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Tensor methods and stochastic Petri nets

Serge Haddad , Patrice Moreaux1

1. Introduction

To get the stationary distribution of Markovian models we have to solve
a system of equations whose the number of equations and unknowns equal
the number of states of the Markov chain. Various methods allow us to
get this distribution by lowering the computation complexity. For a specific
structure of Petri net (studied in chapter 9), the stationary distribution admits
a product-form representation that we can compute form the invariants of the
net. With stochastic Petri nets, (chapter 10), we substitute an aggregated
chain to the Markov chain. The stationary distribution of this new chain leads
straightforwardly to the non aggregated distribution. We present now a method
based on systems decomposition.

As we show in section 2, the applicability conditions of this method are
expressed at the Markov chainlevel: the state space is a Cartesian product of
subspaces and transitions between states are either locales (modifying only one
component of the state), or else synchronized (in the converse case). Then, the
infinitesimal generator may be written as an expression operands of which are
matrices indexed by states of the subspaces and operators are the tensor sum
and the tensor product. Tensor2 algebra properties ensure that the generator
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2 Petri Nets

matrix product may be obtained from submatrices only. Hence, product based
iterative resolution methods may be used without computing the generator.
Time and memory complexities are then linear with respect to the sizes of the
subspaces.

This method was first proposed by [PLA 85, PLA 91] for stochastic au-
tomata networks (SAN), an model equivalent to composition of Markov chains.
Then, it was extended to synchronous composition of generalised stochastic
Petri nets (GSPN) by [DON 94] (i.e. with transitions fusion). The main ad-
vantage of the GSPN model is the factorization of synchronized transitions
of the Markov chain on the net transitions reducing significantly the size of
the tensorial expression. Whatever the application model, the Cartesian prod-
uct of the subspaces is always super-space of the state space which minimizes
complexity savings (in a substantial way in worst cases). To apply the tenso-
rial method to asynchronous composition of nets (through place fusion), each
subnet must have an abstract view of the other subnets [BUC 93] to build fi-
nite subspaces. Following this idea, we dive the state space into an union of
Cartesian products of subspaces which leads to a decomposition of the gen-
erator in blocks of submatrices where each submatrix is defined by a tensor
expression [CAM 97]. This decomposition benefits from tensor algebra at the
submatrix level and allows us to cope with the ratio the state space and its
super-space. We have the same decomposition of the state space of a stochas-
tic Petri net with phase type distribution (PH-SPN) between markings and
descriptors of the residual distributions [DON 98]. In this case, we show that
the state space is exactly the union of the Cartesian products. This result
leads to regard PH-SPN as one of the most efficient solution to model general
distributions. After presenting the tensor analysis of stochastic Petri nets in
section 3, we study in the last section the combination of aggregation and ten-
sor decomposition with the help of the stochastic well formed Petri net model.
The two approaches are not orthogonal and two difficulties must be overcome
before using them simultaneously. On the on ehand, modeling the system may
force the designer to choose between a stochastic well formed Petri net (SWN)
and a SPN composition. On the other hand, if the modeling comes out on
SWN composition, most often the tensor composition of the aggregated chains
of the SWN is not an aggregation of the chain of the composed SWN. There-
fore, the authors of this chapter, have exhibited sufficient syntactic conditions
for asynchronous and synchronous composition of SWNs.

For simplicity, we restrict ourself to compute steady-state distribution of
the models. However, the applicability of these methods extends most often to
the transient analysis. At last, since some results are rather technical, we refer
the reader to the references for a detailed mathematical exposition.
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2. Synchronized Markov chains

The principle of decomposition methods consists of exploiting the distinc-
tion between local actions and actions with global impact, translating this
distinction at the level of the matrices of the Markov chains of the stochastic
processes modeling entities carrying out these actions.

In this part, we study a Markov chain X with values in the space S =∏K
k=1 Sk, each3 Sk being of cardinality nk. Hence X = (X1, X2, . . . , XK). we

order S with respect to the lexicographical order of the components: a state
s = (s1, . . . , sK) of S, component sk of which has index ik, has for global index
the integer

i =

K−1∑

k=1

(ik − 1)




K∏

j=k+1

nj


 + iK

In the following, we identify states and integers when no confusion may arise
and i is identified to its writing (i1, . . . , iK) in the “multi-base” (n1, . . . , nK)
[DAV 81]. Also, the projection of i on Sk is denoted by ik (by extension).

Then, for each transition τ of X , we can identify the involved components
in the modification of the state, named the domain of τ , and the others compo-
nents. This allows us to distinguish transitions modifying only one component
k without taking other components into account (subspace Sk local event),
from the transitions modifying several components and/or expecting a given
state in several components (synchronized event in several Sk).

Definition 1 (Synchronized continuous time Markov chain) A
synchronized continuous time Markov chain (CTMC) is a CTMC on a space

S =
∏K

k=1 Sk. A transition τ is fully defined by its rate λ(τ), its domain
dom(τ) =

∏
k∈K(τ)={i1,...,im} Sk, its input constraints si1 , . . . , sim

and its out-

put constraints s′i1 , . . . , s
′
im

. For all states s and s′, s τ
−→s′ iff

• the projections of s and s′ on dom(τ) are equal to its input and output
constraints;

• the projections of s and s′ on the complementary domain of τ (
∏

k∈K\K(τ) Sk)
are equal.

