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Chapter 16

Structural Methods

16.1 Introduction

A salient feature of concurrent systems is the complexity of their behaviour
compared to the structure of the model. This is usually known as the state
space explosion problem. More precisely, the associated transition systems, or
reachability graph, of a given Petri net model is, when finite, much bigger than
the net model itself. This fact disnades us from studying these systems by
enumeration of their reachable states, although this is frequently the kind of
analysis that is carried out in practice, what can limit the problems to be dealt
with quite dramatically.

A fruitful approach to the problem has been the so called structure the-
ory. The idea is to get useful information about the behaviour reasoning on
the structure of the model. Structure theory investigates the relationship be-
tween the behaviour of a net system and its structure, i.e. the linear algebraic
and graph theoretic objects and properties associated to the net and the initial
marking. The study of this relationship usually leads to a deep understanding
of the system. The ultimate goals of structure theory are usually phrased as the
analysis problem, that is, trying to obviate the aforementioned state space ex-
plosion problem, developing analysis methods that not require the construction
of the state space, and the synthesis problem, aiming at the design of refinement
and composition operators that are known to preserve properties of interest. In
this chapter we concetrate in the analysis problem inside the structure theory.

When general concurrent systems are considered, typical structural tech-
niques give necessary or sufficient conditions on the studied properties. Nev-
ertheless, the most satisfactory results are obtained when the scope is limited
to restricted classes of systems and particular properties. The behaviour of
general concurrent systems is of course richer, but sensible limitations lead to
useful subclasses, both able to model some practical systems and to give insight
on the relationships between the behaviour and the structure in more general
ones. The typical restictions that are imposed aim at limiting the interplay be-
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tween synchronisations and conflicts. On one hand, these restrictions facilitate
the analysis. On the other, some modellin capabilities are lost. The designer
must find a compromise between modelling power and availability of powerful
analysis tools, while one of the theoretician’s goals is obtaining better results
for increasingly larger subclasses.

In this chapter two intimately related families of structural analysis tech-
niques will be considered:

e Graph Theory. Objects like paths, circuits, handles, bridges, siphons,
traps, etc. and their relationships are investigated. Tipically, only ordi-
nary nets are considered, and the major results are obtained for particular
properties, mainly boundedness, liveness, and reversibility, and restricted
14, 11, 19, 22, 46]

o Linear Algebra and Conver Geometry. These are techniques based on
the state equation and/or the flows and semiflows. The semiflows can
be used to prove properties like boundedness, mutual exclusion, liveness,
etc. More generally, the state equation can be used as a basic description
of the system in order to prove or disprove the existence of markings or
firing sequences fulfilling some given conditions, eventually expressed as
logic formulas {8, 18, 38]. Typically, results for general P/T net systems
are obtained [8, 7, 29, 30, 31, 40, 42], some of which may become specially
powerful when applied to restricted subclasses combining graph theory
based arguments [17, 18, 20, 43|].

To facilitate the analysis of a large and complex system it can be transformed
(tipically reduced) preserving the properties to be analysed {]. Transformation
rules somehow preserve the behaviour while they are often supported by struc-
tural arguments as simple, and efficient, aufficient conditions. Net system re-
ductions are presented in the next section with special emphasis in the implicit
place concept.

16.2 Net system reductions

In order to paliate the state space explosion problem several techniques has
been introduced to obtain reduced state spaces. As an example we can cite the
stubborn set method [47, 48]. These techniques work directly in the construc-
tion phase of the reachability graph maintaining the original net model. In
this section we review a different kind of reduction techniques named net sys-
tem reductions. These reductions proceed transforming the net structure and,
sometimes, the initial marking.

From an operational point of view, the approach is based on the definition
of a kit or catalog of reduction rules, each one preserving a subset of proper-
ties (liveness, boundedness, reversibility, etc) to be analysed. A reduction rule
characterises a type of subnet system (locality principle) to be substituted by
another (simpler) subnet system.
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The preconditions to be fulfilled have a behavioural and/or structural for-
mulation. Behavioural preconditions can be more powerful for a given initial
marking, but their verification is usually much more complex. So precondi-
tions presented here are based on structural considerations and properties of
the initial marking (i.e. the initial marking is considered as a parameter).

The design of a catalog of reduction rules is based on a tradeoff between
completeness (L.e. transformation capabilities) and usefulness (i.e. applicabil-
ity).

Given a catalog of reduction rules, analysis by reduction {the transformation
procedure) is iterative by nature: Given the property (or properties) to be
analyzed, the subset of rules that preserve it (them) is applied until the reduced
system becomes irreducible. The irreducible system may be so simple that the
property under study is trivially checked (see Figure 16.2.d). In other cases,
the irreducible net is just “simpler” to analyse using another analysis technique
(e.g. we can obtain a reduced state space on which it is possible to analyse
the property that has been preserved in the reduction process). In other words,
techniques to analyse net system models are complementary, not exclusive.

Reduction rules are transformation rules interesting for net analysis. When
considered in the reverse sense they become expansion rules, interesting for net
synthesis: stepwise refinements (or top-down) approach. Examples of this ap-
proach can be found in the context of synthesis of live and bounded Free Choice
systems [20] or in the definition of subclasses of nets by the recursive application
of classical expansion rules as the case of Macroplace/Macrotransition systems
[16]. Using this approach, with adequate expansion rules, the model will ver-
ify by construction the specification. This is interesting when compared with
the more classical approach based on the iteration of the design and analysis
phases until the specification is satisfied. The iterative process has two basic
disadvantages:

1) the lack of general criteria for modifying (correcting) a model which does
not meet the requirements.

2) the operational difficulty inherent to the validation phase.

Nevertheless, since no kit of reduction rules is complete (i.e. able to fully
reduce any system), it is not possible to synthesize an arbitrary system by such
stepwise refinements.

A very basic kit of reduction rules is presented. Additional details are given
only for the rule of implicit places, which are redundancies in the net system
model: if an implicit place is removed, then (illusory) synchronizations disappear
and other reduction rules can be applied.

16.2.1 A basic kit of reduction rules

Figure 16.1 presents graphically the structural and marking conditions for a kit
of very particular cases of reduction rules. It is not difficult to observe that they
preserve properties such as liveness and the bound of places (thus boundedness),
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g ¥

RA1. Fusion of series places

g

RA?Z2, Fusion of series {ransitions

» »
Q

RBI1. Elimination of identical place

i

RB2. Elimination of identical transition

o oo 4

RC1. Elimination of self-loop place

£

RC2. Elimination of self-loop transition

Figure 16.1: A basic reduction kit.

Figure 16.2: The reduction process shows (see (d)) that the net system in figure

6.8 is live, 7-bounded and reversible,
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e RA1is a particular case of the macroplace rule [37].
¢ RAZ2is a particular case of the transition fusion rule [2]

e RB1 and RC1 are particular cases of the implicit place rule (38, 40] (to
be considered later in more detail). Observe that RCI can be trivially
generalized creating several self-loops in which the place always appears.
Liveness, the bound of places, and reversibility are preserved. Moreover
if the place contains several tokens, liveness, boundedness (in general not
the bound of the net system) and reversibility are preserved.

o RB2and RC2 are particular cases of identical and identity transition rules
[2], respectively.

An interesting remark is the analogy between rules at the same row in Figure
16.1: Basically rules RXZ2 are obtained from rules BX1 by changing the role of
places and transitions (duality) and reversing the arrows (important only for
rules RA).

Example 16.1 Let us consider now the net system in Figure 6.8.b. The subnet
defined by opy —t3 — walit.dep. verifies the precondition of rule RAI. Thus it can
be reduced to a place, ps (Fig. 16.2.a}. The same holds for opy ~ tg — wait_free
that is reduced to pg (Fig. 16.2.a). The subnets t; — load — t5, t4 — deposit — 15,
t7 — unload — tg, and tg — withdraw — £;0 can be reduced according to RA2
(see t1g, t45, tys and fgio in Fig. 16.2.a). Place R in Fig. 16.2.a is implicit
{one of the trivial generalizations mentioned for RCI). Thus it can be removed,
and wait_draw — t13 — p3 and #9310 — P — t7s can be reduced to piz and t7sg10,
respectively (see Figure 16.2.b). Places p1o and wait with. are implicit (RC1I)
in Figure 16.2.b, thus the net system in Figure 16.2.c is obtained. Playing
the token game, a place (e.g. object) can became empty in Figure 16.2.c and
t4s — object — t7g910 can be reduced (RA2) to a single transition (Fig. 16.2.d).
Therefore, the original net system is live, 7-bounded and reversible.

16.2.2 Implicit places

A place in a net system is a constraint to the firing of its output transitions. If
the removal of a place does not change the behaviour of the original net system,
it represents a redundancy in the system and it can be removed. A place whose
removal preserves the behaviour of the system is called an ¢mplicit place. Two
notions of behaviour equivalence are used to define implicit places. The first one
considers that the two net systems have the same behaviour if they present the
same fireable sequences. That is, this place can be removed without changing
the sequential observaiion of the behaviour of the net system (i.e. the set of
fireable sequences). Implicit places under this equivalence notion are called
sequential implicit places (SIP). The second notion of equivalence imposes that
the two net systems must have the same sequences of steps. In this case the
implicit places are called concurrént implicit places {CIP) and their removal
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does not change the possibilities of simultaneous occurrences of transitions in
the original net system. Implicit places model false synchronisations on their
output transitions.

