
Issues in Veri�cation

0.1 Introduction

The diversity of the veri�cation methods, developed for Petri nets and their

extensions, may be confusing for the engineer trying to choose the adequate

techniques to solve his problem. This chapter aims at clarifying the bases of

such a choice by discussing some general issues involved in the design and the

application of a veri�cation method :

� the net models that the method enables to verify,

� the kind of properties to be checked,

� the families of methods,

� the interplay of di�erent methods.

On the one hand a net model with a highly expressive power such as a col-

oured Petri net enables to handle complex systems. On the other hand, this

expressive power implies di�culties for the veri�cation process (e.g. increasing

complexity, semi-decidability, restrictive kind of properties, etc.). Independently,

some high-level models enlarge the range of the results by introducing a para-

metrization (e.g. abstract data types, variable cardinalities of domains, etc.).

The speci�cation of the properties must address the following question. How

to de�ne a good behaviour of a net ? Among the di�erent answers, one can

suggest :

� A family of properties expressing the behaviour of the net independently

of its interpretation (e.g. liveness, boundedness, etc.),

� A language of properties adapted to the dynamic systems and especially

the concurrent ones (e.g. linear time logic, branching time logic, etc.),

� The behaviour equivalence with another net modelling, for instance a more

abstract view of the system (e.g. bisimulation),

� The response to a sequence of tests (e.g. failure tests, acceptance tests,

etc.)
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The methods may be classi�ed according to basic criteria. What kind of

nets is supported by the method ? Does the method work at the structural

level (i.e. the net description) or at the behavioural level (i.e. the reachability

description)? Is the veri�cation process entirely or partially automatic ? What

kinds of properties is the method able to check ?

At last, to combine the di�erent veri�cation methods, it is necessary to un-

derstand what bene�ts one method can take from the results of another. Fur-

thermore, it may also have an impact on the speci�cation process: for instance

the system can be modeled with a very abstract net and exhaustive results, then

re�ned while keeping at the same time as many previous results as possible.

The rest of the chapter is organized as follows : in section 0.2 we present a

classi�cation of net models and especially of coloured nets then in section 0.3 we

discuss the kind of properties one can check. In section 0.4 we list and provide

details about the criteria of each method and we show how to combine them

in section 0.5. We conclude the chapter in section 0.6 by an overview of the

methods presented in this part of the book.

0.2 Classi�cation of nets

From the model of P/T-nets, one can derive new models in di�erent ways :

restriction, extension, abbreviation, parametrization. In this section, we discuss

the impact of these derivations on the veri�cation methods.

0.2.1 Restriction of nets

The most meaningful restrictions from the point of view of veri�cation rely

on the conicts between transitions. For instance, the well-known model of

free-choice nets [Bes87] restricts the conicts between transitions with the same

input places. The impact of such a restriction is twofold: new algorithms with

reduced complexity may be developed to check properties and an equivalence

between structural properties and behavioural properties may be established. A

characteristic property which has been de�ned by Commoner states that any

siphon must contain a marked trap (see section 17.4 for more explanations).

Thus a free-choice net is live if and only if it ful�lls the Commoner property.

0.2.2 Extension of nets

A net model is an extension of the P/T-net model if its expressive power is

strictly greater than the original one. The �rst extensions proposed for P/T-

nets aim at giving more exibility in the design process [CDF91b], [LC94]. The

inhibitor arcs model the zero test, the transition priorities model, for instance,

the interruption mechanism, the ush arcs model, for instance, the crash of a

machine, etc.
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Figure 0.1: Two Reader-Writer nets

In most cases, the new model has the same expressive power as the Turing

machines thus the reachability problem - is one marking reachable from another

one ? - becomes indecidable [Hac75]. However this drawback should not be

overestimated:

� at �rst, many structural methods which produce results will remain un-

changed. For instance the computation of the ows is una�ected by the

presence of inhibitor arcs since they do not induce movement of tokens,

� the hypothesis of bounded nets required for many state-based methods

transforms the extension into an abbreviation. For instance the inhibitor

arcs can be modeled by the method of complementary places,

� often, the modi�cation brought to the veri�cation methods is easy to de-

velop and straightforward. For instance the computing of the (extended)

conict sets between transitions handles the inhibitor arcs in an intuitive

and natural way.