A transition τ is local (to Xk) iff its domain is reduced to only one subspace
(Sk). A transition τ is a synchronisation transition iff it is not local.

3For ease of writing, K denotes, depending on the context, the integer K, as here, or the
set of the K integers {1, . . . , K} if no confusion may arise.
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Hence, a local transition may modify only one component of a state. Let
us note that the Q[s, s′] element of the generator of X is then, for s 6= s′:
Q[s, s′] =

∑
τ,s

τ

−→s′
λ(τ).

In the following, all matrices are real valued. We denote by Mn,p the set
of n × p matrices and we set Mn = Mn,n.

2.1. Tensor product

The tensor product allows us to get a tensor expression of the transition
probabilities matrices of discrete time processes with K components. But, it
also translates at the generators level of the CTMC of the continuous time
processes, the impact of of synchronization transitions which produce simulta-
neously state modifications in several subsystems. This is mainly this property
that we will use since we will study continuous time models.

Definition 2 (Tensor product) Let be A ∈ Mn1,p1 and B ∈ Mn2,p2 . The
tensor product (

⊗
) of A and B is the matrix C ∈ Mn1n2,p1p2 :

C = A
⊗

B with cij = ai1j1bi2j2

where i = (i1, i2) in the multi-base (n1, n2) and j = (j1, j2) in (p1, p2).

Example 1 If

A =

(
a11 a12 a13

a21 a22 a23

)
and B =




b11 b12

b21 b22

b31 b32

b41 b42




A
⊗

B =




a11b11 a11b12 a12b11 a12b12 a13b11 a13b12

a11b21 a11b22 a12b21 a12b22 a13b21 a13b22

a11b31 a11b32 a12b31 a12b32 a13b31 a13b32

a11b41 a11b42 a12b41 a12b42 a13b41 a13b42

a21b11 a21b12 a22b11 a22b12 a23b11 a23b12

a21b21 a21b22 a22b21 a22b22 a23b21 a23b22

a21b31 a21b32 a22b31 a22b32 a23b31 a23b32

a21b41 a21b42 a22b41 a22b42 a23b41 a23b42



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The definition of the tensor product is straightforwardly extended to K
matrices:

K⊗

k=1

Mk = M1

⊗
· · ·

⊗
MK = M with mij =

K∏

k=1

mikjk

where i = (i1, . . . , iK) in (n1, . . . , nK) and j = (j1, . . . , jK) in (p1, . . . , pK).

The fundamental interest in tensor expression of the generator Q of a
Markov chain is the saving in required memory to store Q. If matrices Mk

and M are dense, saving is obvious (
∑

n2
k versus

∏
n2

k) and it remains impor-
tant in the case, frequently encountered in the SPN context, of sparse matrices,
or even very sparse. However, this saving involves more complex solution algo-
rithms for π.Q = 0 than for direct representations of Q.

Computation of π.A
⊗

B

Due to the size of Q, iterative resolution methods of π.Q = 0 (with a
sparse representation of Q) are the only usable ones. Among these methods,
we mainly use (ordered by increasing convergence speed in most cases) the
power method, the Jacobi and the Gauss-Seidel algorithms [STE 94], which do
not modify Q. For instance, with the power method, the nth step computes
π

(n+1) = π
(n)(I + 1

β
Q) where β > maxi |qi,i|. In all these techniques, the key

point is the efficient computation of vector-matrix products, in the shape of
x.

⊗K
k=1 A(k) . Two kinds of methods are used.

The first one, introduced in [PLA 85] is based on two technical elements.
On the one hand, permutations denoted by σk (with associated matrices Mσk

)
called “perfect shuffles” [DAV 81] reorder vector components. On the other

hand, the relation x.
⊗K

k=1 A(k) = x.
∏K

k=1 MT
σk

.(Ink

⊗
A(k)).Mσk

transforms
a K terms tensor product into K ordinary products (nk = n

nk

and MT
σk

is the

transpose of Mσk
).

The second method translates into the code, the relation ai,j = a
(1)
i1,j1

a
(2)
i2,j2

. . . a
(K)
iK ,jK

using expression of the indexes i and j in the multi-base (n1, . . . , nK):
i = (· · · ((i1 − 1)n2 + (i2 − 1))n3 · · ·)nK + iK . Algorithm 1 corresponds to this
method for the computation of the product x.A

⊗
B. The body of the external

loop (on i) computes the contribution of xi to y. Each of the internal loops
completes the computation of the product ai1,j1bi2,j2 . The most internal loop
finishes the computation multiplying with xi. At the same time, each of the
two loop levels contributes to the computation of the index l2 of the component
of the vector y to be modified.
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Algorithm 1 (Computation of y = x.A
⊗