Definition 16.1 Let S = (N, myp) be a net system and &' = (N',mq’) the net
system resulling from removing place p from &. The place p is a

1. Sequential Implicit Place (SIP) iff LIN,mq) = LN, m¢'), i.e., the re-
moving of place p preserves all firing sequences of the original net.

2. Concurrent Implicit Place(CIP) iff LS(N,mg) = LS(N’',my¢’), i.e., the
removing of place p preserves all sequences of steps of the original net.

It is easy to see that if a place p is & CIP then it is also a SIP (since
the preservation of the sequences of steps implies the preservation of the firing
sequences). Nevertheless, the contrary is not true in general. Let us consider,
for example, the net in Figure 6.2. The place pg is a SIP since its removal does
not change the set of firing sequences (the reachability graphs of the original net
system and the net gystem without place pg are the same). But the place pg is
not a CIP because after its removal transitions b and ¢ can occur simultaneously
and in the original net system they are sequentialised (i.e. the steps are not
preserved). A SIP with self-loops, in order to be a CIP may require more
tokens in its initial marking than those making it a SIP {in our example pg to
be CIP requires two tokens in the initial marking). In (8] it is proven that a
self-loop free SIP is also a CIP.

Let p be an CIP of the net system & and 8’ the net system § without the
CIP p. Let o be a fireable sequence of steps in &, such that mg-Z.m. The
sequence o is also fireable in the net system &', i.e., mg’-Zsm’. This is because
the removal of an CIP preserves the fireable sequences of steps of the net system.
A trivial consequence of this is that the reached markings in § and &', firing the
same sequence o, are strongly related: Vg € P\ {p}, mg] = m'{g]. Moreover,
if s is a step enabled at m’ the following holds: m’ > Pre' -s == mip| >
2 te(penisi 8lt) - Prelp,t]. If p is a SIP the previous property can be writen in
the following way: Vt € p*, m' > Pre'[P, ] = mlp| > Prelp, t].

The elimination of a CIP or a SIP preserves: deadlock-freeness, liveness and
marking mutual exclusion properties; but it does not preserve: boundedness
and reversibility. Moreover, the elimination of a CIP preserves the firing mutual
exclusion property, but this is not true for SIPs.

Example 16.2 The net system in Fig. 16.3.a is unbounded {p, is the unique
unbounded place) and non-reversible (also becausc of py). Place py is a CIP.
Removing p4 the system becomes bounded and reversible! On the other hand,
place pg in Figure 6.2 imposes firing mutual exclusion between b and ¢. Being pg
a SIP, the reduction rule does not preserve firing mutual cxclusion. According
to the definition, fireable sequences are preserved.

Sometimes it is practical to impose an additional condition to the defini-
tion of implicit places, asking their marking to be redundant (computable) with
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Figure 16.3: a) Place p4 is firing implicit but not marking implicit. Remov-
ing py the “false” synchronisation in f4 disappears. b) The places in the set
{pe1,pe2, pes} {or {p2,p3, ps}) are CIPs.

respect to (from) the marking of the other places in the net (i.e. a marking re-
dundancy property). Let us consider the CIP pg; of the net system, 8, depicted
in Figure 16.3.b. This place is CIP and its marking can be computed from the
marking of places p;, p2 and ps: Ym € RS(S), mps;] = mip;|+m|pe]+m|ps]--1.
This class of places will be called marking implicit places. Nevertheless, the
marking of some implicit places cannot be exclusively computed from the mark-
ing of the other places in the net. These places will be called firing implicit
places. As an example consider the CIP p4 in Figure 16.3.a: Vm € RS(S8), such
that mg-"sm, m|py] = m|p3] + o[t:]). The classification of the implicit places
into marking and firing implicit places can be applied to the two previously de-
fined classes: CIP and SIP. Because of the additional condition, marking implicit
places preserve the state space (i.e., the reachability graph of the net system
with and without p are isomorphous), therefore they preserve boundedness and
reversibility, too.

Implicit places presented until now are in a behavioural setting. In order to
do the verification we must resort to algorithms based on the reachability graph
with the inherent limitations and the high associated complexity. The struc-
tural formulation of the implicit place reduction rule requires the statement of
a structure based condition to be fulfilled by the implicit place and the charac-
teristics of ifs initial marking. Places satisfying the structure based condition
will be called structurally implicit places, that is, places that become implicit
provided they are marked with enough tokens.

Definition 16.2 Let N be a net. A place p of N is a structurally implicit
place iff there exists a subset I, C P\ {p} such that C[p,T]| 2 3_ ¢ ¥4 Cle, T),

where y, is a nonnegative rational number (i.e. Jy > 0, y[p| = 0 such that
y-C<Clp,T] and I, = ||y|].
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Figure 16.4: Places pg and py (or ps and py) are implicits

Obviously, the above structural condition can be checked in polynomial time.
The next property gives the initial marking conditions to be satisfied by a struc-
turally implicit place to become a SIP or a CIP. This condition is based on the
solution of a Linear Programming Problem (LPP 16.1) that computes an up-
per bound of the minimal initial marking of a structurally implicit place to be
SIP or CIP in the net system (A, mg). Because, LPPs are of polynomial time
complexity [34], the evaluation of this condition has this complexity.

Property 16.3 Let (N, mg} be a net system. A structurally implicit place
p of N, with initial marking mg[p|, is a SIP (CIP) if melp] > 2z, where 2
is the optimal velue of the LPP 16.1 with o = 1 (o = max{} . .st]ls €
LSV, mo)}).

z= min. y-mo+oa-pu (16.1)
st y-C<ClpT]
y - Pre[P,t] + x> Prelp,t] Vtep®
y>0,y[p| =0

If the optimal solution of the LPP 16.1, for a structurally implicit place p,
verifies that y - C = Clp, T, then p is a marking implicit place and the following
holds: Vm € RS(N,mg), mlp] =y -m+ o - 4.

Observe that a structurally implicit place can become implicit for any initial
marking of places P\ {p} if we have the freedom to select an adequate initial
marking for it. This property is not true for CIPs {or SIPs) that are not struc-
turally implicit places. For example, the place pio in Figure 2.4.a is a CIP but
it is not a structurally implicit place. Moreover, the place pg is not implicit if
we change the initial marking of place p4 from 0 to 1.

Example 16.3 Solving the LPP 16.1 for the place py in Fig. 16.4.a with
a = 1 we obtain z = 0, for the optimal solution: y =100, 0, 1, 1, 1, 0, 1, 0,
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0] and p = ~1. Moreover, C|pg, T] = Clps, T1+ Clps, T+ Clps, T+ Clor, T].
Because mglp] > z = 0, pg is a SIP (since pg is self-loop free place it is also
a CIP) and can be removed. Being py a marking implicit place we can write:
¥m € RS(V, mo), mlps] = mlps] + mlps] + mlps] + mlpr] — 1.

Once pq is removed, a similar computation for py can be done and p; is also
shown to be a CIP. Figure 16.4.b shows a reduced net system. It can be obtained
reducing p3 —b— py into a place (say paq) (RAI) and finally pg ~ f —p; —a—psag
into II;. Using the kit in Figure 16.1, plus the implicit place rule no more
reductions can be performed: the net system is irreducible with respect to that
kit of reduction rules. The rule RA1 allows to fuse 114 and ps. The new place is
implicit, so it can be removed. Then a cycle with pg — d — py — e — ps remains.
Finally it can be reduced to a basic net, pg —t4. — ps, with one token. Therefore
the original net system is live, bounded. It is also reversible, but we cannot
guarantee this because of the fusion of p3 — b — pg into pa4.

16.3 Linear algebraic techniques

Analysis techniques based on linear algebra allow the verification of properties
of a general net system. The key idea is simple, and it has been already com-
mented previously: Let & be a net gystem with incidence matrix C. If m is
reachable from mg by firing sequence o, then m = mg + C - 0. Therefore
the set of natural solutions, (m, ), of this state equation defines a linearisa-
tion of the reachability set RS(S) denoted LRS®#(S), This set can be used
to analyse properties like marking and submarking reachability and coverabil-
ity, firing concurrency, conflict situations, deadlock-freeness, mutual exclusion,
k-boundedness, existence of frozen tokens, synchronic relations, etc. To do so,
the properties are expressed as formulas of a first order logic having linear in-
equalities as atoms, where the reachability or fireability conditions are relaxed
by satisfiability of the state equation. These formulas are verified checking exis-
tence of solutions to systems of linear equations that are automatically obtained
from them [8]. For instance, if Vm € RS(S) : m[p| = 0V m(p'] = 0; then places
p and p’ are in mutual exclusion. This is verified checking absence of (natural)
solutions to {m = mgy+ C-o Amip| > 0Am(p] > 0}. Integer Linear Program-
ming Problems |35] where the state equation is included in the set of constraints
can be posed to express optimization problems, like the computation of marking
bounds, synchronic measures, etc. [8, 40]. This approach is a generalization of
the classical reasoning using linear invariants 29, 31}, and it deeply bridges the
domains of net theory and convex geometry resulting in a unified framework to
understand and enhance structural techniques [8] (see Subsection 6.3.2).