Nevertheless there is a pernicious e�ect of the extensions on the design pro-

cess. Let us look at the two nets of �gure 0.1. These two nets model the

concurrent accesses to a �le by readers and writers. The safety property is

evenly ensured in both cases. However the computation of the ows will give us

this property directly in the �rst net while it will give only information about

the number of readers and writers in the second net. The key point is that the

more the extensions are involved in the design process, the less the classical

methods will give signi�cant results. As heuristic principle, one can state \just

use extensions if necessary".

0.2.3 Abbreviation of nets

A net model is an abbreviation of a P/T-net model if :
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1. there is a common semantics for the two models,

2. for any net there is a semantically equivalent P/T-net (generally of bigger

size).

A useful abbreviation of P/T-net is the model of coloured nets introduced by

K. Jensen [Jen92]. The main interests of this abbreviation are the information

associated with tokens by colour and the ability to factorize activities with the

help of �ring instances of a transition. The unfolding is quite easy : any node

(place or transition) is developed in a set of nodes indexed by the colours of its

domain and the arcs are de�ned according to the applications of colour functions.

Given this unfolding it is not di�cult to transform a veri�cation method for

P/T-nets into a method for coloured nets :

1. unfold the coloured net,

2. apply the algorithm,

3. interpret the results for the original coloured net.

However such a transformation is unsatisfactory for two main reasons : the

complexity of the algorithm depends on the size of the unfolded net and it is

sometimes cumbersome to interpret the results. So the main objective of a

veri�cation theory for coloured nets is to develop algorithmswhich do not require

the unfolding of the coloured nets.

In order to avoid the unfolding of Petri nets, one is led to examine the syntax

and the properties of the colour functions. However the general de�nition of

coloured nets works at the semantic level. The easiest way to give a syntactical

de�nition of a colour function is to represent it as an expression in which the

constants denote bags of colours, the variables denote projections of colour do-

mains and operators denote operations on functions. Then syntactical conditions

on an expression provide necessary and/or su�cient conditions on the denoted

function. Let us take an example : in a net reduction (called pre-agglomeration)

a transition is required not to share its input places. In the coloured net, the

equivalent condition is de�ned by :

1. the transition does not share its input places,

2. the colour functions which label the input arcs ful�ll a condition called

quasi-injectivity.

Rather than explaining what quasi-injectivity is, let us say that there are nu-

merous necessary or su�cient conditions for quasi-injectivity. In the example of

�gure 0.2, we have decribed two coloured nets with their unfolded net. The �rst

unfolded net does not share the input places and it can be detected directly on

the expression of the coloured net as the expression is a tuple of all the variables

of the transition. The second unfolded net shares the input places and it can
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Figure 0.2: Two coloured nets with their unfoldings

also be detected directly on the expression of the coloured net as not all the

variables of the transition appear in the expression.

Other important properties can be checked on expressions such as their al-

gebraic structure for the ow computation or their symmetrical structure with

respect to a colour domain.

0.2.4 Parametrization of nets

A net model is a parametrization of P/T-nets if it denotes a family of P/T-nets.

Implicitely an unmarked P/T-net is a parametrized Petri net [CDF91a] and

we can already obtain results which do not depend on the initial marking (see

section 17.3). Nevertheless the parametrization of nets is very interesting in the

�eld of coloured nets as there are many ways to achieve it, among them:

� Abstract Predicate/Transition nets [Gen88]

� Algebraic Petri nets [Rei91]

� Well-Formed Petri nets [CDFH93]

An Abstract Predicate/Transition net is associated with �rst-order logic and

colour functions are expressions of this logic. Each interpretation of this logic

provides a concrete Predicate/Transition net which is a syntaxical denotation

of a coloured Petri net. The main theoretical results of this parametrization

concern the existence of a normalized speci�cation of such nets which makes it

possible to decide whether two nets are semantically equivalent.
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An Algebraic Petri net is associated with an abstract data type and colour

functions are expressions of this abstract data type. Each algebra which ful�lls

this abstract data type also gives a coloured Petri net. There are various results

on Algebraic Petri nets ; for instance one establishes statements such as \if the

net associated with initial (or �nal) algebra has a property then a net associated

with any algebra has the same property". The algebraic Petri nets can be easily

integrated in a prototyping software environment, which is another advantage.