B)

begin

Initialize y to 0
For i from 1 to n = n1.n2 do /* i = (i1, i2), j = (j1, j2) */

For each j1 such that ai1,j1 6= 0 do

l1 ← (j1 − 1).n2 /* also avoid the product in the internal loop */
c1 ← ai1,j1 /* speed up accesses in the internal loop */
For each j2 such that bi2,j2 6= 0 do

l2 ← l1 + j2 − 1
yl2 ← yl2 + xi.c1.bi2,j2

done

done

done

end

Complexity analysis of these methods [BUC 97, FER 98] show that, as a
general rule, the additional cost of the tensor methods increases with the spar-
sity of the matrices (with models derived from SPN, matrices are always sparse,
and sparsely stored). More precisely, let us denote by η(M) the number of non

null elements of a matrix M and αk = η(A(k))
nk

the filling ratio of A(k). For sim-

plicity, we assume that all αk have the same value α. The complexity (number
of floating point operations) of the computation of the product y = x.A (with

A =
⊗K

k=1 A(k)) is in the order of O(η(A)) = n.αK when A is stored ex-
plicitly. If A is stored implicitly through matrices A(k), the complexity of the
direct computation of y is in the order of O(K.η(A)). We can check that the
complexity of the perfect shuffle method is in the order of O(n.K.α). Type
two methods have a complexity in O(K.η(A)) for very sparse matrices, and in
O(η(A)) for sparse matrices. Thus, for sparse matrices, or even very sparse ma-
trices, the additional cost of tensor decompositions for the resolution remains
low.

2.2. Tensor sum and continuous time Markov chains

The tensor sum allows us to express the generator of the CTMC of K com-
ponents processes, with those of its components. It translates the autonomous
behavior of the components resulting from local transitions.

Definition 3 (Tensor sum) Let A ∈ Mn and B ∈ Mp be two square ma-
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trices. The tensor sum (
⊕

) of A and B is the matrix C ∈ Mn.p:

C = A
⊕

B = A
⊗

Ip + In

⊗
B

Hence:

cij =





ai1j1 + bi2j2 if i1 = j1and i2 = j2
bi2j2 if i1 = j1and i2 6= j2
ai1j1 if i1 6= j1and i2 = j2
0 if i1 6= j1and i2 6= j2

Example 2 If

A =

(
a11 a12

a21 a22

)
and B =




b11 b12 b13

b21 b22 b23

b31 b32 b33




A
⊕

B =




a11 + b11 b12 b13 a12

b21 a11 + b22 b23 a12

b31 b32 a11 + b33 a12

a21 a22 + b11 b12 b13

a21 b21 a22 + b22 b23

a21 b31 b32 a22 + b33




We also extend the tensor sum to K matrices Mk:

K⊕

k=1

Mk =

K∑

k=1

⊗

1≤k′<k

In
k′

⊗
Mk

⊗

k<k′≤K

In
k′

=

K∑

k=1

Ilk

⊗
Mk

⊗
Iuk

with: lk =
∏

k′<k nk′ and uk =
∏

k′>k nk′ .

Local transitions of a synchronized CTMC generate, in the expression of
the generator Q, a tensor sum rendering the independence of these transitions,
and each synchronization transition generates a tensor product rendering the
simultaneous modification of several components. The fundamental theorem
below is the base for structured descriptions of generators used for SANs and
composition of stochastic Petri nets.

Theorem 4 (Generator of a synchronized CTMC) Let X = (X1,. . . , XK)
be a synchronized CTMC and Ts be the set of its synchronization transitions.
The generator of X is

Q =

K⊕

k=1

Q′
k +

∑

τ∈Ts

λ(τ)

[
K⊗

k=1

Ck(τ) −
K⊗

k=1

Ak(τ)

]
[1]
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where Q′
k is the restriction of Q to local transitions of Sk and, for τ ∈ Ts, with

rate λ(τ), such that i
τ

−→ j:

Ck(τ) = Ak(τ) = Ink
if Sk is not in
the domain of τ

Ck(τ) = 1nk
(ik, jk) and Ak(τ) = 1nk

(ik, ik) otherwise and if τk(ik) = jk

where 1n(j, j′) is the Mn matrix all terms of which are null except the one
with index (j, j′) (equal to 1), and τk is the projection of τ on Sk (we identify
a state s with its index i and we identify its components sk with their index ik
in Sk).

Matrices Ink
“spread”, in Q, jumps in each Sk where τ produces a state modi-

fication. Matrices Ak(τ) ensure the diagonal compensation of the Ck(τ) such
that Q is a generator.

Proof
Translating the state modifications due to transitions of X , we get

Q =
∑

τ

λ(τ)

[
K⊗

k=1

Ck(τ) −
K⊗

k=1

Ak(τ)

]
.

Decomposing Q according to local and synchronization transitions, we get Q =
Ql + Qs. Ql refers only local transitions. Then, we group for each k these
transitions (termed k-local transitions):

Ql =
∑

k

∑

τ, k−local

⊗

k′<k

Ik′ .λ(τ). [Ck(τ) − Ak(τ)] .
⊗

k′>k

Ik′

We note that we can factorize the two tensor products and we then recognize
the tensor sum of the theorem. ♦

The most important interest of the fundamental theorem lies in the com-
putation of the steady-state solution (and also the transient solution) of the
continuous time Markov chain. Starting from [1], we can use a lot of numerical
solution methods of the equation π.Q = 0 exploiting this expression, without
explicitly computing Q. In contrast, we only use Q′

k,Ck and Ak matrices, gen-
erally far smaller than Q, without significantly increasing computation times
of the steady-state solution (see section 2.1).

