
Checking Linear Temporal Formulas on Sequential Recursive Petri Nets

Serge Haddad
LAMSADE - UPRESA 7024, Université Paris IX, Dauphine

Place du Maŕechal De Lattre de Tassigny, 75775 Paris cedex 16

Denis Poitrenaud
LIP6 - UMR 7606, Universit́e Paris VI, Jussieu

4, Place Jussieu, 75252 Paris cedex 05

Abstract

Recursive Petri nets (RPNs) have been introduced
to model systems with dynamic structure. Whereas this
model is a strict extension of Petri nets and context-
free grammars (w.r.t. the language criterion), reach-
ability in RPNs remains decidable. However the kind
of model checking which is decidable for Petri nets be-
comes undecidable for RPNs. In this work, we intro-
duce a submodel of RPNs called sequential recursive
Petri nets (SRPNs) and we study the model checking
of the action-based linear time logic on SRPNs. We
prove that it is decidable for all its variants : finite se-
quences, finite maximal sequences, infinite sequences
and divergent sequences. At the end, we analyze lan-
guage aspects proving that the SRPN languages still
strictly include the union of Petri nets and context-free
languages and that the family of languages of SRPNs
is closed under intersection with regular languages
(unlike the one of RPNs).

1. Introduction

In the area of verification theory, a great attention
has been recently paid on infinite state systems. In
contrast to finite state systems where theoretical and
practical developments mainly focus on complexity re-
duction, an essential topic in infinite state systems is to
find a trade-off between expressivity of the models and
decidability of verification. As the model checking of
temporal logic formula is one of the most general ap-
proach for verification, it has been intensively studied

in the framework of infinite-state systems.
Context-free grammars and stack automata have led

to several works. In [10], it is shown that the model
checking of branching timeµ-calculus formula for
pushdown processes is decidable. When restricting the
logic to the linear time logic LTL, one obtains polyno-
mial time algorithms [3].

In [2], model checking for Petri nets has been stud-
ied. The branching temporal logic as well as the state-
based linear temporal logic are undecidable even for
restricted logics. Fortunately, the model checking for
action-based linear temporal logic is decidable. The
case of infinite sequences may be straightforwardly re-
duced to the search of repetitive sequences studied in
[11] and the case of finite sequences may be similarly
reduced to the reachability problem [8]. It seems in-
teresting to combine context-free grammars and Petri
nets and to look for decidable properties. Indeed, for
two such models - the process rewrite systems [9] and
the recursive Petri nets (RPNs) [5] - the reachability
problem is decidable. However, for both these two
models, the model checking of action-based tempo-
ral logic becomes undecidable. It remains undecid-
able even for restricted models such as those presented
in [1]. So for any previously existing model strictly
including Petri nets and context-free grammars, the
action-based linear time model checking was undecid-
able.

In this work, we present a submodel of RPNs called
sequential recursive Petri nets (SRPNs) and we give
some decision procedures including the model check-
ing. Roughly speaking, in RPNs some transitions em-
ulate concurrent procedure calls by initiating a new to-

ken game in the net. The return mechanism is ensured
by reachability conditions. A state of a RPN is then
a tree of “token games”. In a SRPN, a procedure call
freezes the current token game and the activity goes
on, in the last initiated token game. A state of a SRPN
is then a stack of “token games”. At first, we illustrate
the increase of modelling power of SRPNs w.r.t. the
Petri nets one. Indeed, a SRPN can model an infinite
in-degree transition system whereas it is not the case
with Petri nets (or with process algebras). Moreover,
from a practical point of view the use of SRPNs often
leads to a great simplification in the design process.