Unfortunately, it usually leads to only semidecision algorithms (i.e., only
necessary or only sufficient conditions) because, in general, RS(S) ¢ LRS*Z(S).
The undesirable solutions are named spurious.

Example 16.4 (Existence of spurious solutions and their consequences
in the analysis) ILet us consider the net system depicted in Figure 2.3. The
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corresponding net state equation has the following marking spurious selutions:
my = 2-pg, My = 2Py, Mg = 2 p3, Mg = 2+ p5, My = Py + Pg, Mg = P3 + Pa.
The first four solutions allow to conclude that p;, ps3, ps and ps are 2-bounded,
while they are really 1-bounded (check it). The solutions mg, mg and my are
total deadlocks. Then using the state equation we cannot conclude that the
system in Fig. 2.3 is deadlock-free.

Spurious solutions can be removed using certain structural techniques, con-
sequently improving the quality of the linear description of the system [10]. For
example, it is clear that adding implicit places, a new system model with identi-
cal behaviour is obtained. For some net systems, if the implicit places are chosen
carefully, the state equation of the new system may have no integer spurious
solution preventing to conclude on the bound of a place or the deadlock freeness
of the system.

Example 16.5 (Elimination of spurious solutions) The net system in
Figure 16.3.b has been obtained adding the implicit places pg1, pg2 and pp3 to
that in Figure 2.3. The above mentioned spurious solutions, m;,i = 1...6; are
not solutions of the new state equation. Moreover, we can conclude now that
the new (and original) net system(s) were 1-bounded and deadlock-free!

Anyway the algorithms based on linear algebra do decide in many situations,
and they are relatively efficient, specially if the integrality of variables is disre-
garded. (This further relaxation may spoil the quality, although in many cases
it does not [14, 40].) Moreover, these techniques allow in an easy way an initial
marking parametric analysis (e.g. changing the number of customers, size of re-
sources, initial distribution of customers and/or resources, etc). The application
of these techniques to the analysis of the boundedeness and deadlock-freeness
properties is illustrated in subsections 16.3.1 and 16.3.2, repectively.

In temporal logic terms, the above outlined approach is well suited for safety
properties {“some bad thing never happens”), but not so much for liveness prop-
erties { “some good thing will eventually happen”). For instance, the formula
expressing reversibility would be Vm ¢ LRS%® (§):36'30:mg=m+C.0,
but this is neither necessary nor sufficient for reversibility. The general approach
to linearly verify these liveness properties is based on the verification of safety
properties that are necessary for them to hold, together with some inductive rea-
soning [26]. For instance, deadlock-freeness is necessary for transition liveness,
and the existence of some decreasing potential function proves reversibility [39]
(see subsection 16.3.4).

Another important contribution of linear techniques to liveness analysis has
been the derivation of ad hoc simple and efficient semidecision conditions. In
subsection 16.3.3, we present one of these conditions based on a rank upper
bound of the incidence matrix, which was originally conceived when computing
the visit ratios in certain subclasses of net models [6].

The following subsections study marking bounds and boundedness, deadlock-
freeness, structural liveness and liveness, and reversibility.
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16.3.1 Bounds and boundedness

The study of the bound of a place p, b{p), through linear algebraic techniques,
requires the linearisation of the reachability set in the definition of b(p) by means
of the state equation of the net. In this subsection we assume that m ¢ R" and
o € R™. This linearisation of the definition of b(p) leads to a new quantity
called the structural bound of p, sb{(p):

sh(p) = sup{m(p)jm = mo + C- & > 0,0 > 0} (16.2)

Let e, be the characteristic vector of p: eplq] := if ¢ = p then 1 else 0. The
structural bound of p, sb(p), can be obtained as the optimal solution of the
following Linear Programming Problem (LPP):

sb(p) = max. e, -m (16.3)
gt. m=mg+C.0c>0
o>0

Therefore sb(p) can be computed in polynomial time. In sparse-matrix
problems (matrix C is usually sparse), good implementations of the classical
simplex method leads to quasi-linear time complexities.

Because RS(S) ¢ LRS®E(S), in general, we have that sb(p) > b(p) (recall
example 16.4). Therefore, if we are investigating the k-boundedness of a place
(i.e. mp| < k), we have a sufficient condition in polynomial time: if sb(p) <k
then b(p) < k (L.e. p is k-bounded).

In the sequel we argue on classical results from linear programming and
convex geometry theories. We assume the reader is aware of these theories
(see, for example, [33, 34]); otherwise all the needed arguments are compiled
and adapted in [40]. The important point here is to convey the idea that other
theories are helpful to understand in a deep and general framework many sparse
results on net systems’ behaviours. The dual linear programming problem of
16.3 is the following (see any text on linear programming to check it):

sb(p) = min. y-mp (16.4)
st. y-C<0
y=>ep

The LPP 16.3 has always a feasible solution (m = my, ¢ = 0). Using
duality and boundedness theorems from linear programming theory, both 1L.PPs
16.3 and 16.4 are bounded (thus p is structurally bounded) and sb(p) = sb(p)’
iff there exists a feasible solution for the LPP 16.4: y > e, such that y - C < 0.

The reader can easily check that LLPP 16.4 makes in polynomial fime an
“implicit search” for the structural bound of p on a set of structural objects
including all the p-semifiows. In this sense, we can say that analysis methods
based on the state equation are more general than those based on linear invari-
ants. That is, the dual LPPs of those based on the state equation consider not
only the p-semiflows but other structural objects as y > 0 such that y - C< 0.
On the other hand we must say that the computational effort using the linear
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invariants is greater than using the state equation, since the computation of
the minimal p-semiflows (in some cases, an exponential number!) must be done
previously to the study of the property.

From the above discussion and using the alternatives theorem (an algebraic
form of the Minkowski-Farkas lemma) the following properties can be proved:

Property 16.4 The following three statements are equivalent:
1. p is structurelly bounded, i.e. p is bounded for any mg.
2. There exists y 2 e, such thaty - C < 0. (place-based characterization)
3. For all x > 0 such that C-x > 0, Clp,T| - x = 0. (transition-based

characterization)

Property 18.5 The following three statements are equivalent:
1. N is structurally bounded, i.e. N is bounded for any myg.
2. There exists y > 1 such that'y - C < 0. {place-based characterization)

3 Forallx >0 suchthat C-x>0,C-x=0;4de Fx203sif C-xx0.
(transition-based characterization)

16.3.2 Deadlock-freeness (and liveness)

Deadlock-freeness concerns the existence of some activity from any reachable
state of the system. It is a necessary condition for liveness, although in general
not sufficient. When no part of the system can evolve, it is said that the system
has reached a state of total deadlock (or deadlock for short). In net system
terms, a deadlock corresponds to a marking from which no transition is fireable.
In order to study deadlock-freenes by means of linear algebraic techniques, the
property must be expressed as a formula of a first order logic having linear
inequalities as atoms, where the reachability or fireability conditions are relaxed
by satisfiability of the state equation. The formula to express that a marking
is a deadlock consists of a condition for every transition expressing that it is
disabled at such marking. This condition consists of several inequalities, one
per input place of the transition (expressing that the marking of such place
is less than the corresponding weight) linked by the “v” connective (because
lack of tokens in a single input place disables the transition). We give below
a basic general sufficient condition for deadlock-freeness based on the absence
of solutions satisfying simultanecusly the net state equation and the formula
expressing the total deadlock condition commented above.

Proposition 16.6 Let (N,mo) be a net system. If there doesn’t exist any
solution (m, o), for the system

m=mg+C-0o (16.5)

mz2>0,020
Vypeee mp] < Prefp, t|;vi € T
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then (N, mgp) is deadlock-free.

Obviously, the deadlock conditions are non linear, because they are expressed
using the "V” connective. Anyway we can express the above condition by means
of a set of linear systems as follows. Let o : T — P be a mapping that assigns
to each transition one of its input places. If there doesn’t exist « such that the

system

m=mg+C-o (16.6)
m=>0,02>20
m[a(t)] < Prela(t),tVte T

has a solution, then (N, mg) is deadlock-free. The problem is that we have to
check it for every mapping a of input places to transitions so we have to check
I1:c7 1*t] systems of linear inequalities. If every transition has exactly one input
place {e.g. State Machines) then only one system needs to be checked, but in
general the number might be large. Nevertheless it is possible to reduce the
number of systems to be checked, preserving the set of integer solutions. For
this purpose, the work [42] presents four simplification rules of the deadlock
condition using information obtained from the net system, and a simple net
transformation obtaining an equivalent one wrt. the deadlock-freeness property
where the enabling conditions of transitions can be expressed linearly. As a
result, deadlock-freeness of a wide variety of net systems can be proven by ver-
ifying absence of solutions to a single system of linear inequalities. Even more,
in some subclasses it is known that there are no spurious solutions being dead-
locks, so the method decides on deadlock-freeness [43]. The following example
presents the deadlock-freenes analysis of the net system in figure 6.8 applying
this technique.