Let us note that if the CTMC has no synchronization transition, we have
an independent CTMC composition and the expression [1] reduces to a tensor
sum.
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Principle of two levels methods

Theorem 4 applies when the state space is a subset of a Cartesian product
of local spaces. This result is extended in the following way. At a first level, a
super-set of the state space is partitioned with respect to an equivalence relation
R. Each equivalence class is then a Cartesian product of local subspaces.
Reordering states with respect to equivalence classes of R, Q may be seen as
a block (Q[m̂, m̂′]) matrix, where m̂ is the class of m. Each Q[m̂, m̂′] matrix
is then written in the form of a tensor expression analogous to [1].

During the nth iteration of the resolution with an iterative method, the

sub-vector π
(n+1)

m̂
of the product π

(n).Q is computed with the expression:

π
(n+1)

m̂
=

∑

m̂′

π
(n)

m̂′
.Q[m̂′, m̂]

Then, the tensor method applies to each term of this sum.

Including the state space in an union of Cartesian products noticeably re-
duces the number of fictitious states added to the effective state space. How-
ever, for a general model, it is difficult to exhibit an equivalence relation R
defined at the syntactic level. The reader may refer to section 3.3 for an appli-
cation example of this approach.

3. Tensor algebra and SPN

We can remark that in the expression [1], we have usually a very large
number of matrices Ck each having only one non null term. Hence, we look for
conditions on higher level models (stochastic automata networks, stochastic
Petri nets, . . .) so that their underlying generators have a tensor expression
with state transition factorization corresponding to the same high level event.

A tensor decomposition of states renders a system structure made up of
several interacting subsystems, each one having a more or less large behavioral
autonomy. The model is then built taking this structure into account with
conditions to be enforced to get a factorized tensor expression.

We detail below application of tensor methods to decomposable GSPN and
to PH-SPN.

The Petri net model is essentially a “flat” model and the reachability graph
is a priori and unstructured graph. Numerous approaches have devised struc-
turing methods for Petri nets to structure the reachability graph. Among them,
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composition of subnets allows us to take into account the two fundamental co-
ordination mechanisms between systems. We speak about decomposition into
subnets if we try conversly to composition, to define subnets of a global net.
From the Markovian models point of view, the two approaches are identical.
This is not the case at the structural level of Petri nets: composition is usually
more complex to define formally. Since we focus on tensor methods, we adopt
the decomposition point of view.

3.1. Synchronous decomposition of generalised stochastic Petri nets

p
11
 p
21


p
13
 p
12
 p
22


t
22
t
t
13


t
12


t
14


N
2
N
1


Figure 1: Synchronous decomposition of GSPN

Rendez-vous synchronization, or synchronous coordination, as the ADA
language rendez-vous, corresponds to an event arising simultaneously in the
sub-systems. In Petri nets, it is modeled by fusion of transitions of each sub-
net. Introduced by [DON 94], the synchronous decomposition corresponds to
a given partition of the places of the net into subsets P1, . . . , PK . Each subset
induces a classification of the transitions: a transition is k-local iff its entry
and output places are in Pk; a transition is termed a synchronization transi-
tion otherwise. For instance, in figure 1, the net is deocmposed through place
subsets P1 = {p11, p12, p13} and P2 = {p21, p22}, and the only synchronization
transition is t. So we define K subnets, each consisting of places Pk and of
all transitions and arcs bound to Pk. These subnets have common transitions
(the synchronization ones, t in the example) and they are called superposed
generalised stochastic Petri nets (SGSPN). We denote by TS the set of syn-
chronization transitions, TSk the transitions of TS which are in the kth subnet
and mk[t(k)〉m

′
k the fact that t, considered as a transition of Nk, is enabled in

mk and produces the marking m′
k.
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The interest of this decomposition is twofold. On the one hand, it allows us
to express the reachability set of the net as a subset of the Cartesian product
of the reachability sets of the K subnets, termed the potential reachability set
(PRS) of the net. Obviously, this presupposes that each subnet stays bounded
when it is studied in isolation. On the other hand, we can show, inspecting
possible firings, that the generator of the underlying continuous time Markov
chain of the net is a “submatrix” of a tensor expression involving only matri-
ces which may be computed in each subnet in isolation. Hence, we have the
following result.

Theorem 5 (Generator of the synchronous composition of GSPN)
[DON 94] The generator of the CTMC of the net S, synchronous composition
of the Sk, is a submatrix of

Q′ =

K⊕

k=1

Q′
k +

∑

t∈TS

w[t]

[
K⊗

k=1

Ck(t) −
K⊗

k=1

Ak(t)

]
[2]

with, if t /∈ TSk :
Ck(t) = Ak(t) = Ink

and if t ∈ TSk :

ck(t)mk,m′

k

= 1 if mk[t(k)〉m
′
k and 0 otherwise

ak(t)mk,m′

k

=

{ ∑
m′′

k
6=mk

ck(t)mk,m′′

k

if m′
k = mk

0 if m′
k 6= mk

and where matrices Q′
k are the elements of the generators of the CTMC of

tangible markings of the Sk in isolation, that is to say only taking into account
local transitions of Nk.