We then focus on the model checking problem for
an action-based linear time logic. We handle the case
of finite (and maximal) sequences relying on aproduct
SRPNconstruction which emulates the synchronised
product of a SRPN and an automaton and then reduc-
ing the problem to a reachability problem (which is
decidable from [5]). The case of infinite (and diver-
gent) sequences is more tricky and requires to distin-
guish such sequences w.r.t. the asymptotic behavior of
the depth of token games. As the decision procedure
is partly based on a reachability decision algorithm for
Petri nets, it is not primitive recursive. Nevertheless
in a modeling, the places of a SRPN are very often
k-bounded with the boundk givena priori (e.g. com-
puted by linear algebraic techniques). In such situa-
tions, taking as inputs the SRPN and the bound, we can
show that our procedure is in PSPACE. We emphasize
that even in this case we deal with infinite-state sys-
tems.

At last, we study the language family of SRPNs and
we show that this family strictly includes the union
of Petri nets and context-free languages. Moreover,
unlike RPNs, this family is closed under intersection
with regular languages. Finally we will discuss about
complexity features and give some perspectives to this
work. The complete proofs can be found in a research
report [6].

2. Sequential Recursive Petri Nets

2.1. Presentation

A sequential recursive Petri net has the same struc-
ture as an ordinary one except that the transitions are
partitioned into two categories:elementary transitions

andabstract transitions. Moreover astarting marking
is associated to each abstract transition and an effec-
tively semilinear set offinal markingsis defined. The
semantics of such a net may be informally explained
as follows. In an ordinary net, a thread plays the to-
ken game by firing a transition and updating the cur-
rent marking (its internal state). In a SRPN there is
a stack of threads (denoting the fatherhood relation)
where all the threads, except the one on the top of the
stack, are suspended. We call this thread,the current
thread. The step of a SRPN is thus a step of the cur-
rent thread. If the thread fires an elementary transition,
then it updates its current marking using the ordinary
firing rule. If the thread fires an abstract transition, it
consumes the input tokens of the transition and creates
a new thread on the top of the stack (the new current
thread) which begins its token game with the starting
marking of the transition. If the thread reaches a final
marking, it may terminate its token game producing
(in the token game of its father) the output tokens of
the abstract transition which gave birth to him. In case
of a single thread in the stack, one obtains an empty
stack.

Definition 2.1 (Sequential Recursive Petri nets)
A sequential recursive Petri netis defined by a tuple
N = 〈P, T, W−,W+, Ω,Υ〉 where

• P is a finite set of places,T is a finite set of tran-
sitions.

• A transition ofT can be either elementary or ab-
stract. The sets of elementary and abstract tran-
sitions are respectively denoted byTel and Tab

(with T = Tel] Tab where] denotes the disjoint
union).

• W− andW+ are the pre and post flow functions
defined fromP × T to IN.

• Ω is a labeling function which associates to each
abstract transition an ordinary marking (i.e. an
element ofINP) called the starting marking oft.

• Υ is an effective representationof semilinear set
of final markings.

A semilinear set of markings is a finite union of
linear sets of markings. A linear setL is defined

by a markingm0 and a finite family of markings
{m1, . . . , mk} such thatL = {m | ∃λ1, . . . , λk ∈
INk, m = m0 +

∑
i=1,...,k λi.mi}. An effective rep-

resentation is any representation which can be reduced
(by an algorithm) to this standard representation. For
instance, any system of linear (in)equations on the
places marking is an effective representation.

Definition 2.2 (Extended marking) An extended
marking tr of a sequential recursive Petri net
N = 〈P, T, W−,W+, Ω,Υ〉 is a labeled list
tr = 〈V, M, E,A〉 where

• V is the set of nodes. IfV is not empty thenV
contains abottom nodevB and a top nodevT .
These nodes are identicaliff |V | = 1.

• M is a mappingV → INP ,

• E ⊆ (V \ {vT })× (V \ {vB}) is the set of edges
with:
∀v ∈ V \ {vB} there is only one node called
pred(v) such that(pred(v), v) ∈ E
∀v ∈ V \ {vT } there is only one node called
succ(v) such that(v, succ(v)) ∈ E

• A is a mappingE → Tab.

A marked sequential recursive Petri net〈N, tr0〉 is
a sequential recursive Petri netN associated to an
initial extended markingtr0. For sake of simplicity
(w.l.o.g.), we will require that there is only one node in
any initial extending marking.