Example 16.6 (Deadlock-freeness analysis and simplification rules)
Let us consider the net system in Figure 6.8. The direct application of the
method described in proposition 16.6 requires to check [[,cr [*t] = 36 linear
systems as that presented in 16.6. Nevertheless, below we show that we can
reduce the deadlock-freeness analysis on this net to check a unique linear system
applying the simplification rules presented in [42]. Solving the LPP 16.3 for
the places of the net system we obtain the following: sb(p) = 1, for all p €
P\ {empty, object}; and sb(empty) = sb{object) = 7 (the same can be obtained
from the linear invariants in Egs 6.1-6.4). The transitions #;, t4, ¢ and {y are
those presenting complex conditions giving rise to the large number of linear
systems. The simplification of these consitions is as follows:

a) The non-fireability condition of ¢, is (m[wait.raw] = 0) V (m[R] = 0).
Taking into account that sb(wait.raw) = sb(R) = 1, we can apply a
particularization of rule 3 in [42] to replace the previous complex condition
by a unique linear inequality: Let £ be a transition such that each input
place verifies that its structural bound is equal to the weight of its output
arc joining it to ¢. The non fireability condition for transition £ at a
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b)

d)

marking m is 37 ., mip] <37 o Pre[p,t] — 1. That is, the amount of
tokens in the input places of ¢ is less than the needed. Therefore, for the
transition ¢; this linear condition is: mlwait raw] + m[R] < 1.

The non-fireability condition of #; is (m|waitfree] = 0) V (m[R] = 0).
In a similar way to the case of transition £; we replace this condition by
miwait_free] 4+ m[R] < 1, since sb{wait_free) = sb(R) = 1 and rule 3 in
[42] can be applied.

The non-fireability condition of ¢4 is (m|wait_dep.] = 0) V (m[R] = 0) Vv
(mlempty] = 0). Since sb(wait.dep.) = sb(R) = 1 and sb(empty) = 7
(i.e. only one input place of t; has a sb greater than the weight of the
arc) rule 4 of [42] can be applied. Then, the previous complex condition
is replaced by the following linear condition:

sb{empty) - (m[wait_dep.| + m{R]} + mjempty] <
sb(cmpty) - (Pre{wait.dep., T] + Pre([R, T]) + Pre[empty, T] — 1

ie. 7(mlwait.dep.}+ m[R]} + mempty] < 14.

The non-fireability condition of tg can be reduced to the following linear
condition by similar reasons to the case of transition ¢4: 7(m|wait.with.]+
m|R]) + mfobject] < 14.

Applying the previously stated simplifications, the deadlock-freeness analysis
for the net system in Figure 6.8 is reduced to verify that there doesn’t exist any
solution (m, o}, for the following single linear system (the reader can check that
the system has no solutions).

m=my+C-0o (16.7)
mz>0,02>0

m(wait_raw] + m[R] < 1; for t;
m|load] = 0; for t5
miop,] = 0; for t3
7(m{wait_dep.] + m[R]) + miempty] < 14; for #4
m|deposit] = 0; for t5
mlop,] = 0; for tg
m{wait_free] + m[R] < 1; for t,
m[unload] = 0; for tg
7(m[wait_with.] + m[R]} + mjobject] < 14; for ¢g
m|withdrawal] = 0; for t1o

Linear invariants may also be used to prove deadlock-freeness. Using the
linear invariants in Egs. (6.1-6.4), we shall prove that our net system in Figure
6.8 is deadlock-free.
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If there exists a deadlock, no transition can be fired. Let us try to con-
struct a marking in which no transition is fireable. When a unique input place
of a transition exists, that place must be unmarked. So mlload] = mfop,] =
m[deposit] = m[op,] = munload] = m|withdrawal] = 0, and the linear invari-
ants in Eqs (6.1-6.4) reduce to:

m(wait.raw] + miwait.dep.] = 1 (16.8)
m|wait free] + m[wait_with.] = 1 (16.9)
mfempty] + mlobject] = 7 (16.10)
m[R] = 1 (16.11)

Since R should always be marked at the present stage, to prevent the firing
of t; and ¢y, places wait_raw and wait_free should be unmarked. The linear
invariants are reduced once more, leading to:

mwait_dep.] = 1 (16.12)

mwait_with.] = 1 (16.13)

m|empty] -+ mfobject] = 7 (16.14)

m[R] = 1 (16.15)

Since m[wait.dep.] = miwait.with.] = 1, to avoid the firing of £, and ¢,

mlempty] + mlobject] = 0 is needed. This contradicts Eq (16.14), so the net
system is deadlock-free. A more compact, algorithmic presentation of the above
deadlock-freeness proof is:

if m[load] + mlop,] + m|deposit] + mlop,] + m[unload} + miwithdrawal] > 1
then one of i5,13,t5,t6,18 or {19 is fireable
else if mlwait_raw| + m[wait_free] > 1
then one of { o0r {7 is fireable
else one of t4 or tg is fireable

As a final remark, we want to point out that liveness can be proved for the
net system in Figure 6.8. Liveness implies deadlock-freeness, but the reverse is
not true in general. Nevertheless, if the net is consistent and it has only one
minimal t-semiflow, as it happens in the example, where the unique minimal
t-semifiow is 1; then any infinite behaviour must contain all transitions with
relative firings given by such t-semifiow. Thus deadlock-freeness implies, in this
case, liveness.

16.3.3 Structural liveness and liveness

A necessary condition for a transition ¢ to be live in a system (N, myg) is its
eventual infinite fireability, i.e. the existence of a firing repetitive sequence oy
containing t: Jor € L{N, mg) such that mg-2%m > mg and ogjt] > 0.
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Using the state equation as a linearisation of the reachability set, an upper
bound of the number of times ¢ can be fired in (N, mg) is given by the following
LPP (e¢|u] := if u = ¢ then 1 else 0):

sr(t) = max. e, o (16.16)
8.%. m=mg+C.-020
o >0

The dual of (LPP 16.16) is:

sr(t) = min. y-mp (16.17)
s.t. y -C<—e
y=20

We are interested on characterizing when sr(t) goes to infinity. The LPP
16.16 has m = myg and o = 0 as a feasible solution. Using first duality and
unboundedness theorems from linear programming and later the alternatives
theorem, the following properties can be stated:

Property 16.7 The following three statements are equivalent:

L.t is structurally repetitive (i.e. there exists a “large enough” my such that
t can be fired infinitely often).

2. There does not exist y >0 such that y-C <-e, (place-based perspective }

3. There exists x > ey such that C-x > 0 { transition-based perspective }
Property 16.8 The following three statements are equivalent:

1. N is structurally repetitive (i.e. all transitions dre structurally repetitive).

2. There does not exist y > 0 such thaty - Cxo

3. There exists x > 1 such that C . x> 0
Aditionally, the following classical results can be stated [31, 5, 38]:

Property 16.9 Let N be a net and C its incidence matriz.
1. if N s structurally live then N is structurally repetitive.

2. if N is structurally live and structurally bounded then N is conservative
(Fy > 1 such that y - C = 0) and consistent (3x > 1 such that C-x = 0),

3. if N is connected, consistent and conservative then it is strongly con-
nected.

4. if N is live and bounded then N is strongly connected and consistent.
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Figure 16.5: Two conservative and consistent, struturally non-live nets: (a)
rank(C) = 4, |[EQS| = 3, thus A is not structurally live; (b) rank(C) = 4,
|[EQS| = 4, |[CCS| = 3, thus no answer.

{a}

)

Figure 16.6: Conflicts and structural conflicts.

Net structures in Figure 16.5 are consistent and conservative, but there does
not exist a live marking for them. A more careful analysis allows to improve
the above result with a rank condition on the incidence matrix of A, C. Before
the introduction of this improved result we need to introduce certain structural
objects related with conflicts.