Well-Formed Petri nets have been introduced in order to develop e�cient

veri�cation methods on coloured nets and parametrized coloured nets. The syn-

tax of such nets relies on three basic constructions : the variables, some particular

constants (the static subclasses) which denote colours with similar behaviour and

one operator, the successor function, which chooses the colour \following" a col-

our selected by a variable. Despite its restricted syntax, it has been shown that

WFNs have the same expressive power as the general coloured nets. The para-

metrization is introduced by the cardinalities of colour domains. Reductions and

ow computations exploit the parametrization whereas the symbolic reachability

graph building operates on an unparametrized WFN. Numerous applications of

the symbolic graph have been developed to obtain measures of performances

(steady-state probabilities, bounds, tensorial decomposition, etc.).

0.3 Properties

The choice of properties for Petri nets raises the same problem as the choice of the

Petri nets model. Specifying a large set of properties forbids the development

of e�cient specialized algorithms whilst a restricted set of properties fails to

express the various properties of protocols and/or distributed algorithms.

If one chooses to restrict the properties then these properties must be generic

in the following sense: they express the behaviour of the modelized system for a

large range of interpretations. Let us see how such an interpretation is possible.

We give below a non exhaustive list of properties which, of course,do not cover

all the general properties a net may have (see the discussion later on in this

section) :

� quasi-liveness \Every transition is �red at least one time" expresses a

syntactically correct design in the sense that any activity or event must

occur at least once in the net behaviour.

� deadlock-freeness \There is no dead marking" means that global dead-

lock never happens in the system.

� liveness \Every transition is �red at least one time from any reachable

marking" means that the system never looses its capacities at any time.

� boundedness \There is a bound on the marking of any place" ensures

that the system will reach some stationnary behaviour on the long run. Let

us note that multiple stationnary behaviours are possible.
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� home state \There exists a marking which is reachable from any other

marking" denotes the possibility for the system to reinitialize itself.

� unavoidable state \There exists a marking which can not be avoided in-

de�nitely" indicates that for the system must necessarily reinitialize itself.

Despite the generality of the previous properties, there will always be some

features of behaviour that will not be captured by a �xed set of properties. For

instance, \The �ring of t1 will eventually be followed by the �ring of t2" is a

useful fairness property which is not one of the previous properties. Of course,

one could include it, but there are a lot of possible variants. Thus it is better to

adopt a language of properties adapted to the dynamical systems and especially

the concurrent ones. Among such languages, the temporal logic framework (e.g.

linear time logic, branching time logic, etc.) has been widely used for Petri nets

(see for instance [Bra90]). The reason for this development is twofold : most

interesting properties of concurrency are expressed by simple formulas and the

model checking associated with these logics can be easily transported on the

reachability graph. In fact, by exploiting the structure of the Petri nets, the

complexity of model checking can be reduced but we will discuss this topic later

in section 0.4.

The framework of temporal logic is interesting if one wants to verify a set of

properties which characterizes the desired behaviour of the modellized system.

Nevertheless, starting from a global behaviour such as a set of services requires

a great deal of work to specify the correct formulae. Moreover the modeller

is led to build more and more complex formulae where the semantics of such

formulae becomes mysterious. In such cases, it is much simpler to specify the

set of services by a Petri net and to compare the behaviour of the net modelling

the services with the behaviour of the net modelling the protocol. However it

is necessary to de�ne what equivalence between nets is. First, one has to dis-

tinguish between internal transitions (implementing the protocol) and external

transitions (associated with the service interface). Then the projection of the

protocol net language onto external transitions should be equal to the language

of the service net (language equivalence). However the language equivalence

does not capture the choices o�ered by a net upon reaching some state. Equi-

valence including language and choice can be de�ned by means of one of the

numerous bisimulation de�nitions [BDKP91] which roughly says that whatever

a Petri net can do (sequence and reached state) the other one can simulate it.

The interest of the bisimulations is twofold :

� An e�cient algorithm has been developed once the reachability graph of

Petri nets is built.

� For models like process algebras, axiomatisation of equivalence is possible

at the structural level.