When we will deal with different extended mark-
ings, we will denote the items of an extending mark-
ing tr as a function of the extending marking (e.g.
vB(tr)). The empty list is denoted by⊥. Any ordi-
nary markingm can be seen as an extended marking,
denoted bydme, consisting of a single node. Anel-
ementary stepof a SRPN may be either a firing of a
transition or an ending of a token game (called acut
stepand denoted byτ).

Definition 2.3 A transition t is enabled in an ex-
tended markingtr 6=⊥ (denoted bytr t−→) if ∀p ∈
P, M(vT)(p) ≥ W−(p, t) and a cut step isenabled
(denoted bytr τ−→) if M(vT) ∈ Υ

Definition 2.4 The firing of an enabled elementary
stept from an extended markingtr = 〈V, M, E, A〉
leads to the extended markingtr′ = 〈V ′,M ′, E′, A′〉
(denoted bytr t−→tr′) depending on the type oft.
• t ∈ Tel

– V ′ = V , E′ = E , ∀e ∈ E, A′(e) = A(e),
∀v′ ∈ V \ {vT }, M ′(v′) = M(v′)

– ∀p ∈ P, M ′(vT)(p) =
M(vT)(p)−W−(p, t) + W+(p, t)• t ∈ Tab

– V ′ = V ∪{v′} , E′ = E ∪{(vT , v′)}, ∀e ∈
E, A′(e) = A(e) , A′((vT , v′)) = t

– ∀v′′ ∈ V \ {vT },M ′(v′′) = M(v′′),

– ∀p ∈ P,
M ′(vT)(p) = M(vT)(p)−W−(p, t)

– M ′(v′) = Ω(t)
wherev′ is a fresh identifier absent inV ; v′ =
vT (tr′).

• t = τ
– V ′ = V \ {vT } , E′ = E ∩ (V ′ × V ′) ,
∀e ∈ E′, A′(e) = A(e)

– ∀v′ ∈ V ′ \ {pred(vT)},M ′(v′) = M(v′)

– ∀p ∈ P,
M ′(pred(vT))(p) = M(pred(vT))(p) +
W+(p,A(pred(vT), v))

Let us notice that if|V | = 1 then the firing ofτ
leads to to empty list⊥.

The depth of an extended marking is defined as
|V |. For an extended markingtr, its depth is denoted
by depth(tr). A firing sequence is defined as usual:
a sequenceσ = tr0.t0.tr1.t1.tn−1.trn is a fir-
ing sequence (denoted bytr0

σ−→trn) iff tri
ti−→tri+1

for i ∈ [0, n − 1]. We define the depth ofσ as
the maximal depth oftr1, tr2, . . . , trn. In the se-
quel, for sake of simplicity,σ will be often denoted
by σ = t0.t1.tn−1

2.2. An illustrating example

In order to analyze fault-tolerant systems, the engi-
neer starts from a nominal system and then introduces
the faulting behavior as well as the repairing mecha-
nisms. We limit ourselves to an elementary system.
The nominal system periodically records some mea-
sure of the environment (elementary transitiontcount).

The number of measures is stored in placepcount. The
complete system is obtained by adding the bordered
part of the figure 1. The behavior of the SRPN can be
described as follows. Initially and in the crash state,
the extended marking consists in a single node. A to-
ken in the placeprepair indicates that one is repairing
the system while a token inpstart indicates that the
system is ready. When the abstract transitiontstart

is fired the correct behavior is “played” by the new
thread. If this thread dies by a cut step, a crash state is
reached. As the placepfault is always marked in the
correct system and from the very definition ofΥ, the
occurrence of a fault is always possible. With addi-
tional places and modifyingΥ, we could model more
complex fault occurrences (e.g. conditioned by soft-
ware execution).