We see that firings of synchronization transitions are factorized to get a tensor
expression, elements of which are autonomously computable in each subnet.

Submatrix means that non null terms of Q for a given pair of states are
equal to those of Q′ and that if m is reachable in S, then q′m,m′ = 0 if m′ is
unreachable in S. This theorem may be extended to GSPN with immediate
transitions which are not synchronization transitions: coefficients are modi-
fied to take into account immediate firing sequences which may occur after a
synchronized firing.

The schema of the elementary computation algorithm of a performance
measure is then the following (RGk is the reachability graph of the subnet Sk):

1. for k = 1, . . . , K, compute RGk
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2. for k = 1, . . . , K, compute the matrix Q′
k from RGk, using only local

transitions

3. for each t ∈ TS
for k = 1, . . .K, compute Ck(t) and Ak(t) from RGk:

compute ck(t)mk,m′

k

compute ak(t)mk,m′

k

as the diagonal compensation

of the (ck(t)mk,m′

k
)

4. compute the performance measures via the tensor expression of Q′

This last calculus never uses directly Q′, but in contrast matrices Q′
k, Ck

and Ak.

In the general case, Q′ has more non null terms than Q for two reasons:
on the one hand, building of the TRG of Sk generates markings which are not
projection of a global reachable marking; on the other hand, these unreachable
local markings may build up global states (falsely) enabling a synchronization
transition.
This problem of the deviation –which may be very large– between the potential
and the actual reachability sets is at the present time handled in two ways. At
the marking analysis level, we define “macro-views” of the subnet markings.
Then, we can apply the so called two levels method that we detail below for
the asynchronous composition, which is the most suited context for this ap-
proach. At the level of numerical resolution methods for π.Q = 0, the problem
is to design algorithms allowing an efficient encoding of the reachability set
in the potential reachability set [KEM 95, KEM 96] or to directly store the
reachability set exploiting its structure [MIN 99].

Works carried out these last years on application of tensor decomposition
methods to GSPN have virtually eliminated problems on the generator storage.
These studies show that the algorithmic problem is now mainly the storage of
the solution vector (vector of floating numbers with as many components as
tangible markings, that is some around ten millions on a workstation today)
and the possibility to use someone or other iterative method to solve large
linear systems [CIA 99].

In most of the studies, the synchronization transitions are not immediate.
This corresponds to the fact that an immediate synchronization transition will
not be “visible” in the generator of the CTMC of the net. It is still possi-
ble [CIA 96] to get a tensor expression, but significantly more complex, with
immediate synchronization transition.
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3.2. Asynchronous decomposition of generalised stochastic Petri nets

p
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t
x2


t
22


t
21
N
1
 N
2


Figure 2: Asynchronous decomposition of GSPN

The asynchronous coordination, such as sending a message from the sub-
system A to the subsystem B, models that an event arises in B, after aris-
ing in A. This kind of coordination is translated in Petri nets, by interface
places receiving tokens from transitions controlled by other subnets. Thus, the
asynchronous decomposition, studied initially by [BUC 92] corresponds to par-
tition the set of transitions of the net into subsets T1, . . . , TK . Each subset
leads to a classification of places: a place is k-local iff it is only connected
to transitions from Tk. A place is an interface place in the other case. A
transition with output places being interface places of other subnets is a syn-
chronization transition. For instance, in figure 2, the net is decomposed via
subsets T1 = {tx1, t12, t13} and T2 = {t21, t22, tx2} of transitions. The two in-
terface places are p21 and p12 and the two synchronization transitions are tx1

and tx2. We define in this way K subnets, each one comprising the transitions
of Tk, the k-local places and the corresponding arcs. In most of the proposed
models, interface places connected to Tk are added, with associated arcs, to
the kth subnet.

We notice immediately the fundamental difference with the synchronous
composition: the subnets cannot be studied in isolation since they exchange
tokens with other subnets. To take advantage of tensor methods, we are lead
to introduce the notion of “environment” of a subnet summarising interactions
of this subnet with the remainder of the net. But this environment may just
be defined as soon as we have, for each subnet, a subnet summing up its own
behavior, what we call an “abstract view” of a subnet. Hence, the approach
is the following: for each subnet, we define an abstract view; we then build
K extended subnets N k made up of a subnet Nk and of the abstract views of
the K − 1 other subnets (see figure 3 representing the extended subnet N 1);
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Figure 3: Extended subnet of the subnet N1 of figure 2

we study each extended subnet in isolation; the reachability set of the initial
net is in bijection with a subset of the Cartesian product of the reachability
sets of the Sk. The generator of the initial net may also be written as a tensor
expression using elements of the Sk. In practice, we get abstract views in a
structural way [CAM 97] or a posteriori from the markings [BUC 93].

The notion of abstract view obviously leads to reduction of the potential
state space thanks to two levels methods introduced in section 2. The principle
is to build, generally with the help of abstract views of the subnets, an abstract
global view of a marking which leads to a partition of the markings of the net
into subsets owning the same abstract global view.