Moreover Petri nets re�ne the de�nition of equivalence by distinguishing

true concurrency from interleaving concurrency (see �gure 0.3). Lastly (see
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Figure 0.3: Two nets which do not bisimulate concurrently

section 0.6) the Petri net model can be translated into a process algebra during

the design of a system in order to facilitate rewriting techniques and equational

reasoning. Again it should be noted that restrictions are required in order to

avoid the undecidability of bisimulations for Petri nets [Jan94].

Another possibility (and the last we examin here) is the response of a Petri

net or more generally a transition system to a sequence of tests [Bri88]. A typical

test application may be described as follows :

1. It starts with a speci�cation (often a process algebra model),

2. then it generates an intermediate object called a success tree which takes

into account the sequence of transitions and the choice o�ered by the states,

3. this tree is transformed into a transition system called the canonical tester,

4. the synchronous product of the Petri net and the canonical tester is formed,

5. the observation of deadlocks in the product provides information on the

failures of the implementation given by the Petri net.

0.4 Classi�cation of methods

There are di�erent ways to discriminate between the methods : automatic veri-

�cation versus manual veri�cation, property veri�cation versus property com-

putation, speci�c Petri net methods versus general transition systems methods.

Let us develop each of these points.

One objective of formal models is computer-aided veri�cation. At �rst sight,

automatic veri�cation may appear as highly desirable. However there are some

inherent limitations to automatic veri�cation that the modeller should be aware

of :
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� there are numerous undecidable properties,

� even for decidable properties, checking is so complex that it may become

impractical,

� automatic veri�cation never takes into account the speci�cities of the mod-

ellized system.

Another advantage of manual veri�cation is the insight it gives to the under-

standing of the behaviour of the system. However manual veri�cation is prone to

errors and a sound (and sometimes complete) axiomatisation of proofs may help

to develop correct proofs. The duality of the manual and automatic veri�cation

should be emphasised: for instance the reduction or the abstraction of nets may

be done automatically whereas re�nement of nets requires the participation of

the designer. Yet, these are two facets of the same theory.

The automatic method may check properties given by the modeller or simply

generate valid properties of the model. Each method has its own drawbacks.

Checking of properties is sometimes tricky : an inductive proof may not be

obtained whereas it would have been possible to �nd a stronger property which

is inductive. Indeed for a large class of transition systems, a property is true if

and only if there is a stronger property which is inductive. On the other hand,

the automatic generation of properties is generally limited in its scope : a non

linear invariant will never be generated by the computation of the ows.

Di�erent models may be employed when developing a system. Thus even if

one models a system with Petri nets during the design phase, it is not obvious

that the veri�cation must be Petri net based. For instance the compositional

aspect of a model is not easily exploited by Petri net techniques. Translation

into a process algebra may be fruitful in this particular case. Nevertheless there

are some good reasons to stick to Petri net formalisms :

� the most important techniques for other models of parallelism have been

adapted for Petri nets,

� Petri net veri�cation is one of the most exible because of the various

methods,

� some methods have no equivalents in other models (e.g. computation of

the ows),

� some other methods have equivalents but their application in Petri nets is

easier (partial order methods)

However the most important criterion for veri�cation techniques depends

on which aspects of Petri nets are exploited. We will list these aspects before

introducing the methods based on it.

� A Petri net is a graph and the token ows must follow the arcs of this

graph ; structural deadlocks are clearly based on this feature.
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� A Petri net is a linear transformation of the vector of tokens and so linear

algebra can take advantage of it (for instance computation of the ows).

� A Petri net underlies event structures with causality and compatibility

relations. Partial order methods reduce the complexity of building the

reachability graph.

� The colours of a domain often have the same behaviour. The symmetry

methods also reduce the reachability graph using equivalence relations.

� The application of logics is widely used in Petri nets: for instance a logic

can encode semantics of Petri nets in such a way that one obtains prop-

erties by deduction or one can build a graph of formulas where a formula

naturally denotes a subset of reachable states.