p + p

p

p

p

t

t

Υ
fault

= {m | m(p) > 0}

p

t

p

count

count

start

start

repair

repair

fault

init fault

init

Figure 1. a basic fault-tolerant system

The SRPN switches between states with a single
node and states with a bottom and a top node. How-
ever, the number of reachable markings in the top node
is infinite (the placepcount is unbounded). In other
words, the crash state can be reached from an infi-
nite number of states which means thatthe transition
system associated to a SRPN may have some nodes
with an infinite in-degree. This capability is neither
shared by Petri nets nor by process algebras. Con-
sequently, such models cannot represent this kind of
systems. More generally, any transition system where
some node has an infinite in-degree can neither be
modelled by Petri nets nor by process algebras. We
emphasize that even in the case of finite state transi-
tion systems such modelisations are rather difficult and
lead to very intricate Petri nets (or process algebras)
whereas the same design is quite easy with SRPNs.

In [7], the model of recursive Petri nets is illustrated
by additional examples and compared to other similar
models.

3. Model Checking

The model checking that we investigate applies
on action based linear-time formulas represented by
Büchi automaton. The usual verification method con-
sists to check theexistence of a sequenceof the sys-
tem fulfilling the negation of the formula. Depending
on the kind of the sequence, different semantics have
been defined. We will study the main ones: finite se-
quences, maximal finite sequences (leading to a dead-
lock), infinite sequences, divergent sequences (infinite
sequences ended by a non observable subsequence).

Definition 3.1 (Büchi automaton) A Büchi automa-
ton is a tupleA = 〈Σ, Q, ∆, q0, F 〉 whereΣ is an
alphabet,Q a finite set of states,∆ ⊆ Q × Σ × Q a
transition relation,q0 ∈ Q an initial state andF ⊆ Q
a set of accepting states.

As usual, we denote byq a−→q′ that (q, a, q′) ∈ ∆.
Moreover, the extension of−→ to words overΣ is de-
noted by=⇒ and is defined as follows:

• ∀q ∈ Q, q λ=⇒q

• ∀q, q′ ∈ Q, q ωa=⇒q′ ⇔ ∃q′′, q ω=⇒q′′ ∧ q′′ a−→q′

A run r of A on a finite wordω = a1 . . . an over
Σ is a finite sequenceq0, . . . , qn on Q such that∀j ∈
[1, n], qj−1

aj−→qj . A run r of A on a infinite wordω =
a1 . . . ai . . . is an infinite sequenceq0, . . . , qi, . . . onQ
such that∀j > 0, qj−1

aj−→qj . We now define how such
an automaton recognizes and accepts finite and infinite
words.

Definition 3.2 (Recognition and acceptance)Let
A = 〈Σ, Q,∆, q0, F 〉 be a B̈uchi automaton.

• Let ω be a finite word overΣ. Thenω is recog-
nizedby A if there is a run onω. Moreover, if
one of these runs is ended by a state ofF thenω
is acceptedby A. L(A) denotes the set of finite
words accepted byA.

• Let ω = a1 . . . ai . . . be an infinite word overΣ.
Thenω is recognizedby A if there is a runr =
q1, . . . qi, . . . onω. Moreover, if one of these runs
fulfills |{k | qk ∈ F}| = ∞ then ω is accepted
by A. L∞(A) denotes the set of infinite words
accepted byA.

The observable behaviors of the SRPN we will con-
sider are defined via a labeling function. Alabeled
marked sequential recursive Petri netis a marked
SRPN and a labeling functionh defined from the tran-
sition setT ∪ {τ} to an alphabetΣ plusλ (the empty
word). As usual,h is extended to sequences.

Before the study of the model checking problem,
we introduce A SRPN representing the synchronised
product of a given SRPN and an automaton both la-
beled on a same alphabet. The product SRPN is con-
structed from the places of the original one by adding
a place setQ which corresponds to the states of the
automaton. As usual, the elementary transitions are
synchronized with the ones of the automaton using
these new places. For each extended arcq a=⇒q′ (with
a ∈ Σ ∪ {λ}) of the automaton and for each elemen-
tary transitiont such thath(t) = a, an elementary
transitiont.q.q′, havingW−(t) + q as pre-condition
and W+(t) + q′ as post-condition, is added. When
an abstract transition is fired a new node appears and,
due to the SRPN definition, the token game is lim-
ited to this node. Then, we have to predict the state
reached by the automaton when the new token game
will be ended. The abstract transitions constructed in
the product SRPN are denotedt.q.q′.q′′ where the pre-
fix t.q.q′ expresses the same conditions as for the ele-
mentary transitions (excepted thatt is an abstract tran-
sition of the original net). For each stateq′′ ∈ Q such
an abstract transition is added (the prediction is non
deterministic). To ensure that the predicted state is ef-
fectively reached when the cut step closing the token
game is fired, a set of placesQ (complementary toQ)
is used. The firing of an abstract transitiont.q.q′.q′′