Conflicts in sequential systems they are clearly the situation in which two
actions are enabled so one must be chosen to occur, For instance, Figure 16.6 (a)
shows a conflict between t and #’. Things become more complicated in the case
of concurrent systems, where the fact that two transitions are enabled does not
necessarily imply that we must choose one. Sometimes, the “sequential” defini-
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Lion  there is a conflict when two transitions are enabled and the occurrence
of one disables the other -— is suitable, namely in 1-bounded systems. But in
other cases a new definition is needed. Consider now the marking that puts two
tokens in the place of Figure 16.6 (a). Neither the occurrence of ¢ disables ¢’ nor
the converse, but the firing of one decreases the enabling degree of the other:
so to say, each token must decide which way to go. Formally, there s a conflict
situation when the enabling vector is not an enabled step. In Figure 16.6 (b),
neither the occurrence of ¢ or ¢/ disables the other, but the firing of #' decreases
the enabling degree of £ from three to one. The cnabling vector is 3t + ¢, while
the (maximal)} enabled steps are 3¢ and ¢ + ¢'. By the way, this example shows
that conflict does not imply absence of concurrency: t and t’ are involved in a
conflict, but they could occur concurrently, as in ¢ + ¢

The very basic net construct used to model conflicts is a place with more
than one output transition, i.e., a distributor place. In fact, distributor places
are needed to model conflicts, but the converse is not true. Due to the regulation
circuit in Figure 16.6 (c), t and ' are never in effective conflict although they
share an input place. The output transitions of a distributor place are said
to be in structural conflict relation ({t;,t;) € SCf when *t; N *t; # §). This
relation is reflexive and symmetric, but not transitive. Its transitive closure is
named coupled conflict relation, and it partitions the transitions of a net into
coupled conflict sets (CCS(t) denotes the coupled conflict set containing £). In
Figure 16.6 {d) ¢t and ¢’ are not in structural conflict relation but they are in
coupled conflict relation, through ¢/,

Very often in the literature, our structural conflicts are called simply “con-
flicts”, but we prefer to add the adjective structural to better distinguish from
the behavioural, hence dynamical, notion of {effective) conflict, which depends
on the marking. As we have noted, a structural conflict makes possible the exis-
tence of an effective conflict, but it does not guarantee it, e.g,. Figure 16.6 (d),
except for the case of equal conflicts, where all the transitions in structural con-
flict have the same precondition. Transitions ¢ and ¢’ are said to be in equal
conflict relation, (t,t') € EQ, when ¢ = ' or Pre[P,t] = Pre[P,t'| # 0. This
equivalence relation partitions the transitions into equal conflict sets. The equal
conflict set containing ¢ is denoted by EQS(t). Figure 16.6 (e¢) shows an equal
conflict set.

Relating the rank of the incidence matrix with the number of (coupled o
equal) structural conflicts in a net improves the previous conditions on structural
liveness:

Property 16.10 Let N be a net and C its incidence matriz.

1. if N is live and bounded then N is strongly connected, consistent, and
rank(C) < |[SEQS| — 1.

2. if N is conservative, consistent, and rank(C) = |SCCS| — 1 then N is
structurally live and structurally bounded.

The condition in property 16.10.1 has been proven to be also sufficient for
some subclasscs of nets [13, 44, 45]. Obscrve that, even for structurally bounded
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nets, we do not have a complete characterization of structural liveness. Since
|SCCS| < |SEQS]|, there is still a range of nets which satisfy neither the necessary
nor the sufficient condition to be structurally live and structurally bounded! The
added rank condition allows to state that the net in Figure 16.5.a is structurally
non-live. Nevertheless, nothing can be said about structural liveness of the net
in Figure 16.5.b.

Property 16.10 is purely structural (i.e., the initial marking is not considered
at all). Nevertheless, it is clear that a too small initial marking (e.g. the
empty marking) make non live any net structure. A less trivial lower bound
for the initial marking based on marking linear invariants is based on fireability
of every transition. If { € T is fireable at least once, for any p-semiflow y,
y - mg > y.- Pre[P,t]. Therefore:

Property 16.11 If (N, my) is a live system, then Vy > 0 such that y - C = 0,
y - mg > maxeer(y - Pre[Pt]) > 1

Unfortunately no characterization of liveness exists in linear algebraic terms.
The net system in Figure 6.1.b adding a token to ps is consistent, conservative,
fulfills the rank condition and all p-semiflows are marked, but it is non live.

16.3.4 Reversibility (and liveness)

Let us use now a Liapunov-stability-like technique to prove that the net system
in Figure 6.8 is reversible. It serves to illustrate the use of marking linear
invariants and some inductive reasonings to analyze liveness properties.

As a preliminary consideration that makes easier the rest of the proof, the
following simple property will be used: Let (N, m;) be a reversible system
and mg reachable from m; (i.e., Jo € L(N,m;) such that m;-Z,myg). Then
(N, myg) is reversible.

Assurne my; is like mg (Figure 6.8), but making:m; [wait_raw]==m; [empty] =
0, m;[wait.dep.] = 1 and m, [object] = 7.

Let us prove first that (A, m;) is reversible. Let w be a non-negative place
weighting such that wip;] = 0 iff p; is marked in m;. Therefore, w|wait_dep.] =
w{R] = wiobject] = wiwait_with.] = 0 and w[p;] > 0 for all the other places.
The function v(m) = w-m has the following properties: v(m) > 0 and v(m;) =
0

For the system in Figure 6.8 a stronger property holds: v(m) = 0 <= m =
m;. This can be clearly seen because w - m = 0 <= mjwait.raw| = mlload] =
m[op,] = mldeposit] == mlempty] = mlop,] = m|wait_free] = mfunload] =
m|withdrawal] = 0. Even more, it is easy to check the following: m; is the
present marking <= g is the unique fireable transition.

If there exists (warning: in Liapunov-stability criteria the universal quantifier
is used!) a finite firing sequence (i.e., a finite trajectory) per reachable marking
m; such that m;."%,m; 1 and v(m;) > v(m;;1), in a finite number of transition
firings v(m) == 0 is reached. Because v(m) = 0 <= m = m,, a proof that m,
is reachable from any marking has been obtained (i.e, (N, m;) is reversible).
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: ultzplymg the net state equation by w we obtain the following condl~
tlon:#f o = ¢; then [w-m; <w-m;] &> w -ClPt] <0

" Now, removing in Figure 6.8 the places marked at m; (i.e., wait.dep., R,
object, wait.with.) and fireable transitions (i.e., tg) an acyclic net is obtained,
so there exists an w such that w - C{P,t;] < 0, Vj #9.

For example, taking as weights the levels in the acyclic graph we have:

wlop;] = wlunload] = 1 (16.18)

wlload] = wlwait_free| = 2 (16.19)

wlwait_raw] = wlop,] = 3 (16.20)

e w[deposit] = wlwithdrawal] = 4 (16.21)
wlempty] = 5 (16.22)

andw-C=[-1,-1,~1,~1,-1,—-1,~1, -1, +4, ~1]. In other words, the firing
of any transition, except o, decreases v(m) = w - m.

Using the algorithmic deadlock-freedom explanation in previous sections, the
reversibility of (M, m;) is proven (cbserve that the p-invariants in Eqs (6.1-6.2-
6.3-6.4) remain for m;): |

if m(load] + m|op,] + m[deposit] + mlop,] + m|unioad] + m|withdrawal] > 1
then v(m) can decrease firing ta,t3,85,86,t8 OF £10
else if m{wait_raw] + m[wait_free] > 1
then v(m) can decrease firing ¢yor t;
else v(m) can decrease firing ¢4 or g is the unique fireable transition
(iff m; is the present marking)

Because my is reachable from m; (e.g. firingo = (t9t19t3t7t3)5t4t5) (N mg)
is a reversible system.

Once again liveness of the system in Figure 6.8 can be proved, because the
complete sequence (i.e. containing all transitions) ¢ = t1fatatststototstzis can
be fired. Since the system is reversible, no transition loses the possibility of
firing (i.e., all transitions are live).

16.4 Siphons and traps

By means of graph theory based reasoning it is possible to characterize many
properties of net subclasses. Siphons (also called structural deadlocks, or more
simply deadlocks) and traps are easily recognizable subsets of places that gener-
ate very particular subnets.

Definition 16.12 Let N = (P, T, F) be an ordinary net.

1. A siphon is e subset of places, ¥, such that the set of its input transitions
s contained in the set of its output transitions: ¥ C P is o siphon &>
NCEs. :
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live rank(C) = 5, |[EQS| = 5; (b) Structurally non-live rank(C) = 3, |[EQS| = 2.

2. A trap is a subset of places, 8, such that the set of its output transitions is
contained tn the sel of its inpul transitions: 6 C P i3 a trap <= 6* C *40.

2 = {p1, p2, Pa, D5, pe} is a siphon for the net in Figure 16.7.a: *¥ = {ty,
t1, t2, t3, ts}, while £* = *L U {tg}. ¥ contains a trap, 8 = £\ {ps}. In fact
0 is also a siphon (it is minimal: removing any number of places no siphon can
be obtained).

Siphons and traps are reverse concepts: A subset of places of a net N is a
siphon iff it is a trap on the reverse net, N™! (i.e. that obtained reversing the
arcs, its flow relation, F).

The following property “explains” why structural deadlocks or siphons (think
on “soda siphons”) and traps are the names of the above concepts.

Property 16.13 Let (N, mo) be an ordinary net system.

1. If m € RS(N,mg) is a deadlock state, then ¥ = {p|mip] = 0} is an
unmarked (empty) siphon.

2. If a siphon is {or becomes) unmarked, it will remain unmarked for any
possible net system evolution. Therefore all its input and output transitions
are dead. So the system is not-live (but can be deadlock-free).

3. If a trap is {or becomes) marked, it will remain marked for any possible
net system evolution (i.e. at least one token is “trapped”).

If a trap is not marked at myg, and the system is live, mg will not be recov-
erable from those markings in which the trap is marked. Thus:
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Figure 16.8: For the two nets, the MST-property does not hoid but: (a) The

simple net is live and bounded; (b) The non-simple Izet is rzon-hve (although
deadlock-free) and bozmded

Corollary 16.14 If a live net system is reversible, then mg marks all traps.