3.3. Tensor analysis of phase-type Petri nets

Another application domain of tensor methods to SPN consists of
phase-type distribution nets (see chapter 9) with transitions having various se-
mantics (multiple/single-server, enabling/age memory, etc.). In this case, due
to phase-type distributions, the Markov chain has a much larger size than the
one of the reachability graph. Tensor methods allows us to maintain a reason-
able ratio between these two sizes. Let us remain that a Markovian state is
made up of a marking of the net and of the set of states of the phase-type dis-
tributions (descriptors), that is a tuple (m, d1, . . . , dK) if we have K phase-type
distribution transitions.

The idea [DON 98] is to apply a two levels method (c.f. theorem 4). The
abstract view of a Markovian state, termed extended marking, consists of its
marking and of the number of interrupted clients in each service of phase-type
distributions (there may be several number of interrupted clients for the same
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marking). To this end, we build the extended reachability graph which holds
transitions between extended markings.

It must be emphasized that, in this specific case, we get under slightly
restrictive technical conditions not detailed here, the exact description of the
Markovian state space denoted by MS:

MS =
⊎

ei∈EI

[ei] × D1(ei1) × · · · × DH(eiH) [3]

where ei is an extended marking, [ei] is the set of corresponding markings (of
the net), EI is the set of all extended markings and Dh(eih) is the set of possible
states of the phase-type distribution of the transition th under conditions ei.

Moreover, and this is also noticeable, we can derive the ergodicity properties
of the continuous time Markov chain of the net from its structural characteris-
tics.

At last, the block matrices of the generator of the net are tensor expressions
made up of terms which can be computed from each subspace. The reader will
find exact expressions in [DON 98].

4. Tensor decomposition of stochastic well formed Petri nets

To extend the application sphere of performance evaluation methods to more
and and complex systems, it is appealing to combine Markovian aggregation
methods and tensor decomposition methods. In this way, we hope to get an
aggregated CTMC being a “tensor composition” of smaller aggregated CTMC.
The phases of the method are then:

• build a decomposition of the state space E, giving E ⊆ E′ =
∏K

k=1 Ek;

• use an aggregation method satisfying the strong aggregation condition

(see chapter 10) for each of the CTMC (Ek,Qk), leading to Ẽk = {E
(j)
k | j =

1, . . . , nk} with generators Q̃k;

• build the product (Ẽ′ =
∏K

k=1 Ẽk, Q̃ = f(Q̃1, . . . , Q̃K)) of the aggregated

CTMC and define the aggregated image Ẽ ⊆ Ẽ′ of E.

Unfortunately, as a general rule, (Ẽ′, Q̃) is not a super-set of an exact aggre-
gation of (E,Q). So, we are led [HAD 95, HAD 96b] to find conditions under
which such a combination of methods is feasible. In this section, we explain
the problems raised by this approach and the results obtained.
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Figure 4: GSPN and SWN of a virtual token ring

4.1. Problems

Two fundamental problems arise for a combination of these methods: the
first one regards the specification of the studied system and the second one
concerns the used resolution method.

4.2. The specification problem

If the system to be modeled owns synchronization between the same kind of
entities (server processes for instance), we can build a “synchronized product”
of submodels, each one modeling the behavior of one entity; but, since we model
each entity with one submodel, there is no entity class and we cannot introduce
aggregation.

An elementary example of this kind of situation is a system of sites running
sequential code with a critical section the execution of which is allocated in
a cyclic way to each site (virtual token ring). The GSPN and the SWN of
such a system (with 4 sites) are presented in figure 4: starting from the Idle
state, each site execute an initial work (transition t1), then waits for the mutual
exclusion token to go on (transition t2). When the critical section is over, the
site releases the mutual exclusion token (transition t4) and goes back idle. In
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Figure 5: Synchronous composition of SWN with memory

the SWN model, we have only one base class, Cs, for the sites. The marking S
means that all sites are idle in the initial state and the marking Z1 (dynamic
subclass) shows that this place holds some token of the color class Cs.

As we see in this example, with Petri net modeling, synchronization between
objects of the same kind is translated by “folding” the uncolored net into a single
colored net. W note that we could also decompose the net in four GSPN (one
of them is drawn with thick lines) and an asynchronous composition.

We summarize this situation in the term internal synchronization, since
it is a matter of synchronization between objects of the kind. Conversely,
we will say that the system exhibits an external synchronization if there are
synchronization between entities of different kinds.

So, in the internal synchronization case, we have to choose between a model
decomposition into submodels (SAN or synchronized GSPN) and a possible
aggregation (SWN).

4.3. The resolution problem

A system with external synchronization may be modeled as a SWN N ,
synchronous or asynchronous composition of K SWN Nk: in this way, we hope
to make use of an aggregation at the level of each subnet and to apply the
tensor (de)composition for the global net.

Let us give an example of such a composition with a system built from
two subsystems: in each subsystem, the activity begins with the choice of the
kind of task to be done (represented by the class C); then, the task may be
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completed either in an autonomous way in each subsystem, or else jointly by
both, for the same kind of task in the two subsystems. The SWN of figure 5
is a model of this system. The net is the composition of two SWN N1 and N2

through t: tasks are carried out either autonomously in N1 through t12 (resp.
N2 through t22), or else, for the same kind of task (which is translated by the
same X function for arcs linking p12 and p22 to t) in both nets through t. The
color domain of p12 and p22 is the class C and the color domain of p11 and
p21 is the neutral color. The color domain of all transitions is C. We give in
figure 6 the symbolic reachability graph (SRG) of S and, in figure 7, the SRG
of S1, S2 and of their “synchronized product”, in an informal way.