leads to the creation of a new node for which its start-
ing marking has the placeq′′ marked. Using these
places, the effectively semilinear set of final markings
is built in order to ensure that the predicted state is ef-
fectively reached. Let us notice that this composition
corresponds to a weak synchronization as some transi-
tions of the SRPN can be labeled byλ.

Definition 3.3 (Product SRPN) Let A =
〈Σ, Q,∆, q0〉 be an automaton and S =
〈〈N, dm0e〉, Σ, h〉 a labeled SRPN. The product
SRPN of A and S is a labeled marked SRPN
〈〈N ′, dm′

0e〉, Σ, h′〉 defined by
• P ′ = P ∪Q ∪Q, m′

0 = m0 + q0

• T ′el = {t.q.q′ | (t ∈ Tel)∧(q, q′ ∈ Q)∧(q h(t)
=⇒q′)}

• ∀t.q.q′ ∈ T ′el,
– h′(t.q.q′) = h(t),
– W ′−(t.q.q′) = W−(t) + q,

W ′+(t.q.q′) = W+(t) + q′

• T ′ab = {t.q.q′.q′′ | (t ∈ Tab) ∧ (q, q′, q′′ ∈ Q) ∧
(q h(t)

=⇒q′)}
• ∀t.q.q′.q′′ ∈ T ′ab,

– h′(t.q.q′.q′′) = h(t)
– W ′−(t.q.q′.q′′) = W−(t) + q,

W ′+(t.q.q′.q′′) = W+(t) + q′′

– Ω′(t.q.q′.q′′) = Ω(t) + q′ + q′′

• Υ′ = {m + q + q′ | (m ∈ Υ) ∧ (q, q′ ∈ Q) ∧
(qh(τ)

=⇒q′)}
• h′(τ) = h(τ)

The next proposition shows the soundness of the
product SRPN construction. This SRPN simulates the
synchronized product of the orginal net with the Büchi
automaton w.r.t. the language criterion.

We denote byL(N, tr0, T rf) (whereTrf is a fi-
nite set of extended markings) the set of firing se-
quences (mapped on(T ∪ τ)∗) of N from tr0 to an
extended marking ofTrf . This set is called the lan-
guage ofN . The language of a labeled marked SRPN
〈〈N, tr0〉, Σ, h〉 for a finite extended marking setTrf

is defined byh(L(N, tr0, T rf)) whereh is extended
to languages.

For sake of simplicity, we impose that the sets of ter-
minal states are composed by extended marking lim-
ited to a single node. One can remark that this condi-
tion is not a theoretical restriction.

Proposition 3.4 (SRPN product property) Let A =
〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton, S =
〈〈N, dm0e〉, Σ, h〉 a labeled SRPN andMf a set of ter-
minal markings. Let〈〈N ′, dm′

0e〉, Σ, h′〉 be the prod-
uct SRPN of〈Σ, Q, δ, q0〉 andS andM ′

f = {dm+qe |
dme ∈ Mf ∧ q ∈ F}. The following equality holds

h′(L(N ′, dm′
0e,M ′

f)) = h(L(N, dm0e,Mf))∩L(A)

Sketch of proof:
The main part of the proof follows from the construc-
tion presented below. The critical point is that al-
though the product SRPN allows “bad” sequences (i.e.
not recognized by the automaton), such ones cannot
lead to a terminal extended marking of the product
SRPN. ♦

We now adapt the product construction to reduce
the model-checking problem of finite sequences to a
reachability problem for the product SRPN which is
known to be decidable [5].