Graph theory

The examination of the graph structure leads to two di�erent and comple-

mentary families of methods which are based either on the local structure or

on the global structure. The local structure of a subnet may make it possible

to reason about its behaviour independently of the rest of the net. This is the

key point of the reductions theory where the agglomeration of transitions cor-

responds to transforming a non atomic sequence of transitions into an (atomic)

transition [Ber87], [Had88], [CMS87]. Even if they just simplify the net by elim-

inating , say a transition, their impact is considerable. Indeed in the reachability

graph they eliminate all the intermediate states between the initial �ring and the

ending �ring of the sequence. Roughly speaking, an agglomeration divides by

two the reachability space and thus n agglomerations have a reduction factor of

2

n

. Analysing the global structure of the net can be done by restricting the class

of Petri nets and developing polynomial algorithms for the standard properties

(e.g. liveness). With no restrictions on the Petri nets, similar algorithms provide

necessary or su�cient conditions for the standard properties.

Linear algebra

Linear algebra techniques rely on the state change equation which claims that

a reachable marking is given by the sum of the initial marking and the product of

incidence matrix by the occurence vector of the �ring sequence. Thus a weighting

of the places which annuls the incidence matrix (i.e. a ow) is left invariant by

any �ring sequence. Similarly a vector of transition occurences which annuls

the incidence matrix (i.e. a rhythm) keeps any marking invariant.

So there are two objectives for linear algebra techniques : computing a gen-

erative family of ows (resp. rhythms) and apply then the ows (resp. rhythms)

to the analysis of the net. The computation of the ows is more or less easy

depending on the constraints on ows. For instance the complexity of the com-

putations of general ows is polynomial whereas unfortunately the computation

of positive ows is not polynomial [KJ87]. However positive ows are often more

useful than general ows and researchers have produced heuristics to decrease
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the average complexity [CS89]. In P/T-nets, algorithms are now well known.

The applications of ows and rhythms are numerous : they help to de�ne re-

ductions, they characterize a superset of the reachable set, they gives bounds

on maximal �ring rates, they make it possible to compute synchronic distances

between transitions, etc. Some of them are illustrated in chapter 17.

State-based methods

Before speaking about partial-order and colour analysis methods, we must

point out that one common objective of these two methods is to reduce the com-

plexity of the state-based methods. As these latter methods are with simulation

assuredly the most widely used ones , it is important to give an insight of what

the di�erent ways to cope with the space complexity of the state graph are.

There are two ways to do so : to manage the graph construction or to build

another graph.

An e�cient management of the graph construction has an important advant-

age. It is independent of the structural model which generates the graph and

thus can be applied to Petri nets, process algebra , etc. The two main methods

of this kind are the Binary Decision Diagramm and on-the-y veri�cation.

Binary Decision Diagramm

Originally the BBD technique was de�ned to compress the representation

of boolean expressions [Ake78]. Any boolean expression is represented by a

rooted acyclic graph where non terminal nodes are variables of the expression

with two successors (depending on the valuation of the variables) and there are

two terminal nodes (true and false). In order to evaluate an expression one

follows the graph from the root to a terminal node choosing a successor with

respect to the chosen a�ectation. As subexpressions occuring more than once in

the expression are factorized, the gain may be very important.

The application of the BDD technique to graph reduction relies on the rep-

resentation of a node by a bit vector and the representation of the arc relation by

an expression composed of variables denoting the bits of the vectors. It can be

shown that the formula of modal logics can also be represented in this way and

lastly that the building of the graph and the property checking can be reduced

to operations on BDDs. In a famous paper, this technique has been employed

to encode graphs with 10

20

states [BCM

+

90]. A drawback of the method is that

it is impossible to predict the compression factor even roughly.

On-The-Fly veri�cation

The on-the-y technique is based on two ideas : state properties can be

checked on each state independently and in a �nite state graph there is no in�nite

path with di�erent states. Thus one does not build the entire graph but instead

develops the elementary branches of this graph. The only memory required is

what is required for the longest elementary path of the graph [Hol87]. In the

worst case there is no gain but on average case the gain is important.
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Figure 0.4: Application of the sleep set method

Moreover, the technique can be extended to check the properties of temporal

logics [JJ89]. There the trick is to dynamically develop the product of the state

graph with an automaton (say for instance a Buchi automaton for LTL formula)

and check for particular states [CVWY90].

What is quite interesting with this method is its adaptation to the memory

space of the machine. Indeed one can add a cache of states which remembers a

number of states which are not on the current path, thus reducing the develop-

ment of the branch if a cache state is encountered. Another fruitful aspect of this

method is that it can be combined with other reduction methods (for instance

the partial order method discussed below).