Remark For live and bounded free choice systems a stronger property holds:
Marking all traps is a necessary and sufficient condition for reversibility {3]. The
net system in Figure 16.7.a is reversible. Nevertheless; if mg == [0, 1,0, 0, 1, 0,
~ 0], the new system is live and bbzm’ded but non reversible: The trap 8 = {p1,
P3, Pa; Ps, Pr} is not marked at mo.

A siphon which contains a m&rked trap will never become unmarked. So this
more elaborate property can be of helpful for some liveness characterizations.

Definition 16.15 Let N be an ordinary net. The system (N,mp) has the
Marked-Siphon-Trap property, MST-property, if each szphan contains a marked
trap at mg.

A siphon (trap) is minimal if it dc)es not contain another siphon (trap).
Thus, siphons in the above statement can be constrained to ’oe mzmma.l Wlthout
any loss of generality. :

The MST-property guarantees that all siphons will be marked. Thus no
dead marking can be reached, according with propez't;y 16.13.1. Therefore:

Pmperty 16.16 If (N, ma) has the MST—pmperty, the system is deadlock-free.

F1gure 16 8 present;s some hmxﬁatlons of the MST~pmperty for lweness chaz»
acterization.

Remark The MST—property is suﬁczenﬁ for lzveness in sunpie net systems and
necessary and sufficient for free-choice net systems. As a corollary, the liveness
monotonicity result is true for the case of live free-choice systems: If (A, mg)
is a live free-choice system, then for all mg’ > myp, (N, my’) is also live. The
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evious result does not apply to Simple Net systems. The system in Figure
1.b is simple, X = {p;, pa, pr} is a siphon (*X = {3, 4, t1}, £* =*T U {£:})
at does not contain any trap. If we assume mg|pg| = 1, £ can be fired and £
pcomes empty, leading to non-liveness.

1-6;5 Analysis of net subclasses

In this section we quickly overview some of the analytical results for certain
subclasses that we define in Subsection 16.5.1. We organise the material around
properties instead of describing the results for each subclass, what would lead
to abundant redundancies. (Of course, properties of large subclasses such as
.- EQ systems, are inherited by their subclasses such as FC or DF systems.)
- Our intention is to show how the restrictions imposed by subclasses’ defini-
- tions, at the price of losing some modelling capabilities, facilitate the analysis,
- The designer must find a compromise between modelling power and availabil-
ity of powerful analysis tools, while one of the theoretician’s goals is obtammg
better results for increasingly larger subclasses.

The general idea behind the structure theory of net subclasses is to investi-
gate properties that every net system in the subclass enjoys, instead of analysing
each particular system. These general properties are useful in two ways:

e The designer knows that her/his system (if it belongs to an appropriate
subclass) behaves “well” (e.g., liveness monotonicity, existence of home
states).

¢ General analysis methods become more applicable or more conclusive (e.g.,
model checking for FC, liveness analysis for all the subclasses considered).

The technical development of the presented results, and many other details that
are out of the scope of this very succint presentation, can be found in [15], [36],
[41], [45].

16.5.1 Some Syntactical Subclasses

Historically, subclasses of ordinary nets have received special attention because
powerful results were early obtained for them. In this presentation some of them
appear as subclasses of their weighted generalisations for the sake of concision.
Regarding the modelling power, clearly some subclasses have less than others if
the former are properly included in the latter. Also the weighted generalisations
have more modelling power than their ordinary counterparts since, in general,
the ordinary implementations of weights do not preserve the (topological) class
membership.

Join-free and State Machines

A P/T net N is join-free (JF) when no trapsition is a join, i.e., |*t] < 1 for
every t. With these nets, proper synchronisations cannot be modelled. N is
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a weighted P-net when every transition has one input and one output place,
i.e., |*t| = |t*] = 1 for every t. An ordinary weighted P-net is a P-net or state
machine (SM), a name due to the fact that when marked with only one token
each place represents a possible global state of the (sequential) system. With
more than one token concurrency appears: an SM with k tokens represents k
instances of the same sequential process evolving in parallel. Given an adequate
stochastic interpretation, strongly connected SM correspond to closed Jackson
Queueing Networks

Dlstrxbxztar-frw and Marked Graphs

AP/T net N is dz_stnbutor~ﬁ~ee (DF) when no place is a distributor, i.e., p*1 <1
for every p. With these nets, conflicts cannot be modelled. They are also
called structurally persistent because the structure enforces persistency, that is,
the property that a transition can only be disabled by its own firing. N is
a weighted T-net when every place has one input and one output transition,
ie, |*p| = Ip*| = 1 for every p. An ordinary weighted T-net is a T-net or
marked graph (MG), a name due to a representation as a graph where the nodes
are the transitions and the arcs joining them are marked (that is, places have
been obviated). As some examples, MG can model activity ordering systems,
generalising PERT graphs, job-shop systems with fixed production routing and
machine sequencing, flow lines, Kanban systems, etc. For instance, the net in
Figure 16.9 (a) is a MG. Given an adequate stochastic interpretation, strongly
connected MG correspond to Fork/Join Queueing Networks with Blocking.

Equal Conﬁlct and Fme Chozce

A P/T net N is equal con_ﬂzct ( EQ) when every pair of transitions in structural
conflict are in equal conflict, i.e., they have the same pre-incidence function:
*t*t’ # @ implies Pre[P,t] = Pre[P, #]. An ordinary EQ net is an (extended)
Jree choice net (FC). Free choice nets play a central role in the theory of net
systems because there are powerful results for their analysis and synthesis while
they allow the modelling of systems allowing both conflicts and synchronisations.
It is often said that FC can be seen as MG enrichéd with SM-like conflicts
or, equivalently, SM enriched with MG-like synchronisations. However, they
cannot model mutex semaphores or resource sharing, for instance.  The net in
Figure 16.9 (b) is FC. The fundamental property of EQ systems is that whenever
a marking enables some transition ¢, then it enables every transition in EQS(t) =
CCS(t). It can be said that the structural and behavioural notions of conflict
coincide. Tt is also said that conflicts and synchronisations are neatly separated,
because it is easy to transform the net so that no output of a dlstrlbutor place
is a join: Figure 16.6 (f) is the result of transforming (e). :

Asymmetric Chozce, or Szmp!e

A P/T net N is asymmetmc choice (AC’), somemm% ca}led Szmple, when it is
ordinary and p* Np'" # @ implies p* C.p'* or viceversa.. In these nets, the
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Figure 16.9: Modelling a flow line with three machines and two buffers. Each
buffer is modelled by two places, for the parts and “holes”, respectively (the later
initially marked with A; holes). Each machine is modelled by a state machine,
initially idle, where the “working-state” is shaded; they follow a blocking after
service policy (they start their work even if there are no holes in the output
buffer, so they might stay blocked before unloading). The different models
consider: (a) reliable machines, (b) machines with operation dependent failures
(may fail only when working), and (c) machines with time dependent failures
(may fail at any time). Scrapping (part is discarded) is possible in the case of
unreliable machines.

conflict relation is transitive. They generalise FC, and allow modelling to a
certain extent resource sharing. The net in Figure 16.9 (c) is AC.

The above subclasses are defined through a global constraint on the topology.
"Their relations are illustrated in the graph of Figure 16.10, where a directed
arrow connecting two subclasses indicates that the source properly includes the
destination, and the constructs depicted illustrate the typical situations that
distinguish each subclass.
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Figure 16.10: Relations between some basic syntactical subclasses.

Modalar Subclasses

Subclasses can also be defined in a modular way, by giving some modules and
how interconnecting them. Very often the modules are monomarked SM, repre-
senting sequential systems which run in parallel com;ammcatmg in a restricted
fashion. A few examples follow. .

Superposed automate systems (SA) are composed by monomarked SM syn-
chronised by transition merging, that is, via rendez-vous. They lead to general
— although structured — bounded systems models. For instance, all the nets
in Figure 16.9 are SA (if the capacities of the buffers are one).

Systems of buﬁ'er~caopemtzng funcﬁonal entities are modules (depenc.hng on
the kind of modules we obtain different sabciasses) syﬁchromsed by message-
passing through buﬁ’ers in a restncted fashzon AP / T system S is in this class
when:

o P= Btﬁﬁ-} P,','T h;i T;. The net systems'S geﬁerated by P; and T; are
the fumtwnal entmes or modules a.ud the places of B are t:he buﬁ"ers

. For every b EE B there exzsts i Such tha.t A T,, that is, buﬂ"ers are
output private. Moreover if t,#' € T: are in EQ relation in N, then

Prejb, t] = Prelb,t'], that is, buffers do not modify the EQ relations of
the modules. These restrictions on buffers prevent competition.

In case the modxﬂes a.re monomarked SM we obta.m detemzmstzcally synchm~
nised sequentml ‘processes (DSSP} In case they are £Q systerns we obtain sys-
tems of cooperating EQ systems. These can be. buffer-interconnected again,
leading to a hierarchical class of systems, recursively defined, that is called
{8C}* EQS, standing for systems of cooperating systems of cooperating ... EQ
sytems. They allow the modelling of hierarchically coupled cooperating systems.
‘The net systems in Figure 16.9 (a) and (b) can be seen-as-—+ rather trivial —
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Figure 16.11: A net system where local fairness does not guarantee impartiality,
and which can exhibit monopoly situations.

examples of buffer-cooperating systems, where the places modelling the buffers
are precisely the buffers, while each machine is modelled by an SM.