Theorem 3.5 (Acceptance of finite sequences)Let
A = 〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton and
S = 〈〈N, dm0e〉, Σ, h〉 a labeled SRPN. The existence
of a finite firing sequenceσ of S such thath(σ) is
accepted byA is decidable.

Sketch of proof:
Let 〈〈N ′, dm′

0e〉, Σ, h′〉 be the product SRPN ofA and
S. We construct a new SRPN〈N ′′, dm′′

0e〉 in the fol-
lowing way:

• N ′′ = N ′ except forΥ′′ = Υ′ ∪ {m | ∃q ∈
F, m ≥ q}

• m′
0 = m′′

0

It can be shown that the existence of a finite fir-
ing sequenceσ of S such thath(σ) is accepted byA
is equivalent to the reachability of⊥ by 〈N ′′, dm′′

0e〉.
The critical point is that considering sequences ofN ′′

reaching⊥, then the shortest ones correspond to se-
quencesσ of the original net such thath(σ) is accepted
by A. ♦

Maximal finite sequences are handled similarly
with a more complex construction. In this new prod-
uct, a pair of places is added to allow the prediction of
deadlocks when creating a new node in the stack and
the semi-linear set of terminal markings is adapted to
detect deadlocks.

Theorem 3.6 (Acceptance of maximal sequences)
Let A = 〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton and
S = 〈〈N, dm0e〉, Σ, h〉 a labeled SRPN. The existence
of a finite firing sequenceσ of S such thatσ leads to a
deadlock ofN andh(σ) is accepted byA is decidable.

For the infinite case, the technique based on the
SRPN product is not sufficient to obtain a decision
procedure. We have developed an original proof tech-
nique based on the analysis of the sequences depend-
ing on the asymptotic behavior of the depth of the vis-
ited extended markings.

We are looking for an infinite firing sequence of the
SRPN accepted by a Büchi automaton. We will per-
form two independent searches depending on a char-
acteristic of the sequence: the asymptotic behavior of
the depth of the sequence.

Let σ = dm0e t1−→tr1
t2−→ . . . tri−1

ti−→tri . . .
be an infinite sequence, we define
dinf (σ) = lim infi→∞ depth(tri) (defined by
limi→∞ inf j≥i{depth(trj)}). dinf (σ) always exists
but it can be either finite or infinite.

In case of a finite value, there exists a strictly in-
creasing sequence of indexesi1, . . . , ik, . . . such that:

• beyondi1 the set of indexes{i1, i2, . . . , ik, . . .}
is exactly the indexes for which the depth of the
visited extended markings is equal todinf (σ)

(∀i ≥ i1, depth(tri) = dinf (σ) ⇔
i ∈ {i1, i2, . . . , ik, . . .})

• beyondi1 the depth of the visited extended mark-
ings will be greater or equal thandinf (σ)
(∀i ≥ i1, depth(tri) ≥ dinf (σ))

• i1 is the first index from which the depth of the
visited extended markings will be no more less
thandinf (σ)
(∀i < i1,∃j ≥ i, depth(trj) < dinf (σ))

So σ will be decomposed as
dm0e σ0−→tri1

σ1−→ . . . trik
σk−→trik+1

. . . where σ0

ends with the firing of an abstract transition leading
to an extended marking of depthdinf (σ) (with the
creation of a new node) andσk is either a firing of
an elementary transition in this node or a sequence
beginning by the firing of an abstract transition in this
node and ended by a corresponding cut step.

In case of an infinite value, there exists a strictly in-
creasing sequence of indexesi1, . . . , ik, . . . such that:

• k is the depth of the extended markingtrik

(∀k, depth(trik) = k)

• beyondik the depth of the visited extended mark-
ings will be greater or equal thank
(∀i ≥ ik, depth(tri) ≥ k)

• ik is the first index from which the depth of vis-
ited extended markings will be no more less than
k
(∀i < ik,∃j ≥ i, depth(trj) < k)

Soσ will be decomposed as:
dm0e = tri1

σ1−→tri2
σ2−→ . . . trik

σk−→trik+1
. . . where

σk begins by a firing in an extended marking of depth
k, ends with the firing of an abstract transition leading
to an extended marking of depthk + 1 and such that
all the extended markings visited byσk have a depth
greater or equal thank.