Partial order methods

The partial order methods lie on structural criteria to reduce the state graph

and are e�ciently implemented on Petri nets. The two main methods - sleep set

and stubborn set - associate a set of transitions to a state reached during the

building and use this set to restrict further developments of the graph. These sets

of transitions are based on a basic structural (or possibly marking-dependent)

relation between transitions. Two transitions are independent if their �rings are

not mutually exclusive. The independence property is structural if the precon-

dition sets do not intersect whereas it is marking dependent if the bag sum of

the preconditions do not exceed the current marking.

The sleep sets method keeps track in a reached marking of independent trans-

itions �red in other branches of the graph [God90]. The method ensures that if

one �res a transition of this (sleep) set, one encouters an already reached mark-

ing. Thus the sleep sets method \cuts" arcs on the reachability graph but the

number of states is left unchanged. Figure 0.4 illustrates such a process.

Given a marking, a stubborn set of transitions is such that any sequence

built with other transitions includes only independent transitions with respect

to the stubborn set [Val89]. Note that if the independency relation is marking-

dependent then the independency must be ful�lled at the di�erent �ring mark-

ings. Then it can be shown that restricting the �ring of enabled transition being
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Figure 0.5: Application of the stubborn set method

in any stubborn set preserves the possibility of the other �ring sequences. The

building of the reduced graph is similar to the ordinary one except that:

� once a state is examined, the algorithm computes a stubborn set of trans-

itions including at least one enabled transition (if the marking is not a

deadlock),

� the successors of the state are the ones reached by the enabled transitions

of the stubborn set.

An interesting consequence is the deadlock equivalence between the reduced

graph and the original graph. Figure 0.5 illustrates such a process. Let us note

that the initial stubborn set is fa,b,cg since starting from a one must include

c and then b. Another possible stubborn set would have been fd,eg. The

attentive reader will have noticed that an arc building would have been avoided

by combining stubborn sets with sleep sets.

The stubborn set method requires more computations than the sleep set

method since there is no incremental computation of the stubborn set and the

computation includes disabled transitions. On the other hand, the reduction

factor is often more important as here states are pruned. Nevertheless, the com-

bination of the two methods is straightforward, thus improving the reduction

factor [GW91]. What is more di�cult to obtain is a large equivalence of proper-

ties between the reduced graph and the original one. Safety properties may be

obtained if the property is taken into account during the building process. The
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handling of general liveness properties is not possible and one must restrict to

the checking of special liveness properties [Val93].

A third partial-order method is based on unfoldings of Petri nets. An un-

folding of a Petri net is an acyclic Petri net where places represent tokens of

the markings of the original net and transitions represent �rings of the original

net. One starts with the places corresponding to the initial marking and one

develops the transitions associated with the �rings of every initially enabling

transition linking input places to the new transition and producing (and linking)

output places; then one iterates the process. Of course if the net has an ini�nite

sequence the unfolding would be in�nite and thus this unfolding must be 'cut'.

In order to produce �nite unfoldings, di�erent cut methods have been proposed

[McM92] [ERW96]. The unfolded net is a very compact representation of the

reachability set and thus safeness properties can be checked with a low order

of space complexity (time complexity may also be reduced but not so signi�c-

antly). Recently the method has been extended to support linear temporal logic

veri�cation [CP96]. The principle is to build a graph of unfolded nets where the

relevant transitions for the property are always graph transitions.

Colour structure analysis

The colour structure analysis has many theoretical applications. Here we

just mention three theoretical developments (which will be developed in more

details in chapter 16 and chapter 17). The �rst important point that should be

emphasized is that a theoretical development may be applied on coloured nets

and/or on parametrized coloured nets. As discussed before, parametrization is

better for the modeller's point of view but more di�cult for the researcher's

point of view. Moreover, there are two ways to obtain results for parametrized

coloured nets: �rst develop a theory for unparametrized coloured nets and then

adapt the conditions to include the parametrization and restrict the kind of

parametrization to develop a particular theory.

The reduction theory for coloured nets is based on the following principle to

develop a sound reduction rule :

1. Take a reduction for ordinary Petri net.

2. Add coloured conditions to the structural conditions (i.e. conditions on

the colour functions valuating the arcs) ; these coloured conditions are as

weakest as possible to ensure the structural conditions on the unfolded net

for a set of reductions.