The autonomous work in N1 (resp. N2) is translated in figure 6 by the
firing sequences (t11, t12) (resp. (t21, t22)). We also note that t is enabled in
only one symbolic marking (4) which represents markings with the same kind
of available objects in p12 and p22, while in the marking (5), p12 and p22 hold
different kinds of objects.

In contrast, in figure 7, we have only one “symbolic marking” (4’) with tokens
in p12 and p22: the relative identity of these tokens (defined by the firings of
t11 and t21) is lost and (4’) is the gathering of (4) and (5), which is a wrong
aggregation since (4) enables t but (5) does not.

We call such transitions (t), synchronization transitions with memory.

We state that, as a general rule, we cannot use a straightforward extension of
the composition of GSPN to solve the initial CTMC because the composition,
i.e. the sum of the graphs4 of the aggregates given by the symbolic reachability
graphs of the Sk is not an aggregation of the CTMC of the whole model sat-
isfying the aggregation condition of Kemeny and Snell [KEM 60] (chapter 10,
Proposition 5).

This situation is mainly due to the fact that the firing of a synchronization
transition generates modifications of markings which will forbid some admissi-
ble color permutations, that is to say, they will reduce the possible symmetries
in each subnet. We can say that the (stochastic) transition system must “mem-
orize” these firings, and a direct composition of such systems does not allow
it.

Let us emphasize that this memory problem is a general one and we en-
counter it with all models (SWN, SAN, GSPN, . . .): for instance, [PLA 85]
introduces auxiliary automata to store specific states of the system. In con-
trast, we wish not to modify the initial net to apply a decomposition.

At last, even if we succeed in defining a “synchronized product” of SWN,

4The sum of G1 = (V1, E1) and G2 = (V2, E2) is the graph G = G1 + G2 = (V1 × V2, E)
with ((u1, u2), (v1, v2)) ∈ E iff (((u1, v1) ∈ E1), and ((u2 = v2), or ((u2, v2) ∈ E2)), or
(((u2, v2) ∈ E2), and ((u1 = v1), or ((u1, v1) ∈ E1)).
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it remains to express the firing rate of external transitions from information
given by their SRG.

4.4. A tensor decomposition method for SWN

Figure 8 summarizes the approach we made us of, and places it in its context.
To compute performances measures of modeled systems, the basic method (left
branch of the diagram) computes the reachability graph of the net (arcs "G"
-Graph building-) et derives Q (arcs "M" -Markov chain-) from it.

The two methods, exposed above and in chapter 10 are:

• the tensor decomposition method (right branch of the diagram, with RGk,
Q′ );

• the aggregation method (SRG branch, Q̃) used by the SWN model.

The validity of the expressions of the new generator (Q̃, Q′) for these two
methods (arcs "C" -Consistancy-) has been established.

The proposed approach consists in combining aggregation and decomposi-
tion (central branch of figure 8). We have three points to study:

1. build modified SWN, that is to say extended, (denoted by Nk) of the
subsystems, allowing us to memorize the synchronization;

2. derive an expression of the generator Q
′
of the underlying CTMC of the

composition of the SRG (denoted by SRGk) of the (Sk), analogous to
the ones obtained for GSPN;

3. prove that this expression is a “super-matrix” of an aggregation of Q.

In this context, we have defined kinds of synchronous and asynchronous
compositions for which we give explicit building methods of the extended sub-

nets (point 1). We also get an expression of the generator Q
′

with adapted
matrices Ak(t) and Ck(t) for each case (point 2), and we prove consistency of
these expressions (point 3).

4.5. Application in the asynchronous case

For simplicity, we expose only the asynchronous case. We first present the
extension method of subnets: we clarify the structure of the synchronization,
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Figure 9: Example of asynchronous decomposition of SWN

and then, we point out how to build extended SWN which will be studied in
isolation. Next, we define syntactic conditions, that is to say at the structural
level of the net (color domains of places and transitions, arc functions, flows,
. . .), satisfied by many nets decomposable into subnets with some “autonomy”,
for which the tensor composition of aggregates may apply.

Finally, we give an overview of the computation algorithms and associated
consistency proofs. We refer the reader to [HAD 96a, HAD 97, MOR 96] for
detailed expositions of results presented below.

Here, we first have to build an extension of subnet allowing us both to
study it in isolation taking its environment into account, and to define an
(asynchronous) decomposition of subnets. This is done through the definition
of an abstract view of each subnet: each color class modeling entities “moving”
from one subnet to another one is called a global class and the abstract view
of a subnet Nk is made up of one place for each global class of Nk, and of the
set of transitions TSk modified accordingly.
Let us emphasize that this abstract view is formally defined, in contrast with
other works on this subject, and so it may be automatically computed, thanks
to symbolic partial flows (see chapter 7). The extension of a given Nk is then
Nk enlarged with the abstract views of all other subnets.
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Figure 10: Extension N 1 of the net N1 of figure 9

Figure 9 is an example of asynchronous composition of stochastic well formed
Petri nets. N is made up of three parts and models a client (local work) - server
(remote work) with a repair device (server repair). Clients are initially in the
local part (place p13) and servers are in the remote site (place p25). Clients
send requests neighbor paired (variables X and !X , the client class Cc is or-
dored). Requests are served at the remote site (transitions t21, t22 and t23)
by the servers (class Cs). A server may fail: in this case, it must be repaired
through two tasks in the repair site (transitions t31, t32 and t33).