So the first step of the proof consists in developping
a procedure to check the existence of some finite firing
subsequences beginning and ending in the same node
of two extended markings and corresponding to paths
of the Büchi automaton. Indeed, we need another pro-
cedure which restricts the sequences to those which
visit an accepting state of the automaton. In either
case, these procedures are very similar to the model
checking for finite sequences.

We are now in position to explain the two main pro-
cedures. Looking for a sequenceσ with dinf (σ) fi-
nite, we first compute the couples of starting markings
and automaton states reachable by a firing sequence.
We build an ordinary Petri net representing an abstract
view of sequences of the SRPN (recognized by the au-
tomaton) where the successive extended markings vis-
ited by the sequence are infinitely often reduced to a
single node. Then, for each couple as initial marking
of this Petri net, we look for an infinite sequence visit-
ing a subset of transitions infinitely often (this can be
done by the algorithm of [11]).

Looking for a sequenceσ with dinf (σ) infinite, we
build a graph where the nodes are the computed cou-
ples of the first procedure and an edge denotes that
one node has been reached from the other one by a
sequence increasing by one the depth of the visited ex-
tended markings and such that the intermediate sub-
sequences never decrease the depth below its initial
value. The edges are partitioned depending on the visit
by the sequence of an accepting state of the Büchi au-
tomaton. Then the existence of an accepting infinite
sequence is equivalent to the existence of some kind

of strongly connected component.

Theorem 3.7 (Acceptance of infinite sequences)
Let A = 〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton and
S = 〈〈N, dm0e〉, Σ, h〉 a labeled SRPN. The existence
of an infinite sequenceσ of 〈N, dm0e〉 such thath(σ)
is an infinite word accepted byA is decidable.

Divergent sequences are handled similarly.

Theorem 3.8 (Acceptance of divergent sequences)
Let A = 〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton and
S = 〈〈N, dm0e〉, Σ, h〉 a labeled SRPN. The existence
of an infinite sequenceσ of 〈N, dm0e〉 such thath(σ)
is a finite word accepted byA is decidable.

All our decision procedures use the decidability of
reachability in RPNs (based on reachability in Petri
nets). Thus none of them are primitive recursive.
However it must be emphasized that very often un-
bounded Petri nets correspond to systems with dy-
namic structure. Modelling such systems with SRPNs
leads to infinite states SRPNs withbounded places.
Moreover the bound may be computed by structural
analysis. In such cases, complexity of our decision
procedure is reduced as stated by the next theorem.

Theorem 3.9 (Complexity of model-checking)Let
A = 〈Σ, Q, δ, q0, F 〉 be a B̈uchi automaton and
S = 〈〈N, dm0e〉, Σ, h〉 a labeledk-bounded SRPN.
The problem of existence of a finite (maximal finite,
infinite, divergent) sequenceσ of 〈N, dm0e〉 such that
h(σ) is a word accepted byA is PSPACE-complete
w.r.t. the size ofA andS.

4. Language Properties

In order to discuss about expressivity of models,
different criteria may be applied such like generated
languages, behavioural equivalences,. . . In this sec-
tion, we focus on the properties of the languages gen-
erated by SRPNs and we compare it with the standard
hierarchy of languages.

Theorem 4.1 (SRPN closure)The family of SRPN
languages is closed under intersection with regular
languages.