3. Check that there is a possible ordering of the set of reductions in the

unfolded net.

4. De�ne the transformation by a structural transformation similar to the ori-

ginal reduction with complementary coloured transformations ; this trans-

formation must correspond to the successive reductions of the unfolded

net.
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The parametrization of the method is more or less straightforward as coloured

conditions may be ensured by syntactical conditions on expressions (see the

discussion above in section 0.2)

The ow computation for coloured nets requires deeper analysis of the colour

function structure. It appears that the cornerstone of the ow computation is

the algebraic concept of generalized inverses. Colour functions are linear trans-

formations on a set of bags and thus this algebraic concept is sound. Moreover,

a elegant algorithm adapted from Gaussian elimination rules can be developed

provided that the successive generalized inverses may be computed. The space

and time complexity are dramatically reduced and the ows are represented in

a compact way which allows for natural interpretation.

Unfortunately, the parametrization of this method is not possible. So re-

searchers have looked for a di�erent direction : colour expressions can be iden-

ti�ed to polynomials . The idea is then to apply a Gaussian-like elimination on

a ring of polynomials. The whole di�culty lies in the transformation (and the

reciprocal transformation) from a colour function to a polynomial one. Some

subclasses of Well-Formed nets have been successfully studied (regular nets,

ordered nets) with this technique. Another way to obtain parametrized methods

is not to require that the ow family be a generative family. Then simple meth-

ods can work on very general nets and give useful information anyway (even if

not complete).

The symbolic reachability graph of Well-Formed nets exploits the symmetry

of colour functions with respect to the �ring semantics. This symmetry leads to

an equivalence relation between markings and transition �rings. Once canonical

representation of equivalence marking (and �ring transitions) classes is de�ned,

symbolic graph building is similar to ordinary graph building. Some studies show

that the comparison between the reduction factor of symmetrical methods and

partial-order methods depends on the modelled system. Again these methods

may be combined. Another di�erence between the symmetrical methods and

the partial-order methods is that very general properties may be checked on the

symbolic reachability graph (indeed any formula of CTL*).

Logics

Logics is the support of reasoning about nets. Often some inductive rules or

schemes are de�ned to derive properties. There are two ways to do so.

The �rst one is an automatic (but semi-decidable) veri�cation of a property.

For instance a safeness property must be true at the initial state and also true af-

terwards. Then one begins with the initial formula and one derives successively

stronger formulas using the �ring rule until stability is obtained. This tech-

nique may be re�ned using a graph of formulas where a formula is an intensive

representation of states.

The other direction is manual proofs using a proofs scheme. Such an example

is given by a veri�cation diagram which is in fact a directed acyclic graph of the
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formula used to prove safeness or fairness properties. Even if the proof schemes

are very detailed, the veri�er needs some skills to obtain his proof.

0.5 Veri�cation Process

The veri�cation step is closely linked to the design process. Ideally, even the

(formal) speci�cation of which properties should be satis�ed by the system has

to be checked. Indeed there are examples where the protocol meets the service

requirements but the service is not correctly de�ned ! Generally, the veri�cation

process is interleaved with the di�erent steps of new designs. The reasons for

these steps are multiple. Obviously, a new model is required if failures are

detected. But if the design is incremental, then once a �rst step of veri�cation

is successful, the model is enriched with more details before new checkings.

The two main mechanisms for incremental design are re�nement and com-

position. Here we focus on the consequences for the veri�cation process. Sound

re�nment should be local so that the properties are kept. Nevertheless, it is clear

to the skilled modeller that the hypothesis of locality must be formalized in or-

der to preserve properties. The composition aims at combining results already

obtained on the components. A lot of work has been done in this respect but

considering the di�culties encountered by the theoretical research we have to

impose some restrictions:

� a process must have restricted choices between synchronisation actions

and local actions,

� the behaviour of a synchronization must not - or only slightly - depend on

previous synchronisations.

It should be noted that re�nement and composition have their counterparts in

the area of veri�cation, namely, reduction and decomposition. These two aspects

are very similar, however, there are particularities for the latter which are:

� the reduction (resp. decomposition) process should be automatic,

� the choice between reductions (resp. decomposition) is proof-oriented,

� if the congruence of reductions (resp. decomposition) rules is ensured

then the order of application is irrelevant and this is a great complexity

reduction factor.