Systems_of Simple Sequential Processes with Resources (S8 PR) are SM syn-
chronised by a restricted resource sharing. The restrictions impose that there
is a place in each SM which is contained in every cycle and does not use any
resource {an “unavoidable idle state”), and that every other place uses one
(possibly shared) resource. They allow the modelling of rather general flexible
manufacturing systems, or similar systems where resource sharing is essential,
as it shall be shown in Chapter 77

16.5.2 Fairness and monopolies

In some systems, impartiality (or global fairness, that is, every transition appears
infinitely often in infinite sequences) can be achieved locally (every solution of
a — local — conflict that is effective infinitely often is taken infinitely often):

Theorem 16.17 Let S be a bounded strongly connected EQ system or DSSP.
A sequence o € L(S) is globally fair iff it is locally fair.

This property is not true in general. Take for instance the net system in
Figure 16.11. The sequence o = {t; f5t3}* is locally fair (actually, during the
occurrence of o no conflict is effective at all), but it is not globally fair since ¢4
never occurs. Conversely, the sequence o = {£; t3t4t3t; t2t3}* is globally fair
but not locally since whenever t; and {4 are in conflict ¢4 wins.

The equivalence of local and global fairness has two important consequences.
The first one is equivalence of liveness and deadlock-freeness, what facilitates the
analysis of liveness because it suffices to check the weaker property of deadlock-
freeness:

Theorem 18.18 Let S be a bounded strongly connected EQ system or DSSP.
Then § is live off it is deadlock-free.
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The second consequence- i8 relevant for the ‘eventual mtexpretatlon of the
model. Assume, for’ instance; that the system in Figure 16.11 is interpreted so
that transitions occur after a deterministic delay equal to their index. Then,
the system behaves repeating the occurrence of ¢; t3¢3, never giving a chance
to t4, despite it was perfectiy live in the autonomous model: the interpretation
has destroyed liveness leading to a mono;roly; sztnatlon (the “resources” needed
by t4 are “znoxiopahzed” by. tz)__ L

This can never happento a bounded strongly connected EQ system or DSSP
assuming the interpretation allows progress (1 e., 8 transition that is continu-
ously enabled eventually occurs): by imposing a “fair conflict resolution policy,
which can be done in a distributed fashion provzded structurally conflicting
transitions.are allocated together; it is guaranteed that no action in the system-
becomes permanently dlsabled if the:autonomous: model was hve R

16.5.3 Confluence and directedness.

Persistent systems, _whxch include stmctura&ly permstent ones (DF) enjoy a
strong conﬁuence pmperty whenever from a given’ markmg we reach two differ-
ent markmgs by fring two distinct sequences, then we ¢an complete both such
sequences, each with the ﬁrmgs left with' respect to the' ot'hez', reaching in any
case the same markmg [28} Confluence is ¢closely related to det;ermmacy {27}
mterpretmg sequences as- executzons and’ trzmsztzon occurrences as operatlons,
when from'a’ given point two different executions’ may occur, depen" ing ‘on 'op-
eration timeés or other external matters, each operation in one execution will
eventually occur in the other (assumlng progress), posmbly in a dzﬁerent order
and with a different timing. - -+ - :

Moreover, confluence fac1htates checkzng lzveneas (nomterzmnatmn) of pet~
sistent systems: ‘it suffices to find-a: repeatable sequence that; contains every
transition: This'is because snch a repeatable sequence allows t6 construct a
sequence greater than’ any given sequence ¢ fireablé from ‘the initial marking,
and this proves that ¢ can be continued to enable the repeatable sequence.

" Stepping out from perszstent systems, the presence of eﬂ’ectzve conﬁxcts may
destroy confluence. Directedness is a weaker pmperty that states that'a common
SuCCessor of as:bltrary reachable maz'kmgs a.iwa.ys emst and Whlch halds fer some

Theorem_ls.ls:_. Let S be a lﬂ?ﬁ EQ 3ystem 07' .DSSP Let e P . ’
Then RS(N, ma)nRS(N mb) 55@

Informally, dlrectedness means- that the eﬁect of' & partxcular ruelutzon of
a conflict is not “irreversible”: there is a point where the evolution joints with
that which would have been if the decision-had been-6ther. The existence: of
home states, i.e., states that can be ultlmately reached a.fter wh}chever evolutien :
follows ﬁ'oz:rz dlrectedness a.nd boundedness . - _

Theorem 16.20 ‘Live and bounded EQ systems 0 _.DS 2 have home states.
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- The system in Figure 6.3.b is an example of a live and 1-bounded system
without home states.
This is an important property for many reasons:

=" The system is known to have states to return to, which is often required
in reactive systems. Chosing one such state as the initial one makes the
system reversible, i.e., mg can always be recovered.

¢ Model checking is largely simplified, since there is only one terminal strongly
connected component in the reachability graph.

e Under a Markovian interpretation (e.g., as in generalized stochastic Petri
nets.4l]), ergodicity of the marking process is guaranteed; otherwise, simu-
lation or computation of steady state performance indices could be mean-
ingless. '

16.5.4 Reachability and the state equation

As it was discussed in Section 16.3, reachable markings are solutions to the state
equation but, in general, not conversely: some solutions of the state equation
may be “spurious”. This limits the use of the state equation as a convenient
algebraic representation of the state space.

Fortunately stronger relations between reachable markings and solutions to
the state equation are available for some subclasses:

Theorem 16.21 Let S be a P/T system with reachability set RS and linearised
reachability set wrt. the state equation LRS5E,

1. IfSisa live wetghted T-system, or a live and consistent source private
DSSP, then RS = LRS®®, Moreover, if it is a live MG, then the integrality
constraints can be disregarded.

2. If § is a bounded, live, and reversible DF system, then m € RS iff m €
LRS%® and the unique minimal T-semiflow of the net is fireable af m.

3. If 8 is a live, bounded, and reversible FC system, thenm € RS iff m €
LRSSE (integrality constraints can be disregarded) and every trap is marked
at m.

4. If 8 is a live EQ system or a live and consistent DSSP, and ma,my €
LRSSE, then RSN, m,) N RSN, my,) # 0.

. We can take advantage of the above statements in a diversity of situations.
For instance, the reachability characterisation for live MG allows to analyse
some of their properties through linear programming. Even the last, and weak-
est, statement in the above theorem — a directedness result at the level of
the linearised reachability graph — can be very helpful: since, in particular,
it implies that there are no spurious deadlocks in live EQ systems, or live and

299




consistent .DSSP, the deadlock-freeness analysis technique. presented in. Subsec~

tion. 1632mwh1chmthesecasesreqmresasmgle equation

to decide the property. . - 0. - _ L
Fzgure I 2 .3 shows an exampie ef a hve a.nd 1 bounded system wﬂzh spunous

deadlocks e

16. 5 5 Analys:s of hveneness 'and bonnded: ess

One of the propertzes that supports the claim: that “good” behamor shouid be
easier to achieve in some subclasses than in’ general systems is liveness mono-
tonicity wré. -the initial markmg “This means that liveness, provided that the
net is “syntactically” éorrect’as’ we shall’ precise later, is a matter of having
enough tokens in the buffers (customers, resources, initial data, etc.); differ-
ently to what happens in general systems where the addition of tokens may well
cause deadlocks due to poorly. manageé competztmn, For instance, in the net
gystem of Fzgure 6 1 b addmg 8 token (m Ps) to the imnal marking dest;roys
hveness ' _

Theorem 16 22 Let (N'

ive, EQ system, or DSSP The EQ system
or D._S'S.I.’_,_ (N m.gvif_:Amg)_,_zuhem Ama SRR RRES

zs.lwetoo TN

_ Very efi:en a ,net system is requn‘ed to be hve and bounded . As we saw
in Section 6.3.1 the verification of. lxveness can _be very hard, so we. want to
avoid it when posszble {n some cases we 'are able to de(:lde usmg ‘structural
methods alone; in. other ases we can char erise the nets that can be lively
and boundedly marked, sd_;':he costful”' numeration: anaiyms needs to be used
only when thete is a ' o

’I'hec}rem ] '6_;23 LetN e an EQ or, HSSP net A markmg mg e:msts such that
(N, mc) is°a live and bounded EQ system’ or 'DSSP zﬁ’ N is stmngly connected,
conservative (or consistent); and rank(C) = |SEQS| = 1 Moreover, in EQ sys-
tems, liveness of the whole system is equivalent to: lweness af each P~component
( the P—subnets genemted by the mzmmal P~semzﬁow3} L

Pa.rtmnlar cases of the above result are weli~knm in et:_ theory For in-
stance, in the ordinary case, the. P-compornents. ofa FC net-are. st;rongiy con-
nected: SM,. which: are: live: ﬁ'&eymmmkedy” ' eness criterion’ can
be stated. as: “there ate no unmarked P-semifio s of_.--MG;-.-.;wbiﬁh.,
are: always consistent. and rank(C):=-|SEQS}: -the e.x:steme of
a live and. bounded: markmg quivalent to strong: connectedness.
P~wmponem;s are their ¢ircuits; liveness can be checked zen
places and venfjnng thab the remmmng net is: acych-




6.6 I_nvariants and Reductions for Coloured Petri
nets
6.6.1 Invariants

in ordinary Petri nets, one of the main aspects of the structural verification
of CPNs is the generation of invariants. But before developping techniques for
such a problem, some points must be clarified:

o how can we express a invariant of CPNs and especially a linear invariant 7

e how a family of (linear) invariants can be characterized as a generative
family of invariants 7

e how can we build a (generative) family of (linear) invariants ?

