm1,m′ =
∑

s.m′∈m̂′

ps.m1,s.m′ =
∑

s.m′∈m̂′

pm2,s.m′ =
∑

m′∈m̂′

pm2,m′

The first equality derives from the previous result and we get the last equality
permuting indexes of the sum with s−1. Hence, we have got the aggregation
condition. ♦

We supplement this result with the equi-probability of the ordinary mark-
ings of a symbolic marking in the stationary distribution. This allows us to
compute, if needed, the steady-state probability of an ordinary marking from
the probabilities of the aggregated chain.

Theorem 9 (Equi-probability inside a symbolic marking)
Let C be the embedded Markov chain of a stochastic well formed Petri net.
If C is ergodic, then all markings of a tangible symbolic marking have same
steady-state probability.

Proof
Let m1, m2 ∈ m̂. By definition, there is an admissible permutation such that
m2 = s.m1. Hence, we have:

∑

m′∈m̂′

pm′,m1 =
∑

s.m′∈m̂′

ps.m′,s.m1 =
∑

s.m′∈m̂′

ps.m′,m2 =
∑

m′∈m̂′

pm′,m2

for the first equality comes from the intermediate result of the previous proof
and we get the last equality permuting indexes of the sum with s−1. We have
got the sufficient condition of proposition 4, which concludes the proof. ♦

We have now to go back to the semi-Markovian process with the help of
sojourn times.
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Theorem 10 (Equality of sojourn times) All markings of a tangible sym-
bolic marking of a stochastic well formed Petri nethave same sojourn time.

Proof
Let m1 be an ordinary marking,

1

sjtime(m1)
=

∑

t(c),m1[t(c)〉

w[t](c, m1) =

∑

t(s.c),s.m1[t(s.c)〉

w[t](s.c, s.m1) =
1

sjtime(s.m1)

As for the first theorem of this section, above equalities are valid since summa-
tion indexes are interrelated by s and since interrelated terms of the summation
are equal. ♦

We denote by sjtime(m̂) = sjtime(m) the sojourn time of any marking m of
the tangible marking m̂.

4.2. Computation of the parameters of the aggregated chain

The SWN model is interesting because it also allows us to compute the
parameters of the aggregated chain defined by the symbolic reachability graph,
from the definition of the net and from this graph. Since we use the embedded
chain method, it is sufficient to show how to compute the coefficient p̂

m̂,m̂′

of the transition probabilities matrix of this chain and sjtime(m̂), the sojourn
time in an ordinary marking of the tangible marking m̂.

In the following, we denote by m̂[t(λ, µ)〉 a symbolic firing and by m[t(c)〉
any of the ordinary firings corresponding to the symbolic firing.

By construction, all ordinary firings denoted by a symbolic arc drop on
the same static subclasses in the sense of definition 5. Likewise, all ordinary
markings of a symbolic marking drop on the same static partition in the sense
of definition 6.

Hence, the stochastic parameter of the ordinary firing w[t][c̃, m̃] does not de-
pend of the choice of the ordinary firing and derives directly from the symbolic
marking and from the symbolic firing. We denote it by ŵ[t](λ, µ, m̂).
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Expressions of the coefficients of the matrix of the embedded aggregated
chain and the sojourn time are then given by the formulae:

p̂
m̂,m̂′ =

∑
〈t,λ,µ〉,m̂

〈t,λ,µ〉
−→ m̂′

ŵ[t](λ, µ, m̂)|m̂
〈t,λ,µ〉
−→ |

∑
〈t,λ,µ〉,m̂

〈t,λ,µ〉
−→

ŵ[t](λ, µ, m̂)|m̂
〈t,λ,µ〉
−→ |

sjtime(m̂) =
1

∑
〈t,λ,µ〉,m̂

〈t,λ,µ〉
−→

ŵ[t](λ, µ, m̂)|m̂
〈t,λ,µ〉
−→ |

where the second formula applies only to tangible symbolic markings and where

|m̂
〈t,λ,µ〉
−→ | is the number of colored firings from a fixed marking of m̂, repre-

sented by the symbolic instanciation 〈t, λ, µ〉. But, we show [DUT 91, CHI 93a]:

|m̂
〈t,λ,µ〉
−→ | =

h∏

i=1

mi∏

j=1

card(Zj
i )!

(card(Zj
i ) − µ

j
i )!

where h is the number of unordered classes, mi is the number of dynamic
subclasses of Ci in the representation and µ

j
i is the number of instanciations in

Z
j
i .

Finally, if we want to get the steady-state probability of an ordinary marking
m, we simply have to divide the probability of its symbolic marking with the
cardinality of the latter which is:

1

|S(m̂)|

(
h∏

i=1

si∏

q=1

|Ci,q|!∏
d(Zj

i
)=q

card(Zj
i )!

)
n∏

i=h+1

v(i)

with si the number of static subclasses of Ci, v(i) = |Ci| if mi > 1 and si = 1,
and 1 otherwise and S(m̂) the admissible permutations of the symbolic marking
m̂ that is the number of permutations defined on dynamic subclasses leaving
invariant the symbolic marking (see [DUT 91] for more details).

4.3. Performance indices of the multiprocessor system

We apply the technic just described to our multiprocessor system. We
choose two significant indices:

• a the mean ratio of actove processors with respect to the total number of
processors, given by the formula

a =
1

n

∑

m̂

π
(a)[m̂].

∑

Z
j

1∈m̂(Active)

card(Zj
1)
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n ρ |TSRS| |TRS| a u

2 0.2 6 10 0.6752411 0.27009645
0.5 0.4285714 0.42857145
1.0 0.2608695 0.52173917

5 0.2 36 1652 0.6227463 0.62274684
0.5 0.3444203 0.86105182
1.0 0.1882871 0.94143486

10 0.2 146 1772494 0.475696106 0.95139024
0.5 0.199762593 0.99881109
1.0 0.099993149 0.99992986

Table 1: Performance results of the multiprocessor system

where m̂ is tangible and belongs to the symbolic graph.

• u the mean utilization of the global bus, given by the formula

u =
∑

m̂[ExtBus]=0

π
(a)[m̂]

where m̂ is tangible and belongs to the symbolic graph.

Results, computed with the GreatSPN software [CHI 95], are presented in
table 4.3. TSRS is the Tangible Symbolic Reachability Set and TRS is the
Tangible Reachability Set of the net. We note that the increase of the symbolic
graph size is almost linear with respect to the number of processors whereas
the reachability graph reaches nearly 2 millions of states for 10 processors.
Numerical results confirm that the global bus is very quickly the bottleneck
of the system. Hence, it would be interesting to supplement these results by
varying the number of global buses.

5. Conclusion

Markovian aggregation methods reduce the size of the Markov chain to be
solved to get performance indices of discrete event systems. stochastic well
formed Petri nets take advantage of Markovian aggregation for systems mod-
eled with stochastic Petri nets and with behavioral symmetries. Taking these
symmetries into account in the definition itself of colored nets, we have devel-
oped efficient resolution methods, that is to say without computing the non
aggregated Markov chain. With the help of the symbolic reachability graph
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built form the description of the well formed net, we are able to define and an-
alyze an aggregated Markov chainof the Markov chain of the colored stochastic
Petri net. Moreover, the states of each aggregate, a set of colored markings,
are equiprobable. The reduction ratio of the size of the studied Markov chain
id obviously related to the symmetry level in the system, and may be very high
as shown by a lot of examples. In the next chapter, we present the tensorial
approach the goal of which is also to reduce the resolution complexity of the
Markov chain, and we show how to combine these two methods.
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