Here are some hints on how the di�erent veri�cation methods should be

ordered. Starting from a Petri net, applying automatic structural methods has

numerous advantages :

� It points out what was implicitely in the modelling. For instance the pro-

cess decomposition and message tra�c are often described as ows of the

net.



0.6. OVERVIEW 17

� It quickly discovers modelling bugs such as an unmarked structural dead-

lock.

� The established properties can dramatically alleviate a deductive proof.

� Lastly it helps the modeller to choose the next veri�cation methods. As a

simple illustration, positive ows covering all the places of the net ensure

the success of state-based methods and also give an upper bound on the

size of the states space.

Once the structural methods have been fully exploited, the modeller can use

the state-based methods. As said before, it may happen that the state space

is too big to be generated. However even in this case, the modeller have some

alternatives :

� Classically, he can always simulate his net and the consequences are two-

fold: negative properties are shown and long runs without trouble develop

con�dence in the model,

� He can do on-the-y veri�cation which, even though it takes much longer,

can check all the important properties of the net. Here, the key point is

that the complexity space is related to the longest simple path in the graph.

� He can generate a smaller object equivalent to the state graph with re-

spect to some properties. Partial-order methods and symmetry methods

typically produce such objects.

Alternatively deduction methods avoid the space complexity problem. It does

not mean that these methods should be used after the other methods have failed.

Indeed, if the modeller has a clear idea of how his model ful�lls its properties, he

often develops a quick deductive proof of its correctness. Examples are numerous

in distributed algorithms conception.

Lastly it should be pointed out that the deductive methods can be employed

in the design process by means of system synthesis. Indeed, if the speci�cation

is a formula and the semantic models of the involved logic are the behaviour of

the nets, then the system synthesis can be based on the satis�ability resolution.

Using this resolution, one begins to produce a semantic model, then one folds

the semantic model in order to obtain a Petri net. The �rst step is often possible

with modal logics (they verify the small model property), but the second step

is technically and sometimes theoretically di�cult. At the current time, it is an

open �eld of research.

0.6 Overview

Chapter 16 describes state-based methods. It develops some of the techniques

we have presented above. First it shows how the computation of state space
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may be managed e�ciently. Then it introduces more precisely the partial order

methods, symmetries and modular methods. There is more development on the

use of symmetries including the implementation for Well-formed coloured nets

where this building can be completely formalized. This part ends with comparing

these methods according to di�erent criteria such as space and time reduction ,

property equivalence and how these di�erent methods may be combined.

The rest of the chapter takes into account the kind of properties that can

be checked with the impact on the graph building. An original technique of

parametrized building is developed including the veri�cation of temporal logics.

Lastly, the problem of model checking is discussed as a whole.

In chapter 17, the structural methods are developed. Some accurate reduction

rules are presented with special emphasis on the implicit place. The implicit

place has a particular role as it simpli�es the structure of the net and makes

it possible to apply other techniques more e�ciently. Moreover implicit places

have a strong connexion with positive ow computation as shown in the chapter.

The linear algebraic techniques are then developed and the equivalence between

behavioural properties and linear algebraic results is pointed out. Then siphons

and traps are carefully studied as they are the cornerstone of necessary and

su�cient conditions for liveness properties.

In the last part of the chapter, some syntactical subclasses are de�ned showing

what behavioural consequences can be established from the syntactical restric-

tions. The behavioural properties include fairness, liveness, deadlock-freeness

and the relation between reachable states and linear invariants.

Chapter 18 presents new techniques which covers an open �eld of research.

The �rst technique is based on linear logic. The interest of linear logic is twofold:

it provides Petri nets with an operational semantics and a proof scheme for linear

logic gives the proof of a property in the corresponding Petri net.

The second technique helps to understand how to bene�t frommulti-formalisms.

This technique starts from a speci�cation of the system given in process-algebraic

terms. Then it constructs a Petri net model of the system. The Petri net is sim-

ulated to show bad behaviours in order to reinforce con�dence in the model. At

last the Petri net is transformed again in process algebra so that the two pro-

cess algebra (modelling the speci�cation and the implementation) are equivalent.

Emphasis is put on the design cycle rather than on technical aspects.
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