The aim of this section is to successively answer to these three questions in a
concise way.

Presentation of linear invariants

The choice of an adequate definition of invariants should meet the following
requirements. At first, an invariant of an high-level Petri net must be a high-
level invariant. For instance, if we model processes by colours, it means that
an invariant should express properties of the behaviour of one particular pro-
cess but also of the behaviour of any process, or else of the behaviour of any
process except a particular one etc. On the other hand, the definition should
enable mathematical developments leading to efficient algorithms for computing
invariants.

One can try to follow the definition of ordinary invariants, i.e.: a invariant
is a weighted sum of the marking of the places left invariant by the firing of any
transition. However such a definition involves two hidden extensions :

e what can be the weights on place marking 7

o there are multiple ways to fire a transition {(as much as the size of the
colour domain of the transition)

The essential point in the definition below is that the weights are colour
functions. It can be interpreted as applying the colour function on the place
marking corresponds to extract the relevant part of information contained in
this marking for a given invariant. In order to be mathematically sound this
function must have for domain the colour domain of the place and for codomain
a common domain for the weights of the same invariant. This codomain may
be viewed as the interpretation domain of the invariant and this requirement
engures that the weighted sum of the marking places is well defined.
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Figure 16.12: A CPN model of a replicated database

Definition 16.24 A linear invariant v of a coloured Petri net N'is defined by :
e cd(v) the colour domain of the invariant,
e Vpe P, v(p) a function from 74P} o 259V

such that :

Vm reachable marking, Z vi(p)(m(p)) = Z v{(p)(me(p))
pEP pEP

The net of figure 16.12 models a database management with multiple copies.
The access grant of the database is centralized and submitted to the mutual
exclusion.

The database is shared by a set of sites represented by the colour domain
Sites. In order to modify the database an idle site (in place idle) must get the
grant (a neutral token in place mutez) and once it has modified the file, it sends
messages to the others sites. The whole action is modelled by the transition ¢
and the contents of the message is not modelled. Then the other sites update
their own database (transition ¢3) and send an acknowledgment (transition #4).
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zece the active site has received all the acknowledgments, it releases the grant
(transition ¢3).

~ In order to simplify the net, accessing and modifying the database is mod-
eiled by a single transition (indivisible step) while the updating of the other
sites is modelled by a place (divisible step).
~ Initially there is a token per site in place idle and a neutral token in place

Let us give a first example of a linear invariant :

cd(v) = Sites
v = (wx).idle + (z}.wait + (z}).update

" This linear invariant describes the behaviour of any site : either the site is idle,
either it waits for the acknowledgments or it updates its database.

Computation of linear invariants

Now we focus on the computation of family of linear invariants. Ideally, we want
a generative family of invariants i.e. any linear invariant should be obtained by
a linear combination of the invariants of the family. Keeping in mind what is a
linear invariant of a well-formed net, we allow the coefficients of the combination
to be functions with the same requirements on domain and codomain for these
functions. It should be mentionned that this is the only way to keep a generative
family of reasonnable size and moreover as we shall see in what follows to obtain
significant flows (directly like items of the family or by linear combination).

We will not give in this subsection any algorithm but instead we will show on
the previous example how to compute a generative family of invariants. Then
we will interpret our family of invariants.

The corner stone of all the algorithms is to handle the incidence matrix in a
similar way as it is done in the Gaussian elimination. However the elimination
rules must be applied under conditions which ensure that no linear invariant
will be “forgotten”.

We start with the incidence matrix C of our exampile :

t1 t2 t3 t4
[ (z) ~{z) 0 0 \ {z).wait
R S T (z).idle
C = (s—z) O ~{} 0 {x).mess
-1 1 0 0 l.mutex
0 0 (z) (i) (x).update
\ 0 —(s—z} O {z) J  {(x).ack

On the right, the initial family of invariants is shown i.e. each place weight
by the identity function of its colour domain. Now we proceed by a standard
rule : adding to a line another one which has been premultiplied by a function.
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We apply on this new matrix a second rule w ch eimnnates a hne for Whlch
one. of its: coeﬁcmnt is the only non mzl coeﬁcmnt of 12:3 miumn (hem the first’




o The state of any site : either the site is idle, either it waits for the ac-
knowledgments or it updates its database.

(z).wait + (x).idle + (z).update

' The state of the database : either the grant is present or a site is waiting
- for completing its transaction.

1.wait + l.nutex

s The synchronization between sites : if a site is waiting then either any
other site has & message for the current transaction, either it updates its
copy, or it has send its acknowledgment.

{x).mess + (z).ack + {x).update ~ (s — z).wait

Some other significant linear invariants may also be obtained by combining
the previous invariants. For instance, the following invariant says that either the
grant is present and all the sites are idle or the grant is absent and the idle sites
are exactly those who will receive a message or have sent their acknowledgment.

(x).idle — (8).mutex — (x).mess — (x).ack
Additional remarks

The computation of linear invariants we have described in the previous section
can not be straightforwardly extended to general coloured nets. We emphasize
below the three problems one must cope to provide a general algorithm

e How to compose lines in order to cancel items of the matrix 7
e How to ensure that the last coefficient of a column is injective 7

e How to handle the two previous operations ip a parametrized way i.e. in-
dependantly of the size of the colour domains (in our example, the number
of sites) 7

A general algorithm for coloured nets has been proposed in [12]. The key
point of the algorithm is the intensive use of generalized semi-inverses. Its only
restriction is to fix the size of the colour domains.

On the other hand, with restrictions to subclasses of coloured nets, it is
possible to obtain algorithms which handle the parameters [25], [24] [32]. These
algorithms transform the incidence matrix of functions into a set of matrices
with coefficients taken in a ring of poynomials. The variables correspond to
the parameters of the net. At this point, it is enough to apply a Gaussian-like
elimination on these matrices. Each vector solution is finally transformed (in
an inverse way) to a linear invariant.
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The exzst;ence of an. lmphmtplace.{ "
reduction. muﬁtrat@s o 8 ens




f  The condition 2 ensures that in the initial marking, p will not forbid alone
¢ the firing of any transition due to the positivity constraints included in the
£ condition I. The fact that v is a linear invariant ensures that the condition 2
£ is also true for all reachable markings.

The transformation deletes the place and the bordering arcs.
Definition 16.26 The reduced net N, = (P, T, Pre/, Post’, (', cd’) with ini-

f}i@l marking mq’ obtained from the net Nby the simplification of the implicit
place p is defined by :

. P'=P~{5)
o T" =T
s 0'=C

e YVt T Vp € P, cd(t) = ¢d(t) and ed(p’) = cd{p)
e Vt € T',Vp' € P',Pre/(p/,t) = Pre(p/,t) and Post(p/,t) = Post(p/, t)
o V' € P/ ymg’'(p') = me(p)

POST-AGGLOMERATION OF TRANSITIONS

The principle of the post-agglomeration is the following. Suppose we are
given H a set of transitions which represent global actions and which lead to an
intermediate state representated by a token in the place p. Suppose that the way
of going out of this intermediate state is to fire a transition f which represents a
local transition (i.e. without synchronization). Then the firing of any transition
of H could be immediatly followed by the firing of f without modifying the
global behaviour of the net. Doing this, the place p may be deleted and the
firings of transition f may be included in the firing of any transition of H.
However one must take some care in order to define the new items of the Pre
and the Post matrices. For simplicity, we present here a restricted version of
this reduction.

We begin by introducing the concept of a safe colour function required by
the next definition. A safe function produces (or consumes depending on the
arc) at most one token per colour of the place. In a modelling, the functions
are the most of the time safe functions.

Definition 16.27 A safe colour function from Bag(E) to Bag(F) is safe iff :
Vee E,Vc € F, f(e){(d) <1

Definition 16.28 Let Nbe a coloured Petri net, p a place which has for output
the transition f et for inputs the set H of transitions with f ¢ H, one can
post-agglomerate f with H iff :

1. Yh € H,Post(p, h) is a safe function
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Figure 16.13: The reduction of the CPN model of a replicated database




@ te.t.'hé Aimplicit: place’ i’tilé is ltlhe' one we have ebtai'
ion of -_the generatzve fa.mﬂy in the subsectmn 16. 6 1

ated to thezlm. 'lzczt place wa,zt zs

 tain & good structure foi' the unfoldeleetn net corn po dmg'te the CPN.

__The”transformatmn rule must follow these two pmxcxples $re sniai

o It must not increase the size of the celour dorsta’ (smce in tlns case there. |
s a hzdden exteumon cf the net) -
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