Thus, the basic color classes are Cc and Cs and the color domains of places
and transitions (not given in the figure for clarity) are:
- Cc for p11, p12, p13, p21, p22, t11, t12 and t13;
- Cs for p25, p31, p32, p33, p34, t24, t31, t32 and t33;
- Cc × Cs for p23, p24, t21 and t22;
- Cc × C2

s for t23.

Figure 10 gives the extension N 1 of N1. We see that, in the abstract view of
N2, we have two places (p2c and p2s) for colors Cc and Cs. The corresponding
partial flows of N are:

f2c = Xc.p21 + Xc.p23 + Xc.p22 + Xc.p24

f2s = Xs.p25 + Xs.p23 + Xs.p24

In the abstract view of N3, we have only one place (p3s) for Cs. The associated
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partial flow is:

f3s = Xs.p31 + Xs.p33

Transitions t13, t23, t24 and t33 are also modified according to the definition of
an abstract view.

We can define a set of syntactic conditions which allows us to use the
method [HAD 97, MOR 96]. Intuitively, these conditions render three proper-
ties:

• on the one hand, all activities must keep their identity when going from
one subnet to another one; for instance, we find for output of t23, one
client X and its successor !X , which are in its input places p23 and p24.
Generally speaking, this condition is expressed by a property binding
the flows of the abstract view to the colors of the control places of the
synchronization transitions;

• on the other hand, there may be only transfer of activities between sub-
nets, but no creation nor destruction; for instance, the arc functions of
t24, induce the transfer of only one server to the repair service;

• finally, at any time, activities of a given global color are restricted to only
one subnet; the flow Xc.p11 + Xc.p12 + Xc.p13 + f2c in N ensures this
property for any color of the client class (thus, this condition is ensured
by symbolic flows).

4.5.1. Algorithm for computing performance measures

The matrix Q is a submatrix of

Q′ =

K⊕

k=1

Q′
k +

∑

t∈TS

∑

d

w[t](d)

[
K⊗

k=1

Ck(t, d) −
K⊗

k=1

Ak(t, d)

]
[4]

where w[t](d) is the rate5 of the transition t and d is a choice of static subclasses
for the symbolic firings of t. This formula extends the relation [2] for GSPN
composition. The computation algorithm of Q′ has same steps as the one
presented in section 3.1; however, it must be adapted to colored firings, which
implies a careful analysis of the firings of synchronization transitions.

5We assume that the rate is independent of the marking.
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4.5.2. Sketch of proof of the algorithm

We denote by SRGk (resp. by SRSk), the SRG (resp. SRS) of N k and by
Mk its symbolic markings. XSRS is the Cartesian product of the SRSk and
its elements are denoted by M (hence M = (Mk)k=1,...,K). We first show6 that
the reachability set RS of the net is a subset of {(Mk)k∈K | ∃M ∈ XSRS
such that ∀k ∈ K, Mk ∈ Mk} which may be seen as a “desaggregated” state
space of XSRS.

Then, we prove that A(M) = M ∈ XSRS is an aggregation function on
RS which ensures exact aggregation.

Finally, we show that the transition rate (in the sense of the Markov chain)

from a state M of XSRS to another state M
′
is indeed given by the proposed

algorithm.

The proof of the first two points is established in several steps [MOR 96]:

• definition of a set of semantic conditions, that is to say at the marking
level;

• verification of the strong aggregation condition as a consequence of the
previous semantic conditions (this is the main part of the proof);

• proof that the syntactic aggregation conditions imply these semantic con-
ditions.

At last, a minutely detailed examination of the firing colors of the synchro-
nization transitions allows us to prove that the generator of the aggregated
CTMC is a submatrix of the matrix Q′ of the algorithm.

Introducing an intermediate semantic level is justified by two reasons:

• semantic conditions help us looking for syntactic conditions: for each of
the formers, we try to establish a syntactic translation;

• for a given set of semantic conditions, we may find several sets of syn-
tactic conditions for specific classes of nets. In this way, we reduce the
consistency proof to the derivation of the semantic conditions from these
new syntactic conditions.

6The structure of the proof is analogous in the asynchronous and the synchronous cases.
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5. Conclusion

Tensor methods are based on a decomposition of discrete event systems
into synchronized subsystems. Applying these methods to various classes of
stochastic Petri nets takes advantage of structural and behavioral properties of
these nets. For GSPN, we compose several subnets in a synchronous or an asyn-
chronous manner. For phase-type distribution nets, we describe the state space
and the generator of the Markov chain in a tensor way, taking into account the
possible states of the phase-type activities. In all cases, subtle implementation
techniques allow us to exploit at best the tensor properties, thus increasing
the size of the systems we are able to analyze. At last, combination of tensor
methods and methods based on behavioral symmetries (stochastic well formed
Petri nets), takes advantage of the two kinds of complexity reduction when
these two methods are non incompatible.
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