Sketch of proof:
Follows straightforwardly from proposition 3.4 ♦

Theorem 4.2 (Strict inclusion) SRPN languages
strictly include the union of context-free and Petri net
languages
Proof:
It is obvious that any PN is a SRPN. Moreover, in
[5], it is demonstrated that any context-free language
can be simulated by a RPN. We can remark that the
proposed construction of the RPN corresponding to a
context-free language leads to a SRPN (i.e. the initial
extended marking is limited to a single node and all
the reachable states are stacks and only the top node
is active). In the same paper, it is shown that RPN
languages strictly include the union of context-free
and Petri net languages. The proof of this result ex-
hibits a RPN for which its language is neither PN nor
context-free language. We can remark that this RPN
behaves as a SRPN. Then, we can conclude that the
language family of SRPN strictly includes the union
of the context-free and PN languages. ♦

Moreover, in [4], it is demonstrated that the RPN
languages are not closed under intersection with regu-
lar ones. Then the theorem 4.1 leads to the next one.

Corollary 4.3 (SRPN versus RPN)The family of
SRPN languages is strictly included in the family of
RPN languages.

5. Conclusion

In this work, we have introduced sequential recur-
sive Petri nets and studied their theoretical features.
From a modeling point of view, an important charac-
teristic of SRPNs is their capability to generate infi-
nite in-degree transition systems. Such a feature makes
possible to model dynamic systems which can be han-
dled neither by process algebra nor by Petri nets.

In the second part of the paper, we have focused
on the model checking for an action-based linear time
logic and obtained different decision procedures de-
pending on the semantics of the logic. These proce-
dures are not primitive recursive in the general case
but restricting the SRPNs to bounded ones (with ana
priori known bound), the model checking problem is
shown to be PSPACE-complete.

At last, we have studied the language family of
SRPNs and proved that this family strictly includes the
union of Petri nets and context-free languages. More-
over, unlike RPNs, this family is closed under inter-
section with regular languages.

We now plan to study how we can extend SRPNs
preserving the model checking decidability.

References

[1] A. Bouajjani and P. Habermehl. Constraint properties,
semi-linear systems, and Petri nets. InProc. of CON-
CUR’96, volume 1119 ofLecture Notes in Computer
Science. Springer Verlag, 1996.

[2] J. Esparza. Decidability of model checking for
infinite-state concurrent systems.Acta Informatica,
34:85–107, 1997.

[3] A. Finkel, B. Willems, and P. Wolper. A direct sym-
bolic approach to model checking pushdown systems.
In Proc. of INFINITY’97, 1997.

[4] S. Haddad and D. Poitrenaud. Decidability and un-
decidability results for recursive Petri nets. Technical
Report 019, LIP6, Paris VI University, Paris, France,
Sept. 1999.

[5] S. Haddad and D. Poitrenaud. Theoretical aspects of
recursive Petri nets. InProc. 20th Int. Conf. on Ap-
plications and Theory of Petri nets, volume 1639 of
Lecture Notes in Computer Science, pages 228–247,
Williamsburg, VA, USA, June 1999. Springer Verlag.

[6] S. Haddad and D. Poitrenaud. A model check-
ing decision procedure for sequential recur-
sive petri nets. Technical Report 024, LIP6,
Paris VI University, Paris, France, Sept. 2000.
http://www.lip6.fr/reports/lip6.2000.024.html.

[7] S. Haddad and D. Poitrenaud. Modelling and analyz-
ing systems with recursive Petri nets. InProc. of the
Workshop on Discrete Event Systems - Analysis and
Control, pages 449–458, Gand, Belgique, Aug. 2000.
Kluwer Academics Publishers.

[8] E. Mayr. An algorithm for the general Petri net reach-
ability problem. InProc. 13th Annual Symposium on
Theory of Computing, pages 238–246, 1981.

[9] R. Mayr. Decidability and Complexity of Model
Checking Problems for Infinite-State Systems. PhD
thesis, TU-M̈unchen, 1997.

[10] I. Walukiewicz. Pushdown processes: Games and
model checking. InInt. Conf. on Computer Aided Ver-
ification, volume 1102 ofLecture Notes in Computer
Science, pages 62–74. Springer Verlag, 1996.

[11] H.-C. Yen. A unified approach for deciding the exis-
tence of certain Petri net paths.Information and Com-
putation, 96:119–137, 